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Abstract. We use the contact invariant defined in [2] to construct a new invariant of Legen-
drian knots in Kronheimer and Mrowka’s monopole knot homology theory (KHM), following
a prescription of Stipsicz and Vértesi. Our Legendrian invariant improves upon an earlier
Legendrian invariant in KHM defined by the second author in several important respects.
Most notably, ours is preserved by negative stabilization. This fact enables us to define a
transverse knot invariant in KHM via Legendrian approximation. It also makes our in-
variant a more likely candidate for the monopole Floer analogue of the “LOSS” invariant
in knot Floer homology. Like its predecessor, our Legendrian invariant behaves functorially
with respect to Lagrangian concordance. We show how this fact can be used to compute
our invariant in several examples. As a byproduct of our investigations, we provide the first
infinite family of nonreversible Lagrangian concordances between prime knots.

1. Introduction

A basic goal in contact geometry is to construct invariants that can distinguish Legendrian
or transverse knots in a contact 3-manifold which are smoothly isotopic and have the same
classical invariants but are not Legendrian or transversely isotopic. Such an invariant is said
to be effective. Effective Legendrian invariants include Chekanov and Eliashberg’s Legendrian
contact homology (LCH) [8, 15] and the “LOSS” and “GRID” invariants in knot Floer ho-
mology defined by Lisca, Ozsváth, Stipsicz, and Szabó [33] and Ozsváth, Szabó, and Thurston
[38], respectively. Effective transverse invariants are harder to come by; the only known ex-
amples are those arising from the LOSS and GRID invariants via Legendrian approximation
and the transverse knot contact homology theory developed by Ng et al. [12, 36].

In this paper, we define a new invariant of Legendrian knots using Kronheimer and Mrowka’s
monopole knot homology theory (KHM). This theory is the monopole Floer analogue of knot
Floer homology and we expect that our invariant is the corresponding analogue of the LOSS
invariant in a sense made precise later. It bears mentioning that ours is the second Legendrian
invariant defined in KHM ; the first was defined by the second author in [43]. However,
our construction is substantially different and improves upon this earlier invariant in several
important respects. Most notably, our invariant is preserved by negative stabilization and
thus gives rise to a new transverse invariant via Legendrian approximation.

Like the second author’s invariant, ours behaves functorially with respect to Lagrangian
concordance, something which is not known to be true of the LOSS invariant. If the LOSS
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invariant were functorial in this way, then the equivalence [5] between the LOSS and GRID
invariants would provide easily computable obstructions to the existence of Lagrangian concor-
dances between Legendrian knots in the tight contact structure on S3. Indeed, in forthcoming
work [4] we will use the construction in this paper to prove this functoriality for the LOSS
invariant, as explained in more detail at the end of this introduction.

Below, we outline the constructions of our Legendrian and transverse invariants and describe
some of their properties, elaborating on several points in the discussion above. We also describe
how our investigations led us to an infinite family of nonreversible Lagrangian concordances
between prime knots. At the end, we discuss plans for future work.

1.1. The contact invariant in sutured monopole homology. Our Legendrian and trans-
verse invariants are defined in terms of the contact invariant in sutured monopole homology
(SHM) constructed in [2]. We therefore recall this construction briefly below.

The sutured monopole homology of a balanced sutured manifold (M,Γ), as defined by Kro-
nheimer and Mrowka in [26], is an isomorphism class of R-modules, denoted by SHM(M,Γ),
where R is the Novikov ring with integer coefficients. It is defined in terms of the monopole
Floer homology of a closure of (M,Γ), which is a pair (Y,R), where Y is a certain closed 3-
manifold containing M and R is a distinguished surface in Y . In [3], we introduced canonical
isomorphisms, well-defined up to multiplication by units in R, relating the Floer homology
groups associated to different closures of (M,Γ). These Floer groups and isomorphisms make
up what we call a projectively transitive systems of R-modules, denoted by SHM(M,Γ). This
is a more subtle invariant of (M,Γ) than the isomorphism class SHM(M,Γ). In particular, it
makes sense to talk about elements of and morphisms between projectively transitive systems,
whereas these notions are much less interesting for isomorphism classes of R-modules.

Suppose ξ is a contact structure on M such that ∂M is convex with dividing set Γ. In
[2], we introduced the notion of a contact closure of the sutured contact manifold (M,Γ, ξ).
Roughly, this is a triple (Y,R, ξ̄), where (Y,R) is a closure of (M,Γ) and ξ̄ is a certain contact
structure on Y extending ξ. For each such contact closure, the contact invariant ψ(Y, ξ̄)
in the monopole Floer homology of −Y , as defined by Kronheimer and Mrowka in [24, 25],
determines an element of SHM(−M,−Γ). We proved that for contact closures of sufficiently
high genus (where the genus of a closure refers to that of its distinguished surface R), the
induced elements of SHM(−M,−Γ) all agree—that is, they are independent of the closure.
Our contact invariant is defined to be this common element, denoted by

ψ(M,Γ, ξ) ∈ SHM(−M,−Γ).

1.2. Legendrian and transverse invariants in monopole knot homology. The mono-
pole knot homology of a knot K in a closed 3-manifold Y , as defined by Kronheimer and
Mrowka in [26], is the isomorphism class of R-modules

KHM(Y,K) := SHM(Y r ν(K),m ∪ −m),

where ν(K) is a tubular neighborhood of the knot and m is an oriented meridian on the
boundary of this knot complement. In [3], we introduced a refinement of this invariant which
assigns to a based knot (K, p) in Y a projectively transitive system of R-modules, denoted by
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KHM(Y,K, p), which is similarly defined in terms of the systems SHM(Y r ν(K),m∪−m)
associated to the various possible knot complements (Y r ν(K),m ∪ −m).

The Legendrian invariant defined in this paper assigns to a based, oriented Legendrian knot
(K, p) in (Y, ξ) an element

L(K) ∈ KHM(−Y,K, p).
To define this element, we first remove a standard neighborhood of K and then glue on a
piece called a bypass (roughly, half of a thickened overtwisted disk) in such a way that the
result is the complement of a tubular neighborhood of K with dividing set a pair of oppositely
oriented meridians. Suppose (Y r ν(K),m∪−m, ξK) is the sutured contact manifold formed
in this way. The Legendrian invariant of K is then defined, very roughly speaking, by

L(K) := ψ(Y r ν(K),m ∪ −m, ξK) ∈ KHM(−Y,K, p).
We prove that, up to isomorphism, this class is preserved by contactomorphism and Legendrian
isotopy (see Proposition 3.4 and Corollary 3.5 for more precise statements). In particular, a
Legendrian isotopy ft sending (K, p) to (K ′, p′) gives rise to a well-defined map

Ψft : KHM(−Y,K, p)→ KHM(−Y,K ′, p′)
sending L(K) to L(K ′). In [39], Ozsváth and Stipsicz used a similar sort of naturality state-
ment about the LOSS invariant (which is true modulo incorporating the results of [22]) to
distinguish smoothly isotopic Legendrian knots with the same classical invariants.

Our construction is inspired by work of Stipsicz and Vértesi [45] who proved that the LOSS
invariant can be formulated in a similar way in terms of Honda, Kazez, and Matić’s contact
invariant in sutured (Heegaard) Floer homology [20]. We also use their work to prove that
our invariant shares some important features with the LOSS invariant—most notably, that L
is preserved by negative Legendrian stabilization (Theorem 3.7). This fact allows us to define
an invariant of based, oriented transverse knots via Legendrian approximation as in [33, 39].
Namely, given a transverse knot (K, p) ⊂ (Y, ξ), we choose a Legendrian pushoff (K ′, p′) of
(K, p) in a standard neighborhood of K, and define the transverse invariant of K to be

T (K) := L(K ′) ∈ KHM(−Y,K, p).1

The fact that any two such Legendrian pushoffs of K are related by negative stabilization
and Legendrian isotopy [16] implies that T (K) is well-defined and is preserved, up to natural
isomorphism, by contactomorphism and transverse isotopy (Proposition 3.10 and Corollary
3.11); in particular, transverse isotopies give rise to well-defined maps sending transverse
invariant to transverse invariant as discussed above for the Legendrian invariant.

