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Knot Floer homology assigns to any knot K C S? a bigraded abelian group
HFE(K)= @ HFEK.(K,a),

a,meZ

and the Seifert genus g(K) is the maximal a such that ﬁﬁ(*(lﬂ a) is nonzero
[0S04a]. Moreover, K is a fibered knot if and only if ﬁﬁ((lﬂg(K)) has rank
1 [Ghi08, Ni07]. These facts imply that HFK detects the unknot, meaning that
@((K) = @(U) as bigraded groups if and only if K = U, and likewise the
trefoils and figure eight, because these are the only fibered knots of genus < 1. It

is also known to detect the cinquefoils [FRW22], which are fibered of genus 2.
This talk focused on recent work with John Baldwin [BS22a], where we proved

for the first time that HFK can detect knots which are not fibered. The main
result is a classification of the “nearly fibered” knots of genus 1.

Theorem 1. Let K C S? be a knot of Seifert genus 1. Then dim }Tﬁ((K, 1;Q) =
2 if and only if K or its mirror is one of the following:

)

52 15143522 Wh™ (15,3,2 Wht(Ts3,2) P(-3,3,2n+1)

Among these knots, we note that HFEK uniquely detects 5, and Wh™ (T2.3,2);
it cannot distinguish 15n43522 from Wh™ (75 3,2), or any of the pretzel knots
P(-3,3,2n + 1) from each other. With a little extra work, we can then use
other knot homologies to tell the pretzels apart:

Theorem 2. Reduced Khovanov homology detects b2, and reduced HOMFLY ho-
mology detects each of the pretzel knots P(—3,3,2n+1).

Remark 3. We expect that reduced Khovanov homology should be enough to
detect each of the pretzels P(—3,3,2n + 1), but we were unable to prove it.

Theorem 1 also lets us draw some purely topological conclusions. We say r € Q
is a characterizing slope for K C S3 if S2(K) = S2(J) implies that K = J.

Theorem 4 ([BS22b, BS22c]). Every r € Q\ Zsq is characterizing for bo. If K
is any of the knots of Theorem 1, then 0 is characterizing for K.

The first step in the proof of Theorem 1 is to classify the possible complements
of genus-minimizing Seifert surfaces. If I is a Seifert surface for K, then the
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sutured Floer homology of
S3(F) = (S \ N(F), Ax)

can be identified with ﬁﬁ((K,g(F)). When dim SFH (S3(F)) = 1, properties of
SFH tell us that
S3(F) = (F x [~1,1],0F x {0}),

so this recovers the fact that K must be fibered. We are instead concerned with
the 2-dimensional case, so S3(F) is no longer a product sutured manifold; however,
work of Juhdsz [Juh10] tells us that since dim SFH (S3(F)) is sufficiently small,
there must be an essential product annulus in S3(F). We decompose S3(F) along
this annulus and repeat, and eventually we have simplified the topology enough
that only two possibilities remain:

Proposition 5. Let F' be a genus-1 Seifert surface for K, and suppose that
dim SFH(S3(F)) = 2. Then S3(F) is the complement of the union of

o the (2,4)-cable of either the unknot or the right-handed trefoil, and
e q properly embedded, non-separating arc in the cabling annulus,

up to orientation reversal. Its suture is a meridian of that arc.

Once we know S3(F), viewed as the complement of a product F x [—1,1], it
remains to be seen how we can glue F'x {1} to F' x {—1} to recover the complement
of K. The key observation is that in either case, S3(F) admits an involution ¢
which restricts to F' x {£1} as a hyperelliptic involution. Since g(F) = 1, this
involution is central in the mapping class group of F', and this allows us to extend
¢ across F' x [—1,1] to the whole of S3. Here we illustrate (S3(F),t) in case where
S3(F) is built from a cable of a trefoil:

Taking the quotient by ¢, we realize S3(F) as the branched double cover of a fixed
tangle 7 in the 3-ball, and F x [—1, 1] as the branched double cover of some 3-braid
Bin D? x [~1,1]. Then 7 U B must be unknotted, since its branched cover is S®,
S0 it remains to determine all such 8 and produce the corresponding K.
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We can only give a hint here of how to enumerate the possible braids £ in the
trefoil case. After some simplification, we are led to the unknot diagram at left:

U=7Up

Changing the indicated crossing turns U into a knot of the form 75 3#.J. The
Montesinos trick tells us that its branched double cover L(3,2)#X5(J) arises as
some 2% _surgery on a knot ¢ in 35(U) = $3. But half-integer surgeries must be
irreducible [GL87], so L(3,2)#%5(J) = L(3,2), and then ¢ and J are unknotted
and 2”2—+1 = % Now we instead take the 0-resolution of that crossing of U to get
Jo; its branched double cover is S3(c) = S3(U) =2 S3, so Jy is unknotted as well.
Both J and Jy are unknots differing in a single rational tangle, so we can replace
it with another rational tangle of slope § to get a 2-bridge link with fraction %.

In the cases 0 (3X) or oo ()C) we see that the braid closure j is a 2-component
unlink, and that a certain 2-bridge plat closure involving 8 is unknotted. The
3-braids with /3’ = U U U are known up to conjugacy, and from there we can pin
down the actual braids [, which end up giving rise to K = Wht (T2,3,2).

The remaining knots in Theorem 1 arise when S3(F) comes from a (2, 4)-cable
of the unknot, and that case is harder but based on similar ideas. These arguments
could plausibly generalize to knots K for which S?(F) comes from a (2,2n)-cable
of the unknot or of T 3, at least for small values of n, and this would be useful

in enumerating genus-1 knots with dim ]ﬁ’T((K, 1) =n > 2. The problem is that
at present we do not know how to prove the analogue of Proposition 5 that would
classify all possible S?(F), even for n = 3.
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