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Monopole Floer homology and Legendrian knots
STEVEN SIVEK

We use monopole Floer homology for sutured manifolds to construct invariants of
unoriented Legendrian knots in a contact 3–manifold. These invariants assign to
a knot K ⇢ Y elements of the monopole knot homology KHM.�Y;K/ , and they
strongly resemble the knot Floer homology invariants of Lisca, Ozsváth, Stipsicz,
and Szabó. We prove several vanishing results, investigate their behavior under
contact surgeries, and use this to construct many examples of nonloose knots in
overtwisted 3–manifolds. We also show that these invariants are functorial with
respect to Lagrangian concordance.

57M27, 57R58; 57R17

1 Introduction

A knot K in a contact 3–manifold .Y; ⇠/ is said to be Legendrian if the tangent
vectors to K lie in the contact planes ⇠ . In recent years, a variety of invariants have
been constructed to distinguish Legendrian knots which are topologically identical.
Notable examples include contact homology as described by Eliashberg [11], especially
the combinatorial version due to Chekanov [5], and invariant elements of knot Floer
homology constructed by Ozsváth, Szabó and Thurston [36] using grid diagrams or by
Lisca, Ozsváth, Stipsicz and Szabó [30] using open book decompositions; the last of
these is often called the “LOSS invariant.”

In order to construct a knot invariant from monopole Floer homology, Kronheimer and
Mrowka [27] defined a monopole version of Juhász’s sutured Floer homology [22] and
declared the monopole knot homology KHM.Y;K/ to be the sutured invariant of the
complement of K . It is natural to ask whether an analogue of the LOSS invariant can
be defined in this setting, where the construction makes no use of Heegaard diagrams
or open books but instead proceeds by embedding the knot complement in a closed
3–manifold xY and computing zHM. xY / in certain Spinc –structures.

The goal of this paper is to present such an invariant. Namely, to any unoriented
Legendrian knot K ⇢ .Y; ⇠/ of topological type K , we associate elements

`g.K/ 2 KHM.�Y;K/
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in monopole knot homology with local coefficients, which are invariant up to auto-
morphisms of KHM , for all integers g � 2. (Conjecturally these do not depend on g ,
so for convenience we shall omit it throughout this introduction and the reader may
fix any choice of g .) These elements are obtained by choosing a particular contact
structure x⇠ on the closed manifold xY , so that .Y �K; ⇠jY �K/ is a contact submanifold
of . xY ; x⇠/, and letting `g.K/ be the monopole contact invariant of x⇠ .

The construction of `.K/ presents some advantages and disadvantages over that of
the LOSS invariant. It is hard to compute in general, it does not distinguish between
different orientations of K , and it does not come with a natural bigrading the way
elements of knot Floer homology do. However, some vanishing and nonvanishing
results have very simple proofs, as do several theorems involving contact surgery. For
example:

Proposition 4.1 If the complement of K is overtwisted, then `.K/D 0.

Proposition 4.2 Let S
C

.K/ and S
�

.K/ denote the positive and negative stabilizations
of a Legendrian knot K . Then `.S

C

S
�

.K//D 0 for all K .

For the LOSS invariant yL.K/ one can prove something stronger, namely, yL.S
�

.K//D

yL.K/ and yL.S
C

.K//D 0, but when working with unoriented knots one cannot distin-
guish between S

C

.K/ and S
�

.K/.

Theorem 5.1 Let K;S ⇢ .Y; ⇠/ be disjoint Legendrian knots, and let KS ⇢ YS
denote the image of K in the contact manifold YS obtained by performing a contact
.C1/–surgery on S . Then there is a map

KHM.�Y;K/! KHM.�YS ;KS /

sending `.K/ to `.KS/.

These results are all known to be true for the LOSS invariant, as are several consequences
we will pursue in this paper. However, using work of Mrowka and Rollin [32; 33]
on the monopole contact invariant which is not known to be true in Heegaard Floer
homology, we can investigate one entirely new property of `.K/: its behavior under
Lagrangian concordance, as defined by Chantraine [4].

Theorem 6.3 Let K0;K1 ⇢ .Y; ⇠/ be Legendrian knots, with Y a homology 3–sphere,
and suppose that K0 is Lagrangian concordant to K1 . Then there is a map

KHM.�Y;K1/! KHM.�Y;K0/

such that `.K1/ 7! `.K0/.
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The organization of this paper is as follows. In Section 2 we review the necessary
background on sutured monopole homology and the monopole contact invariant.
We construct `g.K/, prove its invariance and compute it for Legendrian unknots
in Section 3, and prove the vanishing theorems mentioned above in Section 4. In
Section 5 we investigate the effect of contact .C1)–surgery on `.K/ and apply this to
prove some nonvanishing results and to construct many examples of nonloose knots in
overtwisted contact manifolds. Finally, in Section 6 we discuss the behavior of `.K/
with respect to Lagrangian concordance.

Throughout this paper we will adopt the convention that letters in the standard math
font, such as K , refer to topological knots, whereas the same letters in a script font,
such as K , refer to Legendrian representatives of those knot types. We also remark that
Lekili [29] has shown that one can replace zHM with HFC in the Kronheimer–Mrowka
construction of sutured monopole homology in order to recover sutured Floer homology.
Thus the reader can apply the constructions in this paper to obtain a similar Legendrian
invariant in knot Floer homology, and everything in this paper will still hold except the
Lagrangian concordance results of Section 6. In this sense it would be interesting to
compare `.K/ to the LOSS invariant.

Acknowledgement An early version of this work formed part of my thesis at MIT
under the supervision of Tom Mrowka, who I thank for many useful discussions and
suggestions. I am also grateful to many others, in particular John Baldwin, Jon Bloom,
John Etnyre, Peter Kronheimer, Yankı Lekili, Lenny Ng, Peter Ozsváth, Paul Seidel,
Vera Vértesi and Chris Wendl, for helpful conversations on this work and related
issues. I would also like to thank the anonymous referee for many helpful comments,
and especially for raising the issue of orientation which was overlooked in the first
version of this paper. This work was partially supported by an NSF Graduate Research
Fellowship.

2 Sutured manifolds and contact invariants in monopole
Floer homology

2.1 The definition of SHM

For background on monopole Floer homology we refer to Kronheimer and Mrowka’s
book [26].

Let .M; � / be a balanced sutured manifold. Kronheimer and Mrowka [27] defined the
monopole Floer homology of .M; � / as follows:

Geometry & Topology, Volume 16 (2012)
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(1) Choose an oriented, connected surface T such that the components of @T are
in one-to-one correspondence with the components of � . Form the product
sutured manifold .T ⇥I; ı/, where I D Œ�1; 1ç, with annuli A.ı/D @T ⇥I and
R

˙

.ı/D T ⇥ f˙1g.
(2) Glue the annuli A.ı/ to A.� / by some orientation-reversing map A.ı/! A.� /

sending @R
C

.ı/ to @R
C

.� /. The resulting 3–manifold should have boundary
xR

C

[

xR
�

for some connected, closed, orientable surfaces xR
˙

DR
˙

.� /[R
˙

.ı/.
(3) Form a closed manifold xY by gluing the boundary along some diffeomorphism

hW

xR
C

!

xR
�

, and let xR ⇢

xY be the image of xR
˙

.

We require that xR has genus at least 2, and that T contains a simple closed curve c

such that c ⇥ f˙1g is a nonseparating curve in xR
˙

.

Definition 2.1 The sutured monopole homology of .M; � / is defined as

SHM.M; � /D

zHM
✏

. xY j

xR/;

where zHM
✏

. xY j

xR/ is the direct sum of zHM
✏

. xY ; s/ over all Spinc structures s satisfying
hc1.s/; xRi D 2g. xR/� 2.