In forthcoming work [4] we will prove the following; see Section 1.3 for details.

Conjecture 1.1. L and T are effective invariants of Legendrian and transverse knots.

As mentioned at the beginning of this introduction, ours is the second Legendrian invariant
constructed using monopole knot homology. In [43], the second author defined an invariant
which associates to a Legendrian knot K ⊂ (Y, ξ) a sequence of “elements”

`(K) = {`g(K) ∈ KHM(−Y,K)}∞g=2.

1After identifying SHM(−Y,K′, p′) with SHM(−Y,K, p) in a canonical way.
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Each `g(K) is defined in terms of Kronheimer and Mrowka’s contact invariant for closed
contact 3-manifolds, after extending the contact structure on the complement of a standard
neighborhood of K to a contact structure on a genus g closure of the knot complement with its
meridional sutures. This invariant was also designed as a potential monopole Floer analogue
of the LOSS invariant, and is also conjectured to be an effective invariant of Legendrian knots.

As mentioned above, our Legendrian invariant L improves upon ` in a few important re-
spects. First, while our invariant is also fundamentally a sequence {Lg} of elements, one for
each genus, we are able to show that all of these Lg are equal for g large enough, whereas
the corresponding statement for the `g is only conjectured in [43]. Second, the fact that our
invariant is defined in terms of our “natural” refinement of monopole knot homology makes it
possible in principle to distinguish the invariants associated to two Legendrian representatives
of the same based knot type, even when both are nonzero, something that is not possible for
nonzero “elements” of an isomorphism class of R-modules. Finally, as discussed above, we
prove that L is preserved by negative stabilization and can therefore be used to define a trans-
verse invariant. By contrast, the second author shows in [43] that ` is killed by a composition
of positive and negative Legendrian stabilizations, but is not able to prove that it is preserved
by negative stabilization. In fact, as defined, ` is an invariant of unoriented Legendrian knots
and so cannot be used to distinguish between positive and negative stabilization (or to define
an transverse invariant).

One of the most interesting features of our Legendrian invariant is that, like `, it is functorial
with respect to Lagrangian concordance in the following sense.

Theorem 1.2. Suppose (K−, p−) and (K+, p+) are Legendrian knots in (Y, ξ) such that K−
is Lagrangian concordant to K+ in the symplectization of (Y, ξ). Then there exists a map

KHM(−Y,K+, p+)→ KHM(−Y,K−, p−)

which sends L(K+) to L(K−).

We expect this map to be an invariant of the Lagrangian cylinder from K− to K+, perhaps
after decorating this cylinder with an arc from p− to p+, but leave this for future work.

Our proof of Theorem 1.2 is modeled on the proof of the analogous result for `: roughly,
we remove a standard neighborhood of the Lagrangian concordance in Y × R and glue back
the symplectization of a certain contact manifold with boundary, so as to form an exact
symplectic cobordism between the contact closures used to define L(K±). The theorem then
follows from the functoriality of Kronheimer and Mrowka’s contact invariant for closed contact
3-manifolds under exact symplectic cobordism. It is not known whether Ozsváth and Szabó’s
contact invariant in Heegaard Floer homology enjoys the same kind of functoriality, which
makes proving the analogue of Theorem 1.2 for the LOSS invariant difficult.

Here we also mention another advantage of our invariant L(K) over the LOSS invariant.
The contact class in Heegaard Floer homology (for both closed and sutured 3-manifolds), and
by extension the LOSS invariant as well, are defined in terms of open book diagrams, and so
their proofs of invariance rely on the Giroux correspondence. In particular, they require the
claim that any two open books which support a given contact structure have some common
positive stabilization, but a complete proof of this claim has yet to appear in the literature. By
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contrast, our contact class ψ(M,Γ, ξ) in sutured monopole homology makes no use of any of
this (see the discussion in the introduction to [2]) and is thus an unambiguously well-defined,
natural invariant. Since L(K) is the contact class associated to a particular contact manifold,
it follows that L(K) is equally well-defined.

In Section 4, we use Theorem 1.2 to prove the nonvanishing of L(K) for a few examples,
including Legendrian representatives of m(820) and m(11n71). Our approach is to find another
knot K ′ with nonzero invariant (for example, the tb = −1 unknot) and construct a Lagrangian
concordance from some negative stabilization of K ′ to K (stabilizing gives us more flexibility
in constructing the concordance). The nonvanishing of L(K) then follows from properties of
L discussed above.

Legendrian contact homology enjoys a similar functoriality under Lagrangian cobordism
[13]. However, one cannot use the above technique to deduce nonvanishing results for LCH
in our examples since LCH vanishes for stabilized knots. On the other hand, LCH can
be used to show that the concordances we construct are nonreversible. The first examples of
nonreversible Lagrangian concordances were discovered by Chantraine [6]. In the course of our
investigations, we found a new infinite family of nonreversible concordances, from Legendrian
unknots to 3-stranded Legendrian pretzel knots. While this discovery does not rely on our
Legendrian invariant, it is perhaps of independent interest as it provides the first infinite
family of nonreversible Lagrangian concordances between prime knots.

1.3. Equivalence of Legendrian invariants. In forthcoming work [4] we prove an equiv-
alence between our Legendrian and transverse knot invariants and the “hat” versions of the
LOSS/GRID invariants defined in knot Floer homology, as explained below.

Suppose (M,Γ, ξ) is a sutured contact manifold. The combined work of Kronheimer and
Mrowka [26, Lemma 4.9], Taubes [46, 47, 48, 49, 50], Colin, Ghiggini, and Honda [10, 11, 9],
and Lekili [32] shows that

(1) SHM(−M,−Γ) ∼= SFH(−M,−Γ)⊗R.2

Specifically, Taubes and Colin–Ghiggini–Honda prove that there is an isomorphism between
monopole Floer homology and Heegaard Floer homology (in fact, one which identifies the
contact invariants in either homology theory), and Lekili proves that applying Kronheimer–
Mrowka’s construction of SHM in Heegaard Floer theory instead (i.e. using their construction

with HF+ in place of }HM ) yields an invariant which is isomorphic to SFH.

In [4], we supply an alternative proof of Lekili’s result, which again proves the equivalence
(1), but the isomorphism coming from our construction can further be shown to identify our
contact invariant ψ(M,Γ, ξ) with Honda, Kazez, and Matić’s contact invariant

EH(M,Γ, ξ)⊗ 1 ∈ SFH(−M,−Γ)⊗R.
Now suppose (K, p) is a based, oriented Legendrian knot in (Y, ξ). A special case of (1) is the
following isomorphism between monopole knot homology and knot Floer homology,

(2) KHM(−Y,K, p) ∼= ĤFK(−Y,K, p)⊗R.

2One can think of SFH(−M,−Γ) ⊗ R as a projectively transitive system. See also Kutluhan, Lee, and
Taubes [27, 28, 29, 30, 31].
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By our construction of L, combined with Stipsicz and Vértesi’s interpretation of the LOSS
invariant, the equivalence of our contact invariant with Honda, Kazez, and Matić’s implies
that the isomorphism in (2) identifies L(K) with the LOSS invariant of K.

