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Knot Floer homology assigns to any knot K ⊂ S3 a bigraded abelian group

ĤFK (K) =
⊕

a,m∈Z
ĤFKm(K, a),

and the Seifert genus g(K) is the maximal a such that ĤFK ∗(K, a) is nonzero

[OS04a]. Moreover, K is a fibered knot if and only if ĤFK (K, g(K)) has rank

1 [Ghi08, Ni07]. These facts imply that ĤFK detects the unknot, meaning that

ĤFK (K) ∼= ĤFK (U) as bigraded groups if and only if K = U , and likewise the
trefoils and figure eight, because these are the only fibered knots of genus ≤ 1. It
is also known to detect the cinquefoils [FRW22], which are fibered of genus 2.

This talk focused on recent work with John Baldwin [BS22a], where we proved

for the first time that ĤFK can detect knots which are not fibered. The main
result is a classification of the “nearly fibered” knots of genus 1.

Theorem 1. Let K ⊂ S3 be a knot of Seifert genus 1. Then dim ĤFK (K, 1;Q) =
2 if and only if K or its mirror is one of the following:

52 15n43522 Wh−(T2,3, 2) Wh+(T2,3, 2)

2n+1

P (−3, 3, 2n+1)

Among these knots, we note that ĤFK uniquely detects 52 and Wh+(T2,3, 2);

it cannot distinguish 15n43522 from Wh−(T2,3, 2), or any of the pretzel knots
P (−3, 3, 2n + 1) from each other. With a little extra work, we can then use
other knot homologies to tell the pretzels apart:

Theorem 2. Reduced Khovanov homology detects 52, and reduced HOMFLY ho-
mology detects each of the pretzel knots P (−3, 3, 2n+ 1).

Remark 3. We expect that reduced Khovanov homology should be enough to
detect each of the pretzels P (−3, 3, 2n+ 1), but we were unable to prove it.

Theorem 1 also lets us draw some purely topological conclusions. We say r ∈ Q
is a characterizing slope for K ⊂ S3 if S3

r (K) ∼= S3
r (J) implies that K = J .

Theorem 4 ([BS22b, BS22c]). Every r ∈ Q \ Z>0 is characterizing for 52. If K
is any of the knots of Theorem 1, then 0 is characterizing for K.

The first step in the proof of Theorem 1 is to classify the possible complements
of genus-minimizing Seifert surfaces. If F is a Seifert surface for K, then the
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sutured Floer homology of

S3(F ) = (S3 \N(F ), λK)

can be identified with ĤFK (K, g(F )). When dimSFH (S3(F )) = 1, properties of
SFH tell us that

S3(F ) ∼= (F × [−1, 1], ∂F × {0}),
so this recovers the fact that K must be fibered. We are instead concerned with
the 2-dimensional case, so S3(F ) is no longer a product sutured manifold; however,
work of Juhász [Juh10] tells us that since dimSFH (S3(F )) is sufficiently small,
there must be an essential product annulus in S3(F ). We decompose S3(F ) along
this annulus and repeat, and eventually we have simplified the topology enough
that only two possibilities remain:

Proposition 5. Let F be a genus-1 Seifert surface for K, and suppose that
dimSFH (S3(F )) = 2. Then S3(F ) is the complement of the union of

• the (2, 4)-cable of either the unknot or the right-handed trefoil, and
• a properly embedded, non-separating arc in the cabling annulus,

up to orientation reversal. Its suture is a meridian of that arc.

Once we know S3(F ), viewed as the complement of a product F × [−1, 1], it
remains to be seen how we can glue F×{1} to F×{−1} to recover the complement
of K. The key observation is that in either case, S3(F ) admits an involution ι
which restricts to F × {±1} as a hyperelliptic involution. Since g(F ) = 1, this
involution is central in the mapping class group of F , and this allows us to extend
ι across F × [−1, 1] to the whole of S3. Here we illustrate (S3(F ), ι) in case where
S3(F ) is built from a cable of a trefoil:

ι

λK

Taking the quotient by ι, we realize S3(F ) as the branched double cover of a fixed
tangle τ in the 3-ball, and F× [−1, 1] as the branched double cover of some 3-braid
β in D2 × [−1, 1]. Then τ ∪ β must be unknotted, since its branched cover is S3,
so it remains to determine all such β and produce the corresponding K.
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We can only give a hint here of how to enumerate the possible braids β in the
trefoil case. After some simplification, we are led to the unknot diagram at left:

τ

β
∗

U = τ ∪ β

− 1
4 β

J

− 1
7 β

J0

Changing the indicated crossing turns U into a knot of the form T−2,3#J . The
Montesinos trick tells us that its branched double cover L(3, 2)#Σ2(J) arises as
some 2n+1

2 -surgery on a knot c in Σ2(U) ∼= S3. But half-integer surgeries must be
irreducible [GL87], so L(3, 2)#Σ2(J) ∼= L(3, 2), and then c and J are unknotted
and 2n+1

2 = 3
2 . Now we instead take the 0-resolution of that crossing of U to get

J0; its branched double cover is S3
n(c) ∼= S3

1(U) ∼= S3, so J0 is unknotted as well.
Both J and J0 are unknots differing in a single rational tangle, so we can replace

it with another rational tangle of slope p
q to get a 2-bridge link with fraction p

q .

In the cases 0 ( ) or ∞ ( ) we see that the braid closure β̂ is a 2-component
unlink, and that a certain 2-bridge plat closure involving β is unknotted. The

3-braids with β̂ = U t U are known up to conjugacy, and from there we can pin
down the actual braids β, which end up giving rise to K = Wh±(T2,3, 2).

The remaining knots in Theorem 1 arise when S3(F ) comes from a (2, 4)-cable
of the unknot, and that case is harder but based on similar ideas. These arguments
could plausibly generalize to knots K for which S3(F ) comes from a (2, 2n)-cable
of the unknot or of T2,3, at least for small values of n, and this would be useful

in enumerating genus-1 knots with dim ĤFK (K, 1) = n > 2. The problem is that
at present we do not know how to prove the analogue of Proposition 5 that would
classify all possible S3(F ), even for n = 3.
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