Note that since g. xR/� 2, the class c1.s/ cannot be torsion if zHM
✏

. xY ; s/ contributes
to zHM

✏

. xY j

xR/; but then HM.Y; s/D 0, so zHM
✏

. xY ; s/ and bHM
✏

. xY ; s/ are canonically
isomorphic. In [27] the authors therefore simply write HM. xY j

xR/, but we will prefer
to leave the “to” decoration in place as a reminder that we will be using the contact
invariant associated to zHM .

We can also define SHM using local coefficients. Let R be a ring with exponential map
expW R ! R⇥ and write tn

D exp.n/ for convenience. To any smooth 1–cycle ⌘ in xY

we can associate a local system Ä⌘ on the Seiberg–Witten configuration space B. xY ; s/
whose fiber at any point is R and which assigns to any path zW Œ0; 1ç! B. xY ; s/ the
multiplication map by tr.z/ , where

r.z/D

i

2⇡

Z

Œ0;1ç⇥⌘
tr.FAz

/

for Az the connection on Œ0; 1ç⇥ xY arising from the path z .

Suppose that the diffeomorphism hW

xR
C

!

xR
�

restricts to an orientation-preserving
homeomorphism c ⇥ f1g ! c ⇥ f�1g, resulting in a curve xc ⇢

xY . If ⌘ is taken to be
a curve dual to xc , in the sense that xc � ⌘D 1, then we can define SHM.M; � IÄ⌘/D

zHM
✏

. xY j

xRIÄ⌘/. As in the case without local coefficients, if t � t�1 is invertible
in R then the authors simply write HM. xY j

xRIÄ⌘/ without any ambiguity but we will
continue to use zHM .
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Proposition 2.2 [27] If t � t�1 is invertible in R, then SHM.M; � IÄ⌘/ depends
only on .M; � / and R. In this case we can allow xR to have genus 1, but if g. xR/� 2

and R has no Z–torsion then we also have

SHM.M; � IÄ⌘/ä SHM.M; � /˝R:

2.2 SHM with coefficients in Z=2Z

Throughout [27] the authors work with coefficients (both local and otherwise) in Z;
however, we assert that SHM is still an invariant if F D Z=2Z is used instead. When
using systems of local coefficients Ä⌘ over F , we drop the condition that the ring R
have no Z–torsion and thus only require that t � t�1

2 R be invertible. This will allow
us to pursue several applications involving surgery exact triangles, which are known to
work with local coefficients over F (see [28] or [26, Chapter 42]) but which have not
yet been proved with local coefficients over Z.

The proofs of the invariance theorems in [27], Theorem 4.4 and Proposition 4.6, rely
on several facts, most notably the excision theorems, Theorems 3.1 through 3.3, which
still apply verbatim. We need to verify that a handful of important proofs still work,
and in each case the only step requiring some additional care is the vanishing of a Tor
group coming from an application of the Künneth theorem:

Corollary [27, Corollary 3.4] Let †⇢ Y be a closed, oriented surface, and let ⌘ be
a 1–cycle supported in †. If every component of † has genus at least 2, then

zHM.Y j†IÄ⌘/ä

zHM.Y j†/˝R:

Proof The only detail requiring care in the original proof is the map (14), denoted

HM
✏

.Y1j†1IÄ⌘0
/˝ HM

✏

.Y2j†2/! HM
✏

. zY j

z†IÄ⌘0
/;

which comes from an application of the Künneth theorem and is expected to be an
isomorphism. The cokernel of this map is

TorF .HM
✏

.Y1j†1IÄ⌘0
/;HM

✏

.Y2j†2//;

which is zero since HM
✏

.Y1j†1IÄ⌘0
/DR is a free F –module, so the rest of the proof

still applies.

Lemma [27, Lemma 4.7] Let Y be fibered over S1 with closed fiber R of genus at
least 2. Then zHM.Y jR/ä F .

Geometry & Topology, Volume 16 (2012)
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Proof As in the above proof of [27, Corollary 3.4], if Yh is the mapping torus of
hW R ! R then zHM.YhjR/ä

zHM.Yh�1 jR/ and so the excision theorem [27, Theo-
rem 3.1] applied to Yh t Yh�1 gives an injective map zHM.YhjR/˝F zHM.YhjR/! F
with cokernel

TorF .zHM.YhjR/;zHM.YhjR//:

Since zHM.YhjR/ is a free F –module, this Tor term vanishes and the map is an
isomorphism, hence zHM.YhjR/ä F .

Corollary [27, Corollary 4.8] The sutured homology group SHM.M; � / does not
depend on the choice of gluing homeomorphism h.

Proof This is another application of the excision theorem [27, Theorem 3.1] to a
disconnected manifold Y D Y1 tY2 with Y2 a mapping torus, hence zHM.Y2j†2/ä F
and again the proof is the same once we observe that

TorF .zHM.Y1j†1/;zHM.Y2j†2//ä 0:

Proposition [27, Proposition 4.10] If t�t�1 is invertible in R , then SHM.M; � IÄ⌘/

is independent of the genus g .

Proof Here we wish to show that

zHM.Y1j

xR1IÄ⌘1
/ä

zHM..Y1 t Y2/j. xR1 t

xR2/IÄ⌘/

where ⌘D ⌘1 C⌘2 for some cycles ⌘i ⇢

xRi ⇢ Yi , and we know zHM.Y2j

xR2IÄ⌘2
/DR .

The Künneth theorem thus gives a map

zHM.Y1j

xR1IÄ⌘1
/˝RR !

zHM..Y1 t Y2/j. xR1 t

xR2/IÄ⌘/

with cokernel

TorR.zHM.Y1j

xR1IÄ⌘1
/;R/;

and since R is free as an R–module, the Tor term vanishes and this is indeed an
isomorphism.

We conclude that both the standard and local versions of sutured monopole homology
are invariants if we work over F rather than Z.

Geometry & Topology, Volume 16 (2012)
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2.3 Monopole knot homology

Given a knot K in a closed, oriented 3–manifold Y , we can form a sutured manifold
Y .K/ D .M; � / following Juhász [22] by taking M to be the knot complement
Y nN.K/ and � ⇢ @M a pair of oppositely oriented meridians. Then monopole knot
homology is defined by

KHM.Y;K/D SHM.M; � /;

and if we work with local coefficients we get KHM.Y;K/˝R ä SHM.M; � IÄ⌘/.

From now on we will fix R to be the Novikov ring
⇢X

˛

c˛t˛

ˇ̌
ˇ̌ ˛ 2 R; c˛ 2 F ; #fˇ < n j cˇ 6D 0g<1 for all n

�
;

with exp.˛/D t˛ and .t �t�1/�1
D �t �t3

�t5
�� � � . Although we may drop the local

system Ä⌘ from our notation, we are always working with local coefficients over R.

2.4 Contact structures in monopole Floer homology

Let .Y; ⇠/ be a closed contact 3–manifold. Kronheimer and Mrowka [25] associate a
contact invariant

 .⇠/W ƒ.⇠/!

zHM
✏

.�Y; s⇠ ; cbal;Ä⌘/

where cbal D 2⇡c1.s⇠/ is a balanced perturbation of the Seiberg–Witten equations and
ƒ.⇠/ is the set of orientations of an appropriate moduli space. In general we will ignore
the orientations ƒ.⇠/, since we are working in characteristic 2, and so we will write
 .⇠/ 2

zHM
✏

.�Y; s⇠ ; cbal;Ä⌘/.

Mrowka and Rollin [32; 33] investigated the behavior of the contact invariant under
symplectic cobordisms.

Definition 2.3 A symplectic cobordism .W; !/ from .Y
�

; ⇠
�

/ to .Y
C

; ⇠
C

/ is said to
be left-exact if ! is exact near Y

�

, or equivalently if it is given in a collar neighborhood
of Y

�

by a symplectization 1
2d.t2⌘

�

/ where ⇠
�

D ker ⌘
�

. It is right-exact if the same
holds near Y

C

, and boundary-exact if it is both left- and right-exact.