Such an identification implies that L and T are effective, proving Conjecture 1.1: it suffices
to find a pair of Legendrian knots K1,K2 in S3 with the same smooth knot type and classical
invariants for which the LOSS invariant of K1 vanishes while that of K2 is nonzero, and for this
we can consider the pair of Legendrianm(10132) knots of [35, Theorem 1.1]. It also establishes a
functoriality result for the LOSS invariant with respect to Lagrangian concordance, analogous
to Theorem 1.2. As explained above, this functoriality, combined with the equivalence of the
GRID and LOSS invariants for Legendrian knots in the standard tight S3, provides easily
computable obstructions to the existence of Lagrangian concordances between such knots.

1.4. Organization. In Section 2, we review projectively transitive systems, the constructions
of sutured monopole homology, monopole knot homology, and our contact invariant in SHM .
In Section 3, we define the Legendrian and transverse knot invariants L and T and establish
some of their basic properties. In Section 4, we prove that our Legendrian invariant is functorial
with respect to Lagrangian concordance. In Section 5, we illustrate how this functoriality may
be used to compute L in several examples, and we describe an infinite family of nonreversible
Lagrangian concordances between prime knots.

1.5. Acknowledgements. We thank Lenny Ng and Danny Ruberman for helpful conversa-
tions, and the referee for many useful comments and suggestions.

2. Preliminaries

In this section, we review projectively transitive systems and the constructions of sutured
monopole homology, monopole knot homology, and our contact invariant from [2].

2.1. Projectively transitive systems. The following is a very terse review of projectively
transitive systems; see [3, 2] for more details.

Definition 2.1. Suppose Mα and Mβ are modules over a unital commutative ring R. We say
that elements x, y ∈Mα are equivalent if x = u·y for some u ∈ R×. Likewise, homomorphisms

f, g : Mα →Mβ

are equivalent if f = u · g for some u ∈ R×.

Remark 2.2. We will write x
.
= y or f

.
= g to indicate that two elements or homomorphisms

are equivalent, and will denote their equivalence classes by [x] or [f ].

Definition 2.3. Let R be a unital commutative ring. A projectively transitive system of
R-modules consists of a set A together with:

(1) a collection of R-modules {Mα}α∈A and
(2) a collection of equivalence classes of homomorphisms {gαβ}α,β∈A such that:

(a) elements of the equivalence class gαβ are isomorphisms from Mα to Mβ,

(b) gαα = [idMα ],



INVARIANTS OF LEGENDRIAN AND TRANSVERSE KNOTS IN MONOPOLE KNOT HOMOLOGY 7

(c) gαγ = gβγ ◦ gαβ .

The class of projectively transitive systems of R-modules forms a category R-PSys with
the following notion of morphism.

Definition 2.4. A morphism of projectively transitive systems of R-modules

F : (A, {Mα}, {gαβ})→ (B, {Nγ}, {hγδ})
is a collection of equivalence classes of homomorphisms F = {Fαγ }α∈A, γ∈B such that:

(1) elements of the equivalence class Fαγ are homomorphisms from Mα to Nγ ,

(2) F βδ ◦ g
α
β = hγδ ◦ F

α
γ .

Note that F is an isomorphism iff the elements in each equivalence class Fαγ are isomorphisms.

Remark 2.5. A collection of equivalence classes of homomorphisms {Fαγ } with indices ranging
over any nonempty subset of A×B can be uniquely completed to a morphism as long as this
collection satisfies the compatibility in (2) where it makes sense.

Definition 2.6. An element of a projectively transitive system of R-modules

x ∈M = (A, {Mα}, {gαβ})
is a collection of equivalence classes of elements x = {xα}α∈A such that:

(1) elements of the equivalence class xα are elements of Mα,
(2) xβ = gαβ (xα).

Remark 2.7. As in Remark 2.5, a collection of equivalence classes of elements {xα} with
indices ranging over any nonempty subset of A can be uniquely completed to an element of
M as long as this collection satisfies the compatibility in (2) where it makes sense.

2.2. Sutured monopole homology. In this subsection, we review our refinement of Kron-
heimer and Mrowka’s sutured monopole homology, following [3].

Suppose (M,Γ) is a balanced sutured manifold as in [2, Definition 2.10]. An auxiliary surface
for (M,Γ) is a compact, connected, oriented surface F with g(F ) > 0 and π0(∂F ) ∼= π0(Γ).
Given such a surface, a closed tubular neighborhood A(Γ) of Γ in ∂M , and an orientation-
reversing diffeomorphism

h : ∂F × [−1, 1]→ A(Γ)

which sends ∂F × {±1} to ∂(R±(Γ) rA(Γ)), we form a preclosure

M ′ = M ∪h F × [−1, 1]

by gluing F × [−1, 1] to M according to h and rounding corners. The balanced condition on
(M,Γ) ensures that M ′ has two diffeomorphic boundary components, ∂+M

′ and ∂−M
′, which

we may glue together by some diffeomorphism to form a closed 3-manifold Y containing a
distinguished surface

R := ∂+M
′ = −∂−M ′ ⊂ Y.

In [26], Kronheimer and Mrowka define a closure of (M,Γ) to be any pair (Y,R) obtained in
this way. Our definition of closure, as needed for naturality, is slightly more involved.
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Definition 2.8 ([3]). A marked closure of (M,Γ) is a tuple D = (Y,R, r,m, η) consisting of:

(1) a closed, oriented, 3-manifold Y ,
(2) a closed, oriented, surface R with g(R) ≥ 2,
(3) an oriented, nonseparating, embedded curve η ⊂ R,
(4) a smooth, orientation-preserving embedding r : R× [−1, 1] ↪→ Y ,
(5) a smooth, orientation-preserving embedding m : M ↪→ Y r int(Im(r)) such that:

(a) m extends to a diffeomorphism

M ∪h F × [−1, 1]→ Y r int(Im(r))

for some A(Γ), F , h, as above,
(b) m restricts to an orientation-preserving embedding

R+(Γ) rA(Γ) ↪→ r(R× {−1}).
The genus g(D) refers to the genus of R.

Remark 2.9. Suppose D = (Y,R, r,m, η) is a marked closure of (M,Γ). Then, the tuple

−D := (−Y,−R, r,m,−η),

obtained by reversing the orientations of Y , R, and η, is a marked closure of −(M,Γ) :=
(−M,−Γ), where r and m are the induced embeddings of −R× [−1, 1] and −M into −Y .

Notation 2.10. For the rest of this paper, R will be the Novikov ring over Z, given by

R =

{∑
α

cαt
α

∣∣∣∣α ∈ R, cα ∈ Z, #{β < n|cβ 6= 0} <∞ for all n ∈ Z
}
.

Following Kronheimer and Mrowka [26], we made the following definition in [3].

Definition 2.11. Given a marked closure D = (Y,R, r,m, η) of (M,Γ), the sutured monopole
homology of D is the R-module

SHM(D) := }HM •(Y |R; Γη).

Here, }HM •(Y |R; Γη) is shorthand for the monopole Floer homology of Y in the “bottom-
most” Spinc structures relative to r(R× {0}),

(3) }HM •(Y |R; Γη) :=
⊕

s∈Spinc(Y )
〈c1(s),[r(R×{0})]〉=2−2g(R)

}HM •(Y, s; Γr(η×{0})),

where, for each Spinc structure s, Γr(η×{0}) is the local system on the Seiberg-Witten config-
uration space B(Y, s) with fiber R specified by r(η × {0}) ⊂ Y as in [26, Section 2.2].

In [26], Kronheimer and Mrowka proved that the isomorphism class of SHM(D) is an
invariant of (M,Γ). We strengthened this in [3]: for any two marked closures D ,D ′ of (M,Γ),
we constructed an isomorphism

ΨD ,D ′ : SHM(D)→ SHM(D ′),

well-defined up to multiplication by a unit in R, such that the modules in {SHM(D)}D
and the equivalence classes of maps in {ΨD ,D ′}D ,D ′ form a projectively transitive system of
R-modules.
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Definition 2.12. The sutured monopole homology of (M,Γ) is the projectively transitive
system of R-modules SHM(M,Γ) given by the modules and the equivalence classes above.

Sutured monopole homology is functorial in the following sense. Suppose

f : (M,Γ)→ (M ′,Γ′)

is a diffeomorphism of sutured manifolds and D ′ = (Y ′, R′, r′,m′, η′) is a marked closure of
(M ′,Γ′). Then

(4) D ′f := (Y ′, R′, r′,m′ ◦ f, η′)

is a marked closure of (M,Γ). Let

idD ′f ,D
′ : SHM(D ′f )→ SHM(D ′)

be the identity map on SHM(D ′f ) = SHM(D ′). The equivalence classes of these identity

maps can be completed to a morphism (as in Remark 2.5)

SHM(f) : SHM(M,Γ)→ SHM(M ′,Γ′),

which is an invariant of the isotopy class of f . We proved in [3] that these morphisms behave as
expected under composition of diffeomorphisms, so that SHM defines a functor from DiffSut
to R-PSys, where DiffSut is the category of balanced sutured manifolds and isotopy classes
of diffeomorphisms between them.

2.3. Monopole knot homology. In this subsection, we review our refinement of Kronheimer
and Mrowka’s monopole knot homology, following [3].

Suppose K is an oriented knot in a closed 3-manifold Y and p is a basepoint on K. Let D2

be the unit disk in the complex plane and let S1 = ∂D2. Suppose

ϕ : S1 ×D2 → Y

is an embedding such that ϕ(S1×{0}) = K and ϕ({1}×{0}) = p. Let Y (ϕ) be the balanced
sutured manifold given by

Y (ϕ) := (Y r int(Im(ϕ)),m+
ϕ ∪ −m−ϕ ),

where m±ϕ are the oriented meridians on ∂Y (ϕ) given by

m±ϕ := ϕ({±1} × ∂D2).

The monopole knot homology KHM(Y,K, p) is defined more or less to be SHM(Y (ϕ)). Of
course, this does not technically make sense since the latter depends on ϕ. However, in [3],
we defined a canonical isomorphism

Ψϕ,ϕ′ : SHM(Y (ϕ))→ SHM(Y (ϕ′))

for any two embeddings ϕ,ϕ′ as above. These maps allow us to define KHM(Y,K, p) without
ambiguity (see Definition 2.13). The map Ψϕ,ϕ′ is constructed in two steps, as described
below.

We first consider the case in which Im(ϕ′) ⊂ Im(ϕ). Let N be a solid torus neighborhood
of K with Im(ϕ) ⊂ int(N). Let ft : Y → Y , t ∈ [0, 1], be an ambient isotopy such that:
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(1) each ft fixes p,
(2) each ft restricts to the identity outside of N ,
(3) Im(f1 ◦ ϕ) = Im(ϕ′),
(4) f1 sends the meridional disks ϕ({±1} ×D2) to the meridional disks ϕ′({±1} ×D2).

Then f1 restricts to a diffeomorphism of sutured manifolds,

f̄1 : Y (ϕ)→ Y (ϕ′),

and we define Ψϕ,ϕ′ by

Ψϕ,ϕ′ := SHM(f̄1).

Next, we consider the case in which ϕ,ϕ′ are arbitrary embeddings. Let ϕ′′ be a third embed-
ding with Im(ϕ′′) ⊂ Im(ϕ) ∩ Im(ϕ′). We define

Ψϕ,ϕ′ := (Ψϕ′,ϕ′′)
−1 ◦Ψϕ,ϕ′′ ,

where the maps Ψϕ′,ϕ′′ and Ψϕ,ϕ′′ are as defined previously.

We proved in [3] that these maps are well-defined and satisfy the transitivity relation

Ψϕ,ϕ′′ = Ψϕ′,ϕ′′ ◦Ψϕ,ϕ′ .

The projectively transitive systems in {SHM(Y (ϕ))}ϕ and the isomorphisms in {Ψϕ,ϕ′}ϕ,ϕ′
thus form a transitive system of projectively transitive systems of R-modules, which determines
a larger projectively transitive system of R-modules, leading to the following from [3].

Definition 2.13. The monopole knot homology KHM(Y,K, p) is the projectively transitive
system of R-modules determined by {SHM(Y (ϕ))}ϕ and {Ψϕ,ϕ′}ϕ,ϕ′ .

When we do not wish to keep track of p, we will simply use the notation KHM(Y,K).

Monopole knot homology is functorial in the following sense. Suppose f is a diffeomorphism
from (Y,K, p) to (Y ′,K ′, p′). For each tubular neighborhood ϕ of K as defined above, f defines
a diffeomorphism of balanced sutured manifolds,

f̄ : Y (ϕ)→ Y ′(f ◦ ϕ).

The map f̄ then induces a map

SHM(f̄) : SHM(Y (ϕ))→ SHM(Y ′(f ◦ ϕ)),

which then determines an isomorphism

KHM(f) : KHM(Y,K, p)→ KHM(Y ′,K ′, p′).

This isomorphism is well-defined in that it does not depend on ϕ, which is to say the diagram

SHM(Y (ϕ))
SHM(f̄) //

Ψϕ,ϕ′

��

SHM(Y (f ◦ ϕ))

Ψf◦ϕ,f◦ϕ′

��
SHM(Y (ϕ′))

SHM(f̄)
// SHM(Y (f ◦ ϕ′))

commutes for all ϕ,ϕ′. Moreover, these isomorphisms are invariants of isotopy classes of based
diffeomorphisms and respect composition in the obvious way (see [3, Theorem 8.5]).
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2.4. The contact invariant in SHM . Suppose (M,Γ) is a balanced sutured manifold and ξ
is a contact structure on M such that ∂M is convex and Γ divides the characteristic foliation
of ∂M induced by ξ. We call the triple (M,Γ, ξ) a sutured contact manifold. In this subsection,
we review the construction of the contact invariant

ψ(M,Γ, ξ) ∈ SHM(−M,−Γ)

defined in [2] and list some of its properties.

An important notion is that of a contact preclosure of (M,Γ). This is a preclosure M ′ of
(M,Γ) together with a certain contact structure ξ′ on M ′ extending ξ such that ∂M ′ is convex
with dividing set Γ′ consisting of two parallel nonseparating curves on each component ∂±M

′.
The negative region R−(Γ′) restricted to ∂+M

′ is an annulus bounded by these curves, and
likewise for the positive region R+(Γ′) on ∂−M

′. The details of the construction of contact
preclosures can be found in [2, Subsection 3.1] but are not important for this paper.

Given a contact preclosure (M ′, ξ′), one can form a closed contact 3-manifold (Y, ξ̄) by gluing
∂+M

′ to ∂−M
′ by a diffeomorphism which identifies the positive region on one component

with the negative region on the other, so that the distinguished surface R := ∂+M
′ = −∂−M ′

is convex with negative region an annulus. One might call such a (Y, ξ̄) a contact closure of
(M,Γ, ξ). In [2], we gave the slightly more involved definition below, as needed for naturality.

Definition 2.14. A marked contact closure of (M,Γ, ξ) consists of a marked closure D =
(Y,R, r,m, η) of (M,Γ) together with a contact structure ξ̄ on Y such that

(1) m restricts to a contact embedding of (M r N(Γ), ξ) into (Y, ξ̄) for some regular
neighborhood N(Γ) of Γ,

(2) this restriction of m extends to a contactomorphism

(M ′, ξ′)→ (Y r int(Im(r)), ξ̄)

for some contact preclosure (M ′, ξ′) of (M,Γ, ξ).
(3) r∗(ξ̄) is a [−1, 1]-invariant contact structure on R× [−1, 1].
(4) the curve r(η × {0}) is dual to the core of the negative annular region of r(R× {0}).