Theorem 2.4 [33, Theorem 3.5.4] Let W be a boundary-exact cobordism .W; !/

as above such that the map

H 1.W I Z/! H 1.Y
C

I Z/

is surjective, and let W | denote W viewed as a cobordism from �Y
C

to �Y
�

. Then
 .⇠

�

/D

zHM.W |; s!/. .⇠C//.
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Corollary 2.5 If W is a symplectic 2–handle cobordism corresponding to Legendrian
surgery, then

 .⇠
�

/D

zHM.W |/. .⇠
C

//

and in particular we can replace the map zHM.W |; s!/ of Theorem 2.4 by the total
map zHM.W |/.

Remark 2.6 The results in this section are stated for monopole Floer homology in [33],
which is not publicly available as of the time of this writing. However, the necessary
excision theorems for the Seiberg–Witten moduli spaces which define the cobordism
maps are proved in [32], where they are interpreted in terms of the equality of certain
integer-valued Seiberg–Witten invariants rather than the equality of elements of the
Floer homology group zHM . The main difficulty in extending these theorems to zHM
lies in orienting these moduli spaces compatibly, but since we work in characteristic 2
this will not be an issue.

3 The Legendrian knot invariant

Let K ⇢ .Y; ⇠/ be a Legendrian knot of topological knot type K . Our goal is to
construct an appropriate contact structure x⇠ on a closure . xY ; xR/ of the sutured knot
complement Y .K/ so that the contact invariant  .x⇠/ does not depend on any of the
choices we must make. This will give us an invariant `.K/ of the Legendrian knot K
which is an element of KHM.�Y;K/ up to automorphism.

Take a standard neighborhood N.K/ whose boundary is a convex torus. If we assign
coordinates to @N.K/ä R2=Z2 so that .˙1; 0/ is a meridian and .0;˙1/ a longitude,
then its dividing set Ä consists of two parallel curves of slope 1=tb.K/, where tb.K/
is the Thurston–Bennequin invariant of K . (See for example Etnyre and Honda [15,
Section 2.4].) In particular, if we view the sutured knot complement Y .K/ as the contact
manifold .Y nN.K/; ⇠jY nN.K// with convex boundary, then each of the meridional
sutures will intersect each dividing curve transversely in a single point as in Figure 1.
Here, and in all other figures, we will color regions white and gray to represent the
positive and negative regions, respectively, of a convex surface.

3.1 Closure of the sutured knot complement

Our construction follows the definition of the sutured invariant as in Section 2. We
must first pick an auxiliary surface T whose boundary components are in one-to-
one correspondence with the sutures of Y .K/ and glue the annuli @T ⇥ I ⇢ T ⇥ I

to neighborhoods A.� / of the sutures. In order to form a contact structure on this

Geometry & Topology, Volume 16 (2012)
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Figure 1. The convex torus @.Y nN.K// , cut along a meridian. The horizon-
tal circles are sutures, while the pair of parallel arcs (or circles, once the top
and bottom are identified) are dividing curves and have slope 1=tb.K/ .

glued manifold, we must assign a contact structure to T ⇥ I whose restriction to a
neighborhood of @T ⇥ I agrees with ⇠ in a neighborhood of A.� /. By Giroux’s
flexibility theorem [19] it suffices to ensure that the dividing curves match, sending the
positive region of A.� / to the negative region of @T ⇥ I and vice versa.

Let T0 be a closed surface of genus at least 2, and pick a pair of dual curves ˛; ˇ ⇢ T0

such that ˛ �ˇ D 1. Give T0 ⇥ I the I –invariant contact structure „˛ whose dividing
curves consist of two parallel disjoint copies of ˛ on each surface T0 ⇥ f˙1g and for
which the negative region of T0 ⇥ fC1g is an annulus. Such a contact structure always
exists: see eg Honda, Kazez and Matić [21, Theorem 1.1, case 3]. We define .T ⇥I; „/

as the contact manifold obtained by cutting T0 ⇥ I along a convex perturbation of the
annulus ˇ⇥ I , as in Figure 2.

˛

ˇ

Figure 2. The construction of the auxiliary surface .T ⇥ I; „/

We now form a contact manifold .Y 0; ⇠ 0/ D .Y nN.K//[ .T ⇥ I/ by gluing along
some orientation-reversing diffeomorphism A.ı/! A.� / as described above. This
manifold has edges, corresponding to the corners @T ⇥ @I , which we smooth using
edge-rounding as in Honda [20], under which dividing curves turn to the left (as viewed
from outside Y 0 ) as they approach an edge. See Figure 3.

Lemma 3.1 The contact manifold Y 0

D .Y nN.K//[ .T ⇥ I/ depends only on K ,
.Y; ⇠/ and the genus of T0 .

Geometry & Topology, Volume 16 (2012)
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Figure 3. Gluing T ⇥ I to Y nN.K/ and rounding edges in a cylindrical
neighborhood of one of the sutures on @N.K/ , as viewed from T ⇥ f1g on
top and T ⇥ f�1g on the bottom

Proof The construction of T ⇥I depends only on g.T0/ and on the curves ˛; ˇ⇢ T0 .
Given any other pair of curves ˛0 and ˇ0 which intersect once, there is a diffeomorphism
'W T0 ! T0 with '.˛/D˛0 and '.ˇ/D'.ˇ0/, and this extends to a contactomorphism
' ⇥ IdW .T0nN.ˇ//⇥ I ! .T0nN.ˇ0//⇥ I .

Finally, we close up Y 0 to get a contact manifold . xY ; x⇠/ with distinguished convex
surface xR of genus g � 2. The boundary of Y 0 consists of two convex surfaces xR

C

and xR
�

determined by T ⇥ f˙1g ⇢

xR
˙

. These are split by pairs of parallel dividing
curves Ä

˙

⇢

xR
˙

into positive and negative regions . xR
C

/
˙

⇢

xR
C

and . xR
�

/
˙

⇢

xR
�

,
and each of . xR

C

/
�

and . xR
�

/
C

is an annulus. Fix any diffeomorphism hW

xR
C

!

xR
�

which sends . xR
C

/
˙

to . xR
�

/
⌥

, and hence also Ä
C

to Ä
�

, and such that h.x ⇥ f1g/

and x ⇥f�1g lie in the same component of Ä
�

for any x ⇥f1g in Ä
C

\ .int.T /⇥f1g/.
In other words, a dividing curve c ⇢ Ä

C

corresponds to one of the two copies of
˛ ⇢ T0 , and we require h.c/ to be the dividing curve of Ä

�

corresponding to the same
copy of ˛ .

We glue xR
C

to xR
�

via h. The resulting contact manifold is the desired . xY ; x⇠/.

Definition 3.2 The Legendrian invariant of K is defined as `.K/ D  . xY ; x⇠/ 2

zHM.� xY ; s
x⇠ IÄ⌘/.

We can compute that

hc1.x⇠/; xRi

xY D �.. xR
C

/
C

/��.. xR
C

/
�

/D 2 � 2g. xR/

and so hc1.sx⇠/;
xRi

�

xY D 2g. xR/� 2. This means that `.K/ is in fact an element of
zHM.� xY j

xRIÄ⌘/D SHM.�Y .K/IÄ⌘/, which is by definition the knot homology with
local coefficients. Therefore

`.K/ 2 KHM.�Y;K/˝R:
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Remark 3.3 The desire to arrange that hc1.x⇠/; xRi D 2 � 2g motivated our choice of
contact structure on T ⇥I . In particular, �.. xR

C

/
C

/ and �.. xR
C

/
�

/ sum to �. xR
C

/D

2 � 2g , and if we fix their difference as above then we must have �.. xR
C

/
�

/ D 0.
But now . xR

C

/
�

does not have any sphere or torus components, and if it had disk
components then xR

C

would not have a tight neighborhood [20], so . xR
C

/
�

is forced
to be a union of annuli.

In addition to the Legendrian knot K ⇢ .Y; ⇠/, the construction of `.K/ from a closure
. xY ; x⇠/ with distinguished convex surface xR potentially depends on both the genus
g D g. xR/ and the choice of diffeomorphism xR

C

!

xR
�

. Our goal in the next section
is to prove that in fact it is independent of the diffeomorphism.