Suppose (D = (Y,R, r,m, η), ξ̄) is a marked contact closure of (M,Γ, ξ). As shown in [2,
Subsection 3.2], the fact that r(R × {0}) is convex with negative region an annulus implies
that the Spinc structure sξ̄ is a bottommost Spinc structure on −Y with respect to r(−R ×
{0}), and hence the monopole Floer contact invariant ψ(Y, ξ̄) ∈ }HM •(−Y, sξ̄; Γ−η) defined by

Kronheimer and Mrowka [24] is in fact an element of }HM •(−Y |−R; Γ−η) = SHM(−D). This
leads to the following definition from [2].

Definition 2.15. Given a marked contact closure (D = (Y,R, r,m, η), ξ̄) of (M,Γ, ξ) of genus
g ≥ g(M,Γ), we define ψg(M,Γ, ξ) to be the element of SHM(−M,−Γ) determined by the
equivalence class of

ψ(D , ξ̄) := ψ(Y, ξ̄) ∈ SHM(−D),

in the sense of Remark 2.7.

Here g(M,Γ) ≥ 2 denotes the minimum genus for which (M,Γ) admits a marked closure.
We proved that ψg(M,Γ, ξ) is well-defined for each g, per the following theorem.
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Theorem 2.16. If (D , ξ̄) and (D ′, ξ̄′) are two marked contact closures of (M,Γ, ξ) of the
same genus, then

Ψ−D ,−D ′(ψ(D , ξ̄))
.
= ψ(D ′, ξ̄′).

Furthermore, we showed that for g sufficiently large the contact elements ψg(M,Γ, ξ) are
all equal, per the following theorem.

Theorem 2.17. For every (M,Γ, ξ), there is an integer N(M,Γ, ξ) such that

ψg(M,Γ, ξ) = ψh(M,Γ, ξ)

for all g, h ≥ N(M,Γ, ξ). Said differently, if (D , ξ̄) and (D ′, ξ̄′) are marked contact closures
of (M,Γ, ξ) of genus at least N(M,Γ, ξ), then

Ψ−D ,−D ′(ψ(D , ξ̄))
.
= ψ(D ′, ξ̄′).

The constant N(M,Γ, ξ) can be taken to be the minimum value of max(2, g(S)+ |∂S|) over
all partial open book decompositions (S, P, h) which support (M,Γ, ξ); see [2, Definition 3.15].
We expect, however, that any g for which (M,Γ, ξ) admits a marked contact closure of genus
g should suffice.

Theorem 2.17 motivated the following definition in [2].

Definition 2.18. We define

ψ(M,Γ, ξ) := ψg(M,Γ, ξ) ∈ SHM(−M,−Γ)

for any g ≥ N(M,Γ, ξ).

Below, we recall some properties of our contact invariant ψ (analogous properties hold for
each ψg) that were proven in [2].

Proposition 2.19. Suppose f is a contactomorphism from (M,Γ, ξ) to (M ′,Γ′, ξ′). Then the
induced map

SHM(f) : SHM(−M,−Γ)→ SHM(−M ′,−Γ′)

sends ψ(M,Γ, ξ) to ψ(M ′,Γ′, ξ′). In particular, the map on SHM(−M,−Γ) induced by a
contact isotopy preserves the contact invariant.

Proposition 2.20. If (M,Γ, ξ) is overtwisted, then ψ(M,Γ, ξ) = 0.

For the next two results, suppose (Y, ξ) is a closed contact 3-manifold and Y (1) is the
contact 3-manifold obtained by removing a Darboux ball. The first result below is a corollary
of [2, Proposition 3.23].

Proposition 2.21. If ψ(Y, ξ) 6= 0 then ψ(Y (1)) 6= 0.

Corollary 2.22. If (Y, ξ) is strongly symplectically fillable, then ψ(Y (1)) 6= 0.

For the next result, suppose K is a Legendrian knot in the interior of (M,Γ, ξ) and that
(M ′,Γ′, ξ′) is the result of contact (+1)-surgery on K.

Proposition 2.23. There is a morphism

FK : SHM(−M,−Γ)→ SHM(−M ′,−Γ′)

which sends ψ(M,Γ, ξ) to ψ(M ′,Γ′, ξ′).
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3. Invariants of Legendrian and transverse knots

In this section, we use our invariant of sutured contact manifolds together with a prescription
of Stipsicz and Vértesi [45] to define invariants of Legendrian and transverse knots, as outlined
in the introduction.

3.1. A Legendrian invariant. Suppose (K, p) is a based, oriented Legendrian knot in (Y, ξ).
Here, we define the invariant

L(K) ∈ KHM(−Y,K, p)
described in the introduction. Roughly speaking, L(K) is the contact invariant of the sutured
contact manifold obtained by removing a standard neighborhood of K and attaching a bypass
so that the resulting dividing set consists of oppositely oriented meridians. We make this
precise below.

Consider the coordinates (θ, (x, y)) on S1×D2, where θ ∈ [0, 2π]/(0 ∼ 2π) is identified with
eiθ ∈ S1 and (x, y) is identified with x+yi ∈ D2. Let ξleg be the contact structure on S1×D2

given by

ξleg := ker(sin(θ)dx+ cos(θ)dy).

Every Legendrian knot has a neighborhood contactomorphic to (S1 ×D2, ξleg); such a neigh-
borhood is called a standard neighborhood.

To define L(K), we first choose a contact embedding

ϕ : (S1 ×D2, ξleg)→ (Y, ξ)

such that ϕ(S1×{0}) = K and ϕ({1}× {0}) = p. The torus ∂(Im(ϕ)) is convex with respect
to ξ. Furthermore, the dividing set on ∂(Im(ϕ)) consists of two parallel curves Γ of slope −1
with respect to the coordinate system determined by the meridian and longitude on ∂(S1×D2)
given by µ = {1} × ∂D2 and λ = S1 × {1}, respectively.

Let (Y ′,Γ′, ξ′) be the sutured contact manifold obtained from the Legendrian knot com-
plement (Y (ϕ), ξ|Y (ϕ)) by attaching a bypass (roughly, a thickened neighborhood of half an
overtwisted disk) along the arc α ⊂ ∂Y (ϕ) shown in Figure 1. This bypass attachment does
not change the underlying topology of the knot complement, but changes the dividing set
(and, hence, the contact structure) in a neighborhood of the arc α in the manner illustrated in
the figure; we refer the reader to [19, 2] for more in-depth discussions of bypass attachments.
In particular, note that Γ′ consists of two oppositely oriented meridians, so that (Y ′,Γ′) and
Y (ϕ) are diffeomorphic. There are two different attaching arcs for bypasses which could pro-
duce such meridional sutures, and these bypasses are distinguished by the sign of their relative
Euler classes; our particular choice is identified by the fact that union of the attaching arc c
and an arc in Γ with boundary ∂c forms an oriented meridian, when oriented in the same way
as the piece of Γ (which is itself oriented so that Γ = ∂R+(Γ)). See [45, Figure 6] and the
proof of [45, Theorem 1.5] for more detailed discussion.

We would like to pull the contact structure ξ′ back to a contact structure on Y (ϕ). Ac-
cordingly, let

(5) f : Y (ϕ)→ (Y ′,Γ′)
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be a diffeomorphism which restricts to the identity map on

Y (ϕ) rN = Y ′ rN,

for some standard neighborhood N of K with Im(ϕ) ⊂ int(N). Let ξK,ϕ be the contact
structure on Y (ϕ) given by

ξK,ϕ = (f∗)
−1(ξ′).

µ

µ
−
λ

α

Figure 1. Left, the dividing set on ∂Y (ϕ) with respect to the coordinate
system (µ, µ− λ). Right, after attaching a bypass along α to form (Y ′, ξ′). In
both pictures the negative regions R−(Γ) and R−(Γ′) are shaded.

We claim that ξK,ϕ is well-defined up to contact isotopy. Indeed, given N we need only
verify this on the neighborhood N ∩ Y (ϕ) of the boundary, which is topologically T 2 × [0, 1].
The claim is then a consequence of the following technical lemma. (We refer the reader to [19]
for the definition of minimally twisting.)

Lemma 3.1. Suppose ξ is a tight, minimally twisting contact structure on T 2 × [0, 1] with
dividing set consisting of two parallel curves on each boundary component, of slope ∞ on
T 2 × {0} and −1 on T 2 × {1}. Suppose f is a contactomorphism of (T 2 × [0, 1], ξ) which
restricts to the identity on T 2 × {1} and preserves the dividing set on T 2 × {0}. Then f∗(ξ)
is isotopic to ξ by an isotopy which is stationary on the boundary.

Proof. The contact structure f∗(ξ) is certainly tight and minimally twisting. Moreover, it has
the same dividing set as ξ. By [19, Proposition 4.7], there are exactly two tight, minimally
twisting contact structures on T 2 × [0, 1] with this dividing set, up to isotopy stationary on
the boundary, distinguished by their relative Euler classes. But f acts trivially on homology
since it restricts to the identity on T 2 × {1}, which implies that the relative Euler class of ξ
agrees with that of f∗(ξ) and, therefore, that ξ and f∗(ξ) are isotopic. �

Any two choices of f and the particular bypass attachment used to construct ξK,ϕ yield a
contact structure on N∩Y (ϕ) satisfying the hypotheses of Lemma 3.1, with relative Euler class
pinned down by the sign of the bypass (see the discussion in [45, Section 4]), so the resulting
ξK,ϕ are contact isotopic. That ξK,ϕ is independent, up to isotopy, of the neighborhood N
then follows from the fact that for any two such N , there is a third which is contained in both.

Definition 3.2. Given a contact embedding ϕ as above, we define L(K) to be the element of
KHM(−Y,K, p) determined by the class

L(K,ϕ) := ψ(Y (ϕ), ξK,ϕ) ∈ SHM(−Y (ϕ)).
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Since ξK,ϕ is well-defined up to isotopy, the element L(K,ϕ) is well-defined by Proposition
2.19. We prove below that L(K) is well-defined:

Theorem 3.3. The element L(K) is independent of the choices made in its construction.

Proof. To prove that L(K) is well-defined, we must show that for any two contact embeddings
ϕ,ϕ′, the canonical isomorphism

Ψϕ,ϕ′ : SHM(−Y (ϕ))→ SHM(−Y (ϕ′))

sends L(K,ϕ) to L(K,ϕ′). It suffices to prove this in the case that Im(ϕ′) ⊂ Im(ϕ). Let N be
a standard neighborhood of K with Im(ϕ) ⊂ int(N), as above. Let ft be an ambient isotopy
of Y , supported in N , of the sort used to define the map Ψϕ,ϕ′ . Then

Ψϕ,ϕ′(L(K,ϕ)) := SHM(f̄1)(ψ(Y (ϕ), ξK,ϕ)) = ψ(Y (ϕ′), (f̄1)∗(ξK,ϕ)),

where the second equality is by Proposition 2.19. We therefore wish to show that

ψ(Y (ϕ′), (f̄1)∗(ξK,ϕ)) = ψ(Y (ϕ′), ξK,ϕ′) =: L(K,ϕ′).

It suffices to show that (f̄1)∗(ξK,ϕ) is isotopic to ξK,ϕ′ . But this follows from Lemma 3.1
since these contact structures agree outside of N and are contactomorphic on N ∩ Y (ϕ′) to
contact structures on T 2 × [0, 1] as in the hypothesis of the lemma, with the same relative
Euler classes. �

3.2. A transverse invariant. Here, we prove some basic properties of the Legendrian in-
variant L and use some of these to define the invariant of transverse knots mentioned in the
introduction.

Our first result is that the Legendrian invariant behaves functorially with respect to con-
tactomorphism in the following sense.

Proposition 3.4. Suppose (K, p) ⊂ (Y, ξ) and (K ′, p′) ⊂ (Y ′, ξ′) are based, oriented Legen-
drian knots and f : (Y, ξ)→ (Y ′, ξ′) is a contactomorphism sending (K, p) to (K ′, p′). Then

KHM(f)(L(K)) = L(K ′).

Proof. Let ϕ be a contact embedding of the sort used to define L(K), and let N be a standard
neighborhood of K with Im(ϕ) ⊂ int(N). The fact that f is a contactomorphism implies that
f ◦ ϕ is a contact embedding of the sort used to define L(K ′). It suffices to prove that

SHM(f̄) : SHM(−Y (ϕ))→ SHM(−Y ′(f ◦ ϕ))

sends L(K,ϕ) to L(K ′, f ◦ ϕ). We have that

SHM(f̄)(L(K,ϕ)) := SHM(f̄)(ψ(Y (ϕ), ξK,ϕ)) = ψ(Y ′(f ◦ ϕ), (f̄)∗(ξK,ϕ)).

We therefore wish to show that

ψ(Y ′(f ◦ ϕ), (f̄)∗(ξK,ϕ)) = ψ(Y ′(f ◦ ϕ), ξK′,f◦ϕ)) := L(K ′, f ◦ ϕ).

It suffices to show that (f̄)∗(ξK,ϕ) and ξK′,f◦ϕ are isotopic.

By the fact that f is a contactomorphism, the contact structures (f̄)∗(ξK,ϕ) and ξK′,f◦ϕ
agree outside f(N); on the thickened torus f(N)∩Y ′(f ◦ϕ), they are both tight and minimally
twisting with the same relative Euler class and boundary conditions. Thus they are isotopic
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on this thickened torus rel boundary by [19] and Lemma 3.1, and extending this isotopy across
the rest of Y ′(f ◦ ϕ) as the identity we conclude that they are isotopic as claimed. �

Corollary 3.5. If (K, p) and (K ′, p′) are Legendrian isotopic knots in (Y, ξ), then there exists
an isomorphism

KHM(−Y,K, p)→ KHM(−Y,K ′, p′)
which sends L(K) to L(K ′). �

In order to construct our transverse invariant, we will prove that L is preserved in an
appropriate sense by negative stabilization (Theorem 3.7) and then use the fact that any
two Legendrian approximations of a transverse knot have a common negative stabilization
[16]. Unfortunately, naturality adds some technical complication to an otherwise simple con-
struction, because we cannot canonically identify the KHM invariants associated to two
Legendrian isotopic knots, or to a Legendrian knot and its negative stabilization, or to a
transverse knot and a Legendrian pushoff: their complements are not equal or even (in the
latter two cases) contactomorphic but merely diffeomorphic, and any identification depends
on a choice of diffeomorphism. In Proposition 3.6 and Theorem 3.7 below, we show that any
diffeomorphism supported in a small tubular neighborhood of the knot will suffice to identify
the elements L(K) in each KHM invariant, and hence in Theorem 3.9 we conclude that we
have a well-defined transverse invariant.

The following proposition makes the above precise for Legendrian isotopic knots, by showing
that diffeomorphisms of the ambient manifold which are the identity outside a small neighbor-
hood of a knot send the Legendrian invariant to the Legendrian invariant. It is a strengthening
of Proposition 3.4 in the sense that the diffeomorphism need not be a contactomorphism on
the given neighborhood of the knots.

Proposition 3.6. Suppose (K, p) and (K ′, p′) are based, oriented Legendrian knots in (Y, ξ)
such that there exists a contactomorphism of (Y, ξ) which sends one to the other and restricts to
the identity outside of a tubular neighborhood N of both knots. Then, for any diffeomorphism
f of Y which restricts to the identity outside of N and sends (K, p) to (K ′, p′),

KHM(f)(L(K)) = L(K ′).