3.2 Invariance under diffeomorphism

In this section we establish that `.K/ is independent of the choice of diffeomorphism
xR

C

!

xR
�

.

Proposition 3.4 Let . xY 0; x⇠ 0/ be the contact manifold obtained from xY by cutting along
the convex surface xR and regluing along some orientation-preserving diffeomorphism h

such that h.� / D � for each dividing curve � of xR. Then there is an isomorphism
zHM.� xY 0

j

xRIÄ⌘/!

zHM.� xY j

xRIÄ⌘/ which sends  . xY 0; x⇠ 0/ to  . xY ; x⇠/.

Lemma 3.5 Proposition 3.4 holds when h is a Dehn twist along some nonseparating
curve c which does not intersect the dividing curves Ä of xR.

Proof We observe that c is nonisolating, ie that every component of xRn.Ä [ c/ has
a boundary component which intersects Ä , and thus by the Legendrian Realization
Principle (see Kanda [24] and Honda [20]) we can take c to be Legendrian. Indeed,
the complement xRnÄ has two connected components; if c is nonseparating within its
component then it is clearly nonisolating. Otherwise, c divides its component of xRnÄ

into two components, say A and B . Since c is nonseparating in xR there is a path
in xRnc which connects A to B , and this path must pass through the other component
of xRnÄ . In particular, the path crosses Ä , so both @A and @B intersect Ä and thus c

is nonisolating.

Suppose now that h is a positive Dehn twist along c , and that c has been realized as
a Legendrian curve. Then h can be realized by .�1/–surgery on c with respect to
the framing induced by xR, and since tw.c; xR/D �

1
2 jc \Äj D 0 this is a Legendrian

surgery. If W is the corresponding symplectic cobordism, and W | is the oppositely
oriented cobordism from �

xY 0 to �

xY , then

zHM.W |/. . xY 0; x⇠ 0//D  . xY ; x⇠/
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by Corollary 2.5. The fact that zHM.W |/ gives an isomorphism zHM.� xY 0

j

xRIÄ⌘/!

zHM.� xY j

xRIÄ⌘/ is an easy consequence of the surgery exact triangle for zHM and the
fact that xR becomes compressible in the manifold �

xY0 obtained by 0–surgery along c ,
hence zHM.� xY0j

xR/D 0 by the adjunction inequality [26].

If instead h is a negative Dehn twist, we note that xY can be obtained from xY ’ by a
positive Dehn twist along c , so we construct a cobordism W from xY 0 to xY as above
and then zHM.W |/�1 is the desired isomorphism.

Proof of Proposition 3.4 In general, we can arrange by an isotopy that the diffeo-
morphism h is actually the identity on each dividing curve. Then h restricts to a
boundary-fixing diffeomorphism on the closure of each component of xRnÄ . One
component is an annulus A, so up to isotopy hjA is a composition of Dehn twists
about the core of A. The other component is a surface † of genus g. xR/� 1 � 1 with
two boundary components, and so hj† can also be expressed as a product of Dehn
twists about nonseparating curves which do not intersect Ä D @†. Since h D hjA ıhj† ,
repeated application of Lemma 3.5 completes the proof of Proposition 3.4.

We have now shown that the construction of `.K/ 2 KHM.�Y;K/˝R is independent
of all choices except possibly the genus g D g. xR/. Thus we have constructed a
sequence of Legendrian knot invariants `g.K/ for g � 2.

Conjecture 3.6 The elements `g.K/, g � 2, are all equal up to automorphism as
elements of KHM.�Y;K/˝R.

Since we will show in Section 3.3 that `g.U/ D 1 2 R where U ⇢ .S3; ⇠std/ is the
Legendrian unknot with tb D �1, this conjecture would follow from a connected sum
formula of the form

`g.K/˝ `g0.U/D `gCg0
�1.K#U/D `gCg0

�1.K/

which we expect to be true by comparison with the LOSS invariant [30, Theorem 7.1].

From now on we will drop the g subscript where convenient and simply write `.K/ to
mean `g.K/ for some fixed g � 2.

3.3 The Legendrian unknot

The Legendrian representatives of the topological unknot U ⇢ S3 were classified by
Eliashberg and Fraser [12]: they are completely determined by their classical invariants
tb and r , and there is a representative U with .tb; r/D .�1; 0/ so that all others are
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stabilizations of U . In this subsection we will prove that the Legendrian invariant of U
is a unit of KHM.U /˝R ä R.

Our strategy is to explicitly determine the contact structure on a particular closure xY

of S3.U/.

Lemma 3.7 Let ⇠ be the I –invariant contact structure on .S1
⇥I/⇥I whose dividing

curves on the annulus S1
⇥ I are a pair of parallel arcs ft1g ⇥ I and ft2g ⇥ I . Then

after edge-rounding, ⇠ is contactomorphic to the complement of U .

Proof By Honda’s classification of tight contact structures on solid tori [20, Theo-
rem 2.3], there is a unique tight contact structure „ on S1

⇥D2 for which the dividing
curves on the boundary have slope �1; since tb.U/D �1, the complement of U must
be .S1

⇥D2; „/. But if we round the edges on ..S1
⇥I/⇥I; ⇠/, we get a tight contact

structure on S1
⇥ D2 for which the dividing curves on the boundary S1

⇥ S1 have
slope �1, and so this contact structure must be „ as well.

Proposition 3.8 The invariant `.U/ is a unit in KHM.U /˝R ä R.

Proof We glue a surface T ⇥I to .S1
⇥I/⇥I as in Section 3.1, identifying the annuli

@T ⇥ I with .S1
⇥ I/⇥ @I , to get an I –invariant contact manifold Y 0

D†g ⇥ I with
convex boundary which is tight by Giroux’s criterion for tightness [20, Theorem 3.5],
which says that an R–invariant contact structure on †g ⇥R (g> 0) is tight if and only
if the dividing set on †g ⇥ f0g has no contractible components. Gluing †g ⇥ f1g to
†g ⇥ f�1g via the identity map, we get the closure xY D†g ⇥ S1 with S1 –invariant,
tight contact structure x⇠ and distinguished surface xR D†g ⇥ f⇤g. Since no component
of Ä ⇢†g is separating, [34, Theorem 5] asserts that x⇠ is weakly fillable.

The claim that KHM.U /˝ R D

zHM. xY j

xRIÄ⌘/ ä R now follows from [27, Corol-
lary 2.3]. Furthermore, since x⇠ is weakly fillable we know that  .x⇠/ is a unit of
zHM. xY IÄ⌘/ [25; 33], and since  .x⇠/2

zHM. xY j

xRIÄ⌘/äR the proposition follows.

Remark 3.9 Wendl [40, Corollary 2] has shown that . xY ; x⇠/ has vanishing untwisted
ECH contact invariant. By work of Taubes [39] it follows that the untwisted contact
invariant  .x⇠/ 2

zHM. xY j

xR/ is also zero, so we must work with local coefficients for
`.U/ to be nonzero.

We can also compute `.UY / if UY is a Legendrian unknot in a Darboux ball of some
contact manifold .Y; ⇠/. Observe that both S3.U / and S3.1/ have .†g⇥S1; †g⇥f⇤g/

as a closure, where M.1/ denotes the complement of a ball in M with a single suture,
and since Y .UY /ä Y #S3.U / we conclude that KHM.Y;UY /ä SHM.Y .1//.
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Let eHM .Y / D SHM.Y .1// ä KHM.Y;UY /. Then clearly eHM is analogous to the
hat version of Heegaard Floer homology, since cHF.Y / ä SFH.Y .1// virtually by
definition [22]. In fact, it is equivalent to define eHM .Y / as the homology of the
mapping cone of U|W

LC .Y /!

LC .Y / (see Bloom, Mrowka, and Ozsváth [1]), just as
cHF.Y / comes from the Heegaard Floer complex CFC.Y /.

We will define a contact invariant z g.⇠/ 2

eHM .�Y /˝ R up to automorphism as
`g.UY /. (Having noted that z g potentially depends on g just as `g does, we will
similarly drop the subscript and write z .⇠/ from now on.) This seems to be a reasonable
choice by analogy with the LOSS invariant yL.UY /2 bHFK .�Y;UY /, which is identified
with the Heegaard Floer contact invariant yc.⇠/ 2

cHF.�Y / as argued in the proof of
[30, Corollary 7.3].

Proposition 3.10 There is a map

eHM .�Y /˝F R !

zHM.�Y /˝F R

which sends z .⇠/D `.UY / to  .⇠/˝ 1.

Proof Recall that U ⇢ .S3; ⇠std/ has closure . xY ; xR/ D .†g ⇥ S1; †g ⇥ f⇤g/ with
S1 –invariant contact structure x⇠ and its homology is twisted by a 1–cycle ⌘ ⇢

xY .
Thus the Legendrian unknot UY ⇢ Y has closure .Y # xY ; xR/.

Build a symplectic cobordism .W; !/ from .Y; ⇠/t. xY ; x⇠/ to .Y # xY ; ⇠#x⇠/ by attaching
a symplectic 1–handle to the symplectization .Y t

xY /⇥ I . The induced map

zHM.W|; s!/W zHM.�.Y # xY /; s⇠#s
x⇠ IÄ⌘/!

zHM.�Y t �

xY ; s⇠ t s
x⇠ IÄ⌘/

sends `.UY /D .⇠#x⇠/2

zHM.�.Y # xY /IÄ⌘/ to  .⇠t

x⇠/ by Theorem 2.4. But the map

zHM.�Y; s⇠/˝F zHM.� xY ; s
x⇠ IÄ⌘/!

zHM.�Y t �

xY ; s⇠ t s
x⇠ IÄ⌘/

coming from the Künneth theorem is an isomorphism since zHM.� xY ; s
x⇠ IÄ⌘/ä R is

free, so in fact zHM.W|; s!/ can be expressed as a map

zHM.�.Y # xY /; s⇠#s
x⇠ IÄ⌘/!

zHM.�Y; s⇠/˝F R

sending  .⇠#x⇠/ to  .⇠/˝ .x⇠/D  .⇠/˝ 1. The source and target of this map are
summands of zHM.�.Y # xY /j xRIÄ⌘/D

eHM .�Y /˝R and zHM.�Y /˝R , respectively,
and  .⇠#x⇠/ is `.UY /, so we are done.

Corollary 3.11 If  .⇠/ 2

zHM.�Y / is nonzero, then so is z .⇠/ 2

eHM .�Y /˝R.

For example, if ⇠ is strongly symplectically fillable then  .⇠/ is nonzero and primitive
[25; 32], so Proposition 3.10 implies that z .⇠/ is a primitive element of eHM .�Y /˝R .
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4 Vanishing results

4.1 Loose knots

Recall that a Legendrian knot K ⇢ .Y; ⇠/ is said to be loose if the complement of K is
overtwisted.

Proposition 4.1 If K ⇢ Y is loose, then `.K/D 0.

Proof By assumption Y nK has an overtwisted disk, so any closure . xY ; x⇠/ does as
well. Then  . xY ; x⇠/ vanishes (see [32, Corollary B]), hence `.K/ does as well.

4.2 Stabilization

Let S
C

.K/ and S
�

.K/ denote the positive and negative stabilizations of an oriented
Legendrian knot K , which may also be thought of as the connected sums K#U

˙

where
U

˙

⇢ S3 is the topologically trivial knot with tb D �2 and r D ˙1. One would like
to show that `.S

�

.K//D `.K/ and `.S
C

.K//D 0 for any Legendrian knot K , since
the same holds for the LOSS invariant yL.K/ [30]. Unfortunately, this is impossible,
since one can only distinguish between these stabilizations when K is oriented.

On the other hand, the double stabilization S
C

S
�

.K/ is still well-defined and un-
ambiguous even for unoriented K , since the Legendrian isotopy type of U

C

#U
�

is
preserved by orientation reversal, and one can prove the corresponding result in this
case.

Proposition 4.2 If K is any Legendrian knot, then `.S
C

S
�

.K//D 0.

Proof We will construct a closure xY of K0

D S
C

S
�

.K/ with an overtwisted disk,
so that the vanishing follows from [32, Corollary B]. Stabilization of a Legendrian
knot K corresponds to attaching a bypass to its complement: if we stabilize to get
S

˙

.K/ inside a standard neighborhood N.K/⇢ Y and fix a standard neighborhood
N.K˙/⇢ N.K/, then Y nN.K˙/ is obtained from Y nN.K/ by a bypass attachment.
See Etnyre and Honda [14] or the proof of [38, Theorem 1.5] by Stipsicz and Vértesi
for discussion.

In the leftmost part of Figure 4 we have indicated the attaching arcs c
C

and c
�

of
bypasses corresponding to positive and negative stabilizations on @.Y nN.K0//, as in
[38, Figure 10], with a single meridional suture � between them. The dividing curves
are shown with orientation for convenience, so that they have the same orientation as the
boundary @Ä

C

of the positive region. If we start to form the closure of Y nN.K0/ by
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c
C

�

c
�

Ä
�

Ä
C

c
C

c
�

Figure 4. Attaching curves for bypasses in the complement of S
C

S
�

.K/ and
its closure

attaching a surface T ⇥I to neighborhoods of the sutures and then rounding edges, we
may then cut out T ⇥ I to get a contact manifold with corners as in the middle figure;
this indicates the positions of the arcs c

˙

on the boundary components xR
˙

⇢ Y 0 .

We wish to glue xR
C

to xR
�

so that the arcs c
C

and c
�

are glued together, but as
shown in the middle of Figure 4 we cannot do this by identifying the inside and outside
regions in the obvious way. Indeed, we must identify the white component . xR

C

/
C

on
the outside with the gray component . xR

�

/
�

on the inside, identifying the left dividing
curve on the outside with the left dividing curve on the inside and likewise for the
right dividing curves, but then c

C

and c
�

cannot be made parallel so that they end
up identified. The problem is that as we follow them leftward and around the back of
the cylinder from the leftmost dividing curves, the arc c

�

ends “above” its starting
point whereas c

C

ends “below” its starting point. However, we can glue c
C

to c
�

by
applying a Dehn twist to the outer gray annulus . xR

C

/
�

along its core as shown on the
right side of Figure 4. We can then “untwist” c

�

by reparametrizing . xR
C

/
�

, sliding
the lower endpoint of c

�

downward along its dividing curve until it has nearly traversed
the entire curve and lies just above the other endpoint; this allows us to identify it
with . xR

�

/
C

so that c
�

is sent to c
C

. Now we can glue xR
C

to xR
�

so that c
�

and c
C

are identified, and the union of their respective bypasses is an overtwisted disk in the
closure . xY ; x⇠/. We conclude that  . xY ; x⇠/, and hence `.K0/, is zero.

5 Contact surgery

5.1 Behavior under contact .C1/–surgery

The following is a direct analogue of Theorem 1.1 of Ozsváth and Stipsicz [35],
which concerns the LOSS invariant yL.K/ 2

bHFK .�Y;K/ (or more generally L.K/ 2

HFK�.�Y;K/) but is much harder to prove.
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Theorem 5.1 Let K and S be disjoint Legendrian knots in .Y; ⇠/, and let .YS ; ⇠S/

denote the contact manifold obtained by performing contact .C1/–surgery along S .
Let KS be the image of the Legendrian knot K in YS . Then there is a map

KHM.�Y;K/˝R ! KHM.�YS ;KS/˝R

such that `.K/ 7! `.KS/.