Proof. Let h be a contactomorphism of (Y, ξ) which sends (K, p) to (K ′, p′) and restricts to
the identity outside of N , whose existence is guaranteed in the hypothesis of the proposition.
Let ϕ be a contact embedding of the sort used to define L(K), and let N1 be a standard
neighborhood of K with Im(ϕ) ⊂ int(N1) and N1 ⊂ N . Let ϕ′ be a contact embedding of the
sort used to define L(K ′) with Im(ϕ′) ⊂ Im(h ◦ ϕ) ∩ Im(f ◦ ϕ). It suffices to prove that

Ψf◦ϕ,ϕ′ ◦ SHM(f̄) : SHM(−Y (ϕ))→ SHM(−Y (ϕ′))

sends L(K,ϕ) to L(K ′, ϕ′). Let gt be an ambient isotopy of Y , supported in N , of the sort
used to define Ψf◦ϕ,ϕ′ . Then

Ψf◦ϕ,ϕ′(SHM(f̄)(L(K,ϕ))) := SHM(ḡ1 ◦ f̄)(ψ(Y (ϕ), ξK,ϕ)) = ψ(Y (ϕ′), (ḡ1 ◦ f̄)∗(ξK,ϕ)).

We therefore wish to show that

ψ(Y (ϕ′), (ḡ1 ◦ f̄)∗(ξK,ϕ)) = ψ(Y (ϕ′), ξK′,ϕ′) := L(K ′, ϕ′).
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For this, it suffices to show that (ḡ1 ◦ f̄)∗(ξK,ϕ) is isotopic to ξK′,ϕ′ . To prove this, we first
note that

Ψh◦ϕ,ϕ′(SHM(h̄)(L(K,ϕ))) = L(K ′, ϕ′)

by Proposition 3.4 and the proof of Theorem 3.3. In fact, more is true. Let ut be an ambient
isotopy of Y , supported in N , of the sort used to define Ψh◦ϕ,ϕ′ . It follows from the proofs of

Proposition 3.4 and Theorem 3.3 that (u1 ◦ h̄)∗(ξK,ϕ) is isotopic to ξK′,ϕ′ . So, to show that
(ḡ1 ◦ f̄)∗(ξK,ϕ) is isotopic to ξK′,ϕ′ , it suffices to prove that

((ḡ1 ◦ f̄)−1 ◦ u1 ◦ h̄)∗(ξK,ϕ)

is isotopic to ξK,ϕ. More generally, one can show, for any diffeomorphism F of Y (ϕ) which
restricts to the identity outside of N , that F∗(ξK,ϕ) is isotopic to ξK,ϕ. Indeed, up to isotopy, F
restricts to the identity on N rN1. Then one only need compare the restrictions of F∗(ξK,ϕ)
and ξK,ϕ to the thickened torus N1 ∩ Y (ϕ). Lemma 3.1 shows that these restrictions are
isotopic by an isotopy which is stationary on ∂N and thus extends to all of Y (ϕ). �

Given a Legendrian knot K, we will denote by K+ and K− its positive and negative sta-
bilizations. These are certain Legendrian knots contained in a standard neighborhood of K
which are smoothly isotopic to K in said neighborhood; see [17, 16] for more details. The
result below is that positive stabilization kills L while negative stabilization preserves it.

Theorem 3.7. Suppose (K, p) is a based, oriented Legendrian knot in (Y, ξ). Let (K+, p+)
and (K−, p−) be stabilizations of K contained within a standard neighborhood N of K. Then
L(K+) = 0. On the other hand, L(K−) agrees with L(K) in the sense that for any diffeomor-
phism f of Y which restricts to the identity outside of N and sends (K, p) to (K−, p−),

KHM(f)(L(K)) = L(K−).

Proof. In [45], Stipsicz and Vértesi show that if one removes a standard neighborhood of
K+ from (Y, ξ) and attaches a bypass to the complement as in Figure 1, then the result is
overtwisted. It follows that L(K+) = 0.

The statement about L(K−) follows from the fact, shown in [45], that the result of attaching
a bypass to the complement of a standard neighborhood of K, as prescribed in Figure 1, is
contactomorphic to the analogous construction for K−. To make this precise, let ϕ be a
contact embedding of the sort used to define L(K) with Im(ϕ) ⊂ int(N). Let ϕ− be a contact
embedding of the sort used to define L(K−) with Im(ϕ−) ⊂ Im(f ◦ ϕ). It suffices to prove
that

Ψf◦ϕ,ϕ− ◦ SHM(f̄) : SHM(−Y (ϕ))→ SHM(−Y (ϕ−))

sends L(K,ϕ) to L(K−, ϕ−). Let gt be an ambient isotopy of Y , supported in N , of the sort
used to define Ψf◦ϕ,ϕ− . Then, just as in the proof of Proposition 3.6, it suffices to prove that

(ḡ1 ◦ f̄)∗(ξK,ϕ) is isotopic to ξK−,ϕ− . It follows from Stipsicz and Vértesi’s work in [45] that
there exists a contactomorphism

h : (Y (ϕ), ξK,ϕ)→ (Y (ϕ−), ξK−,ϕ−)
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which restricts to the identity outside of N . So, to show that (ḡ1 ◦ f̄)∗(ξK,ϕ) is isotopic to
ξK−,ϕ− , it suffices to prove that

((ḡ1 ◦ f̄)−1 ◦ h)∗(ξK,ϕ)

is isotopic to ξK,ϕ. But this follows from the argument at the end of the proof of Proposition
3.6. �

The behavior of L under negative stabilization means that we can use it to define an
invariant of transverse knots via Legendrian approximation as described below.

Consider the coordinates (θ, (r, φ)) on S1×D2, where θ ∈ [0, 2π]/(0 ∼ 2π) is identified with
eiθ ∈ S1 and (r, φ) is identified with reiφ ∈ D2. For δ > 0, let ξδ be the contact structure on
S1 ×D2 given by

ξδ := ker(dθ + δr2dφ)

in these coordinates. Every transverse knot has a neighborhood contactomorphic to (S1 ×
D2, ξδ) for some δ; such a neighborhood is called a standard neighborhood.

Suppose (K, p) is a based, oriented transverse knot in (Y, ξ). We define the transverse in-
variant T (K) ∈ KHM(−Y,K, p) as follows (see [17] for the definition of Legendrian pushoff ).

Definition 3.8. Let N be a standard neighborhood of (K, p) and choose a Legendrian pushoff
(K ′, p′) ⊂ N of K. Let f be a diffeomorphism of Y which restricts to the identity outside of
N and sends (K ′, p′) to (K, p). We define

T (K) := KHM(f)(L(K ′)) ∈ KHM(−Y,K, p).

We prove below that T (K) is well-defined. The key idea is that any two Legendrian pushoffs
in a small enough neighborhood of K have negative stabilizations within that neighborhood
which are Legendrian isotopic, so by applying Theorem 3.7 and then Proposition 3.6 it will
follow that we can naturally identify the Legendrian invariants of the original pair of pushoffs.

Theorem 3.9. The element T (K) is independent of the choices made in its construction.

Proof. We must show that T (K) is independent of N , (K ′, p′), and f .

First, fix N and (K ′, p′). Suppose f and g are two diffeomorphisms of Y which restrict to
the identity outside of N and send (K ′, p′) to (K, p). Then f−1 ◦g also restricts to the identity
outside of N and sends (K ′, p′) to itself. Since there exists a contactomorphism of (Y, ξ) with
the same property, namely the identity map, Proposition 3.6 implies that

KHM(f−1 ◦ g)(L(K ′)) = L(K ′),

which implies that
KHM(f)(L(K ′)) = KHM(g)(L(K ′)).

Thus, for fixed N and (K ′, p′), the class T (K) is independent of the diffeomorphism f in its
definition.