Proof We may obtain .Y; ⇠/ by performing contact .�1/–surgery on S ⇢ YS (see
Ding and Geiges [8, Proposition 8]). Since S and K are disjoint it is easy to see that
we can fix a closure xYS of the complement YS.KS/ so that contact .�1/–surgery on
S ⇢

xYS gives a closure xY of Y .K/, and the surface xR and cycle ⌘⇢

xR are the same
in both closures. The Weinstein cobordism .W; !/ from xYS to xY coming from this
handle attachment gives a map

zHM.W |/W zHM.� xY IÄ⌘/!

zHM.� xYS IÄ⌘/

carrying `.K/ to `.KS/ by Corollary 2.5, and zHM.W |; s/.`.K// is zero for all Spinc

structures s ¤ s! . If we restrict zHM.W |/ to the Spinc structures on W which are
extremal with respect to xR on each component of the boundary, then we have a map

FW | W KHM.�Y;K/˝R ! KHM.�YS ;KS/˝R

such that FW |;s.`.K// is `.KS/ for a unique Spinc structure (again, s! ) and zero for
all others.

Theorem 5.1 applies to recover an analogue of a theorem of Sahamie [37, Theorem 6.1].

Theorem 5.2 Let K⇢ .Y; ⇠/ be Legendrian, and let .Y
˙

; ⇠
˙

/ be the result of a contact
.˙1/–surgery along K . These surgeries induce maps

KHM.�Y;K/˝R !

eHM.�Y
C

/˝R;
eHM.�Y

�

/˝R ! KHM.�Y;K/˝R

sending `.K/ 7!

z .⇠
C

/ and z .⇠
�

/ 7! 0, respectively.

Proof Let K˙ be Legendrian pushoffs of K with an extra positive or negative twist
around K as in Figure 5, so that KC (resp. K� ) is Legendrian (resp. topologically)
isotopic to K . As explained by Ding and Geiges in the proof of [9, Proposition 1],
performing a contact .˙1/–surgery on K turns K˙ into a meridian of the surgery torus
with tb D �1, so that K˙ becomes a Legendrian unknot in .Y

˙

; ⇠
˙

/. In particular,
we have KHM.�Y

˙

;K˙/ä

eHM .�Y
˙

/ and `.K˙

⇢ Y
˙

/D

z .⇠
˙

/.
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KC

K

K�

K

Figure 5. The knots KC and K� are constructed by adding a positive twist
and a negative twist, respectively, to a Legendrian pushoff of K .

Writing S D K and applying Theorem 5.1 to .Y; ⇠/, we now have a map

KHM.�Y;KC/˝R ! KHM.�Y
C

;KC/˝R

sending `.KC/D `.K/ to `.KC

⇢ Y
C

/D

z .⇠
C

/. Similarly, if we let S ⇢ .Y
�

; ⇠
�

/ be
the core of the contact .�1/–surgery torus, then a contact .C1/–surgery on S cancels
the original .�1/–surgery, leaving the original contact manifold .Y; ⇠/. Theorem 5.1
then produces a map

KHM.�Y
�

;K�/˝R ! KHM.�Y;K�/˝R

which sends `.K�

⇢ Y
�

/ D

z .⇠
�

/ to `.K�

⇢ Y /. But K� is Legendrian isotopic
in Y to the double stabilization S

C

S
�

.K/, hence `.K�

⇢ Y /D 0 by Proposition 4.2
and we are done.

Corollary 5.3 If the result of contact .C1/–surgery on K⇢ .Y; ⇠/ has nonzero contact
invariant  .⇠

C

/, then `.K/ 6D 0.

Proof Proposition 3.10 provides a map eHM .�Y
C

/˝R !

zHM.�Y
C

/˝R sending
z .⇠

C

/ to  .⇠
C

/˝1, so if  .⇠
C

/ 6D 0 then z .⇠
C

/ 6D 0 and hence `.K/ 6D 0 as well.

For example, let K ⇢ S3 be a knot with smooth slice genus gs � 1, and suppose
we have a Legendrian representative K ⇢ .S3; ⇠std/ of K with tb.K/D 2gs � 1. Let
.Y

C

; ⇠
C

/ denote the result of contact .C1/–surgery on K . The following argument
of Lisca and Stipsicz [31], translated directly from Heegaard Floer to monopole Floer
homology, shows that  .⇠

C

/ 6D 0.

Letting W denote the Weinstein cobordism from .Y
C

; ⇠
C

/ to .S3; ⇠std / which reverses
the contact .C1/–surgery along K , we have a map

zHM.�S3/
F

W |

�!

zHM.�Y
C

/

sending  .⇠std/ 6D 0 to  .⇠
C

/ by Corollary 2.5, so we wish to show that FW | is
injective. Now Y

C

is the result of a topological 2gs –surgery on K , so �Y
C

is the
result of a �2gs –surgery on the mirror image xK and thus FW | fits into a surgery
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exact triangle

zHM.S3/
F

W |
// zHM.S3

�2gs
. xK//

vv
zHM.S3

�2gsC1.
xK//

FV

gg

where V is a 2–handle cobordism. Lisca and Stipsicz show that V contains a closed
surface † of genus gs > 0 and self-intersection 2gs � 1 � 0. If s is a Spinc –structure
for which FV;s 6D 0, then the adjunction inequality for cobordisms says that

jhc1.s/; †ij C† �† 2g.†/� 2;

hence jhc1.s/; †ij  �1, a contradiction. Therefore FV is zero and FW | is injective
by exactness.

Corollary 5.4 If K ⇢ .S3; ⇠std/ is a Legendrian representative of a knot K with slice
genus gs > 0 and tb.K/D 2gs �1, then `.K/ 6D 0. Examples include any topologically
nontrivial K for which tb.K/D 2g.K/� 1, where g.K/ is the Seifert genus of K .

For example, in [31] the authors remark that tb.K/ D 2g.K/� 1 for any algebraic
knot, where tb denotes maximal Thurston–Bennequin number. More generally, if K is
the Legendrian closure of a positive braid as studied by Kálmán [23] with n strands
and c crossings then it is easy to compute that tb.K/ D c � n D 2g.K/� 1, hence
closures of positive braids have the same property.

For any Legendrian knot K , the Legendrian Whitehead double W .K/ (due to Eliash-
berg, and denoted Ädbl by Fuchs in [17]) is constructed by taking K and a slight
pushoff K0 in the z–direction, and then replacing a pair of parallel segments with a
clasp as in Figure 6; it has genus 1 and tb D 1.

Figure 6. Constructing a Legendrian Whitehead double from K and its pushoff

Thus `.K/ 6D 0 if K is a tb–maximizing representative of the closure of a positive braid
or a Legendrian Whitehead double. Similarly, there are many examples of knots with
tb.K/D 2gs.K/�1 where 1  gs.K/<g.K/, and these all have `.K/ 6D 0; according
to KnotInfo [3], the smallest examples have topological types m.821/ and m.945/.
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5.2 Nonloose knots

By Proposition 4.1, a Legendrian knot K in an overtwisted manifold is nonloose if
`.K/ 6D 0. Our goal in this section is to apply Theorem 5.1 to construct examples where
this is the case. In order to do so, we will first need the following lemma on monopole
knot homology and surgery.

Lemma 5.5 Let K;S ⇢ Y be disjoint knots, and for any integral framing f , let
Kf denote the image of K in the manifold Yf obtained by f –surgery along S . For
each f there is a map sf W KHM.Y;K/! KHM.Yf ;Kf / corresponding to a 2–handle
attachment along S in a closure xY of Y nK , and these maps satisfy the following:

(1) If sf C1 is either injective or surjective, then sf is injective.

(2) If sf is either surjective or zero, then sf C1 is zero.

Proof We have a surgery exact triangle

zHM. xY j

xR/
F1 // zHM. xYf j

xR/

F2ww
zHM. xYf C1j

xR/

F3

gg

where xY , xYf and xYf C1 are closures of the complements of K in Y , Yf and Yf C1 ;
note that by definition, zHM. xYf j

xR/ D KHM.Yf ;Kf /. Similarly, we have a second
triangle of the form

zHM. xY j

xR/
G1 // zHM. xYf C1j

xR/

G2ww
zHM. xYf C2j

xR/

G3

gg

and by [28, Proposition 7.2] we have G1 ı F3 D F3 ı G1 D 0, since each composition
comes from a cobordism created by a pair of 2–handles which contains a homologically
nontrivial sphere of self-intersection zero. This implies that G1 (resp. F3 ) is zero if
F3 (resp. G1 ) is either injective or surjective.

Suppose G1 is either injective or surjective; then F3 D 0, hence by exactness F1 is
injective. Similarly, if F1 is surjective then F2 is zero, hence F3 is injective, and if
F1 is zero then F3 is surjective; either of these imply G1 D 0. Since F1 D sf and
G1 D sf C1 , we are done.
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Proposition 5.6 Let K;S ⇢ .Y; ⇠/ be nullhomologous Legendrian knots such that
S is homotopic to a meridian of K in Y nK . If KS ⇢ .YS ; ⇠S/ is the image of K in
the manifold obtained by contact .C1/–surgery on S , then `.KS/ 6D 0 if and only if
`.K/ 6D 0 and tb.S/� 0.

Proof Observe that YS is obtained from Y by a topological .tb.S/C 1/–surgery
along S , so �YS is related to �Y by a k –surgery along S , where k D � tb.S/� 1.
In the notation of Lemma 5.5, the map

sk W KHM.�Y;K/˝R ! KHM.�YS ;KS/˝R

carries `.K/ to `.KS/ as in Theorem 5.1, so we will show that sk is injective if k  �1

(ie if tb.S/ � 0) and zero if k � 0. By Lemma 5.5 it will be enough to show that
KHM..�Y /0;K0/ D

zHM..� xY /0j

xR/ D 0, where . xY ; xR/ is a closure of Y nK and
.� xY /0 is obtained by 0–surgery on S ⇢ �

xY . Indeed, this implies that sk is zero for
k D 0 and hence for all k � 0, and since s0 is also surjective it follows that sk is
injective for all k  �1.

Since S and a meridian of K are homotopic in Y nK , they are homotopic in �

xY as
well, and in particular S is homotopic to a nonseparating curve c ⇢

xR. When we
perform 0–surgery along S to obtain �

xY0 , then, the curve c becomes nullhomotopic
and so Œ xRç 2 H2.� xY0/ has a representative of genus g. xR/� 1. Since g. xR/� 2, the
adjunction inequality tells us that zHM.� xY0j

xR/D 0 as desired.

Corollary 5.7 Let K[S be a two-component Legendrian link in .S3; ⇠std/ satisfying
the following:

(1) K is a Legendrian unknot with tb.K/D �1.

(2) tb.S/� 0.

(3) The linking number lk.K;S/ is ˙1.

Then KS is a nonloose Legendrian knot in the contact manifold .S3
S ; ⇠S/, where the

subscript denotes contact .C1/–surgery along S .

Proof We know that `.K/ D 1 2 R by Proposition 3.8, so Proposition 5.6 tells us
that `.KS/ 6D 0.

In particular, given a knot S with tb.S/ > 0 which satisfies all the other conditions
of Corollary 5.7, we can stabilize S to get S 0 with tb.S 0/ � 0 and then apply the
corollary to K [ S 0 . Since S 0 is stabilized, the contact .C1/–surgery results in an
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overtwisted contact structure (see for example Ding, Geiges and Stipsicz [10]), and
KS0 is nonloose.

For example, the right handed trefoil has a unique Legendrian representative with
.tb; r/ D .1; 0/. Let S be a stabilization of this Legendrian knot, and let K be a
Legendrian unknot with lk.K;S/D ˙1. Then .C1/–surgery on S gives an overtwisted
contact structure on the Poincaré homology sphere �P D �†.2; 3; 5/, which in fact
does not admit tight positive contact structures [15], and the image KS of K in �P is
a nonloose knot. We exhibit a family Kn of such knots in Figure 7.

n

.C1/

1

Figure 7. A Legendrian knot Kn in the overtwisted contact structure on �P

obtained from .S3; ⇠std/ by contact .C1/–surgery on a stabilized right-
handed trefoil T

Proposition 5.8 The knots Kn (n � 0) are all distinct, and none of them are fibered.

Proof Let LDUn[T ⇢S3 and yLDKn[

yT ⇢�P , where yT is the core of the surgery
torus glued to S3

nT to obtain �P . We will compute the Conway polynomial rL and
use it to determine r

yL and rKn
, and hence the Alexander polynomial ÅKn

, referring
to the properties stated on page 54 of Boyer and Lines [2]; note that r and Å are
related by

rL.s1; : : : ; sm/D

(
.s1 � s�1

1 /�1ÅL.s
2
1/; jLj D 1;

ÅL.s
2
1 ; s

2
2 ; : : : ; s

2
m/; jLj> 1:

Since yL is obtained as the cores of surgery tori for .1=0/–surgery on Un and .1=1/–
surgery on T , and lk.Un;T /D �1, the link yL is determined by L and the framing
matrix

B D

✓
1 �1

0 1

◆
;

from which we can determine lk
�P .Kn; yT /D �1 and

r

yL.s1; s2/D rL.s1; s1s2/
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by the “variance under surgery” proposition [2, Property (III)]. Then r

yL.s; 1/ D

�.s � s�1/rKn
.s/ by “restriction” [2, Property (IV)], and so

ÅKn
.s2/D .s � s�1/rKn

.s/D �r

yL.s; 1/D �rL.s; s/:

Then we have reduced the computation of ÅKn⇢�P to that of rL⇢S3.s; s/. Note that
the latter term is determined entirely by a skein relation rLC � rL� D .s � s�1/rL0

:

L
C

L
�

L0

and by rU .s/D .s � s�1/�1 , where U is the unknot.

Using the skein relation at a crossing in one of the n full twists of Un , we see that

rUn[T � rUn�1[T D .s � s�1/rL0

and so rL D rU0[T C n.s � s�1/rL0
. Applying the skein relation to the crossing

of Un directly below the n twists, when n D 0, we get rU0[T �rL1
D .s � s�1/rL0

,
hence

rL D rL1
C .n C 1/.s � s�1/rL0

;

where L D Un [ T , L0 , and L1 are the links in Figure 8.

n

Un [ T L0 L1

Figure 8. Links appearing in the computation of L D Un [ T by the skein relation

A straightforward computation now yields

rL0
.s; s; s/D �2.s � s�1/.s2

� 1 C s�2/;

rL1
.s; s/D �.s2

� 1 C s�2/;

and since ÅKn
.s2/D �rL1

� .n C 1/.s � s�1/rL0
we conclude that

ÅKn
.t/D .t � 1 C t�1/.1 C 2.n C 1/.t � 2 C t�1//:

Since the Alexander polynomials ÅKn
.t/ are all distinct, so are the Kn ; and since

ÅKn
is never monic, the Kn cannot be fibered.
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We remark that in general very few examples of nonloose knots in overtwisted contact
manifolds have been studied. Etnyre [13] observed that if the result .S3

K; ⇠K/ of contact
.C1/–surgery on K ⇢ .S3; ⇠std/ is overtwisted, then the core K0 of the surgery torus
in S3

K is nonloose. (If S3
K is the Poincaré homology sphere with either orientation,

then Ghiggini [18] proved that K must be a trefoil and so one can show that ÅK 0
D

˙ÅK 6DÅKn
.) Furthermore, Etnyre and Vela-Vick [16] showed that given an open

book decomposition which supports .Y; ⇠/, any Legendrian approximation of the
binding is nonloose. To the best of our knowledge, these are the only known examples
in manifolds other than S3 .

In particular, it seems that the nonloose knots Kn ⇢ �P were not previously known,
and in fact may be the only known nonfibered examples (even in S3 ) which are not
the cores of surgery tori. The construction of Corollary 5.7 is of course much more
general; it would be interesting to give examples of links Ki [S (i D 1; 2) which are
topologically but not Legendrian isotopic and which give distinct nonloose knots .Ki/S .

6 Lagrangian concordance

Chantraine [4] defined an interesting notion of concordance on the set of all Legendrian
knots in a contact 3–manifold Y .

Definition 6.1 Let K0 and K1 be Legendrian knots parametrized by embeddings
�i W S1

! Y , and let Y ⇥R be the symplectization of Y . We say that K0 is Lagrangian
concordant to K1 , denoted K0 �K1 , if there is a Lagrangian embedding L W S1

⇥R ,!
Y ⇥R and a T > 0 such that L.s; t/D .�0.s/; t/ for t <�T and L.s; t/D .�1.s/; t/

for t > T .

Theorem 6.2 [4] The relation � descends to a relation on Legendrian isotopy classes
of Legendrian knots. If K0 � K1 then tb.K0/D tb.K1/ and r.K0/D r.K1/.

Our goal in this section is to investigate the behavior of `.K/ under Lagrangian
concordance:

Theorem 6.3 Let K0;K1 be Legendrian knots in a contact homology 3–sphere Y

satisfying K0 � K1 . Then there is a homomorphism

KHM.�Y;K1/˝R ! KHM.�Y;K0/˝R

sending `.K1/ to `.K0/.

We compare this with the remarks in [4, Section 5.2], where it is observed that La-
grangian concordance induces a map LCH.K1/! LCH.K0/ on Legendrian contact
homology.
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Proof We fix a particular closure . xYi ; xRi/ of the sutured knot complements Y .Ki/:
place the meridional sutures close together so that in @.Y nKi/ they bound an annulus A

in which the dividing curves are parallel to a longitude. In the other annulus A0 bounded
by the sutures, the dividing curves twist around the meridional direction a total of
tb.Ki/ times; recall that tb.K0/D tb.K1/. We glue a surface T ⇥I to each complement
and round edges, resulting in a manifold with boundary xR

C

t

xR
�

and int.A/⇢

xR
C

.
Finally, we glue xR

C

to xR
�

by identifying .x; 1/ 2 T ⇥ f1g to .x;�1/ 2 T ⇥ f�1g for
all x 2 int.T /, and identifying A with A0 by a homeomorphism composed of enough
Dehn twists around the core of A to make the dividing curves match.

This construction guarantees that Z0 D

xY0nint.Y nK0/ and Z1 D

xY1nint.Y nK1/ are
contactomorphic as 3–manifolds with torus boundary. In the symplectization Y ⇥R, the
cylinder K0⇥R is Lagrangian, hence it has a standard neighborhood symplectomorphic
to a neighborhood N of the 0–section in T ⇤.S1

⇥ R/. Then a neighborhood of the
boundary T 2

⇥R of the symplectization Z0⇥R, can be identified with the complement
of the 0–section in N .

Now consider the Lagrangian cylinder L ⇢ Y ⇥ R defining the concordance from K0

to K1 . Once again, L has a neighborhood symplectomorphic to N ; if we remove a suf-
ficiently small neighborhood of L , then there is a collar neighborhood of @..Y ⇥R/nL/
which is orientation-reversing symplectomorphic to N with the 0–section removed.
Thus we can glue .Y ⇥ R/nL to Z0 ⇥ R to get a symplectic manifold W with two
infinite ends. One of these ends is a piece xY0 ⇥ .�1;T ç of the symplectization of xY0 ,
and since Z0 is contactomorphic to Z1 the other end is xY1 ⇥ ŒT;1/. Thus W is a
boundary-exact symplectic cobordism from xY0 to xY1 .

Finally, we wish to show that the map i⇤

W H 1.W; xY1/! H 1. xY0/ is zero. By Poincaré
duality it suffices to show that H3.W; xY0/! H2. xY0/ is zero, or equivalently (by the
long exact sequence of the pair .W; xY0/) that the map H2. xY0/! H2.W / is injective.
But there is a natural isomorphism H2..Y ⇥ R/nL/ ä H2.Y nK0/ by Alexander
duality, hence by the Mayer–Vietoris sequence and the five lemma it follows that
H2. xY0/! H2.W / is an isomorphism as well, and so i⇤ is indeed zero.

Since W is a boundary-exact symplectic cobordism and H 1.W; xY1/ ! H 1. xY0/ is
zero, we apply Theorem 2.4 to conclude that

 . xY0; x⇠0/D

zHM.W |; s!/. . xY1; x⇠1//:

Thus zHM.W |; s!/ induces a map f W KHM.�Y;K1/˝ R ! KHM.�Y;K0/˝ R
satisfying f .`.K1//D `.K0/, as desired.
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Corollary 6.4 If K0 � K1 and `.K0/ is nonzero, then so is `.K1/.

Corollary 6.5 If a Legendrian knot K ⇢ .S3; ⇠0/ bounds a Lagrangian disk in the
standard symplectic 4–ball B4 , then `.K/ is a unit of KHM.�S3;K/.

Proof The Legendrian unknot U is Lagrangian concordant to K , and `.U/ is a
generator of KHM.�S3;U /˝R ä R by Proposition 3.8, so by Theorem 6.3 there is
a map KHM.�S3;K/˝R ! R such that the image of `.K/ is a unit.

It is observed in the addendum to [4] that the following tangle replacement in the front
projection (obtained from a 1–smoothing of a crossing in the Lagrangian projection)
can be realized by a Lagrangian saddle cobordism:

If such a move turns a Legendrian knot K into a Legendrian unlink whose components
are both U , we can cap both components with Lagrangian disks and thus build a
Lagrangian slice disk for K , proving that `.K/ is a primitive element of KHM.�S3;K/.
Figure 10 shows grid diagrams for seven such knots, of topological types m.946/,
m.10140/, m.10140/, 11n139 , m.12n582/, m.12n768/, and m.12n838/, which were
discovered using a combination of KnotInfo [3], the Legendrian knot atlas [6], and
Gridlink [7]. As usual, these may be turned into front projections of Legendrian knots
by smoothing out all northeast and southwest corners and then rotating 45 degrees
counterclockwise. The dotted line in each diagram indicates where to perform the
tangle replacement.

Conjecture 6.6 Given a Lagrangian cobordism K0 �† K1 of arbitrary genus, there
is a map KHM.�Y;K1/˝R ! KHM.�Y;K0/˝R sending `.K1/ to `.K0/.
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Correction to the article

Monopole Floer homology and Legendrian knots

STEVEN SIVEK

Proposition 5.6 and Corollary 5.7 of our paper “Monopole Floer homology and
Legendrian knots”, which use the invariants `g of that paper to construct nonloose
Legendrian knots in overtwisted contact manifolds, are incorrect. In this erratum we
explain the problem with the proof of Proposition 5.6 and why it cannot be true.

57M27; 57R58, 57R17

Let K[S be a two-component Legendrian link in the contact 3–manifold .Y; ⇠/ such
that S is homotopic to a meridian of K in Y nK . In [2, Proposition 5.6], we claim
to show that if tb.S/ � 0 and `g.K/ ¤ 0, then the invariant `g.KS/ is also nonzero,
where KS is the image of K in the contact manifold .YS ; ⇠S/ obtained by contact
.C1/–surgery on S , and so by Proposition 4.1 the knot KS is nonloose. However,
this cannot be the case whenever S is stabilized because one can find an overtwisted
disk in YS in a neighborhood of the surgery torus; see eg the author’s work with
Lisca [1, Lemma 3.1]. Thus Proposition 5.6 and Corollary 5.7 are false, and the knots
in Figure 7 are loose. To the best of our knowledge, the rest of the paper remains
correct.

The error occurs at the end of the proof of Proposition 5.6, where we observe that S is
homotopic to a nonseparating curve

c ⇢

xR ⇢ �

xY ;

and we claim that therefore c becomes nullhomotopic when we perform 0–surgery
on S . This claim is false in general, as shown by the looseness of the examples in
Figure 7.

We thank Ken Baker for discovering both the incorrectness of these results and the
source of the mistake and bringing them to our attention, and the referee for helpful
comments.
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