Now, suppose (K ′1, p
′
1) and (K ′2, p

′
2) are Legendrian pushoffs of K in N . According to [16]

there exists a Legendrian knot (K ′′i , p
′′
i ) ⊂ N , for each i = 1, 2, which is the result of negatively

stabilizing (K ′i, p
′
i) some number of times such that (K ′′1 , p

′′
1) and (K ′′2 , p

′′
2) are isotopic by an

isotopy supported in N . For i = 1, 2, let gi be a diffeomorphism of Y which restricts to the
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identity outside of N and sends (K ′i, p
′
i) to (K ′′i , p

′′
i ). Similarly, let hi be a diffeomorphism of

Y which restricts to the identity outside of N and sends (K ′′i , p
′′
i ) to (K, p). Then hi ◦ gi is a

diffeomorphism of Y which restricts to the identity outside of N and sends (K ′i, p
′
i) to (K, p).

To show that T (K) is independent of the Legendrian pushoff, it suffices to show that

(6) KHM(h1 ◦ g1)(L(K ′1)) = KHM(h2 ◦ g2)(L(K ′2)).

By Theorem 3.7, we have that

KHM(gi)(L(K ′i)) = L(K ′′i )

for i = 1, 2, so (6) becomes

KHM(h1)(L(K ′′1 )) = KHM(h2)(L(K ′′2 )),

or, equivalently,

KHM(h−1
2 ◦ h1)(L(K ′′1 )) = L(K ′′2 ).

But this is true by Proposition 3.6 since there exists a contactomorphism of (Y, ξ) which
restricts to the identity outside of N and sends (K ′′1 , p

′′
1) to (K ′′2 , p

′′
2).

We have thus shown that for a fixed N , the class T (K) is independent of (K ′, p′) and f .
That this class is also independent of N follows from the fact that for any two such standard
neighborhoods, there exists a third contained in both. �

The next two results are straightforward analogues of Proposition 3.4 and Corollary 3.5;
we omit their proofs.

Proposition 3.10. Suppose (K, p) ⊂ (Y, ξ) and (K ′, p′) ⊂ (Y ′, ξ′) are based, oriented trans-
verse knots and f : (Y, ξ)→ (Y ′, ξ′) is a contactomorphism sending (K, p) to (K ′, p′). Then

KHM(f)(T (K)) = T (K ′).

Corollary 3.11. If (K, p) and (K ′, p′) are transversely isotopic knots in (Y, ξ), then there
exists an isomorphism

KHM(−Y,K, p)→ KHM(−Y,K ′, p′)
which sends T (K) to T (K ′).

3.3. Additional properties of L. Here, we describe some additional properties satisfied by
L which are analogous to those satisfied by the LOSS invariant [33, 42, 39] and the second
author’s invariant ` from [43]. We will omit basepoints from our notation for convenience and
because they are not so relevant to the results. The first result below follows almost exactly
as in the proof of Proposition 2.23 (given in [2]); we will therefore omit it.

Proposition 3.12. Let K,S ⊂ (Y, ξ) be disjoint Legendrian knots, and let (Y ′, ξ′) be the
contact manifold obtained by a contact (+1)-surgery along S. If K has image K ′ in Y ′, then
there is a map

KHM(−Y,K)→ KHM(−Y ′,K ′)
which sends L(K) to L(K ′). �

The next proposition is helpful in computing the invariant L in certain cases.
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Proposition 3.13. Suppose U ⊂ (Y, ξ) is a Legendrian unknot with tb(U) = −1 contained
inside a Darboux ball in (Y, ξ). Then there is an isomorphism

SHM(−Y (1))→ KHM(−Y,U)

which sends ψ(Y (1)) to L(U).

Proof. Let B3 ⊂ Y be a Darboux ball containing U and let Y (1) refer to the sutured contact
manifold obtained by removing a smaller Darboux ball (B3)′ ⊂ B3 from Y . Note that one
can attach a contact 1-handle to Y (1) so as to obtain a sutured manifold, often denoted by
Y (U), which is the complement of a regular neighborhood N ⊂ B3 of U with two meridional
sutures. This handle is topologically a 1-handle attached to the dividing curve Γ of Y (1) along
disk neighborhoods of a pair of points in Γ, and its contact structure is specified by extending
ξ|Y (1) across the handle (i.e., to all of Y (U)) in the unique way up to isotopy for which its
restriction to the handle is tight.

One can identify Y (U) with Y (ϕ) for some embedding ϕ as in Subsection 2.3. As shown in
[2, Subsection 4.2], this contact 1-handle attachment gives rise to an isomorphism

SHM(−Y (1))→ SHM(−Y (U)) ∼= KHM(−Y,U).

Let ξU be the contact structure on Y (U) induced from that on Y (1). It follows from [2,
Corollary 4.14] that the map above sends ψ(Y (1)) to ψ(Y (U), ξU ). To complete the proof
of Proposition 3.13, it suffices to check that (Y (U), ξU ) is contactomorphic to the contact
structure on Y (U) which defines L(U); namely, the contact structure obtained by removing
a standard neighborhood of U (which we can assume is contained in B3) and then attach-
ing a bypass as described in Subsection 3.1. Since both this construction and the 1-handle
attachment above are performed in a Darboux ball, it suffices to check this in the case that
(Y, ξ) = (S3, ξstd). In this case, Y (U) is a solid torus with two longitudinal sutures. As there
is a unique isotopy class of tight contact structures on such a torus [19], it suffices to check
that both ξU and the contact structure defining L(U) are tight. We know that ξU is tight since
ψ(Y (U), ξU ) is identified with ψ(Y (1)) by the isomorphism above, and ψ(Y (1)) 6= 0 in this
case by, for example, Corollary 2.22. The fact that the contact structure defining L(U) is tight
follows from the fact that the LOSS invariant of the tb = −1 unknot in (S3, ξstd) is nonzero
and the fact that this LOSS invariant is the Heegaard Floer contact invariant of the contact
structure of interest [45]. (It is possible to give a slightly longer, but self-contained—i.e.,
independent of results in Heegaard Floer homology—proof.) �

Combined with Proposition 2.21, this implies the following.

Corollary 3.14. If ψ(Y, ξ) 6= 0, then L(U) 6= 0. �

Propositions 3.12 and 3.13 admit the following additional corollaries. The proof of each is
identical to that of the corresponding statement in [43, Section 5], with L in place of `. The
first result below is an analogue of a theorem of Sahamie [42, Theorem 6.1].

Corollary 3.15. Suppose K is a Legendrian knot in (Y, ξ) and let (Y ′, ξ′) be the result of
contact (+1)-surgery on K. Then there exists a map

KHM(−Y,K)→ SHM(−Y ′(1))
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which sends L(K) to ψ(Y ′(1)). Thus, if ψ(Y ′, ξ′) 6= 0, then L(K) 6= 0. �

The following is valid only over R/2R := R⊗Z Z/2Z (its proof involves the surgery exact
triangle in monopole Floer homology, which has only been established in characteristic two).
The argument, which we sketch since we will use this corollary later, is originally due to Lisca
and Stipsicz [34, Section 3].

Corollary 3.16. Suppose K is a Legendrian knot in (S3, ξstd) with slice genus gs(K) > 0 and
tb(K) = 2gs − 1. Then L(K) 6= 0.

Proof. There is a surgery exact triangle involving the mirror m(K), of the form

· · · → }HM (S3)→ }HM (S3
−2gs(m(K)))→ }HM (S3

−2gs+1(m(K)))→ . . . .

The first map can be viewed as a cobordism from −S3 to −S3
2gs(K) corresponding to contact

+1-surgery on K, so by [21] it sends ψ(S3, ξstd) 6= 0 to ψ(Y ′, ξ′). This map is injective since
the cobordism from S3

−2gs+1(m(K)) to S3 induces the zero map – capping off a Seifert surface

for m(K) inside the 2-handle yields a surface Σ of genus gs and self-intersection 2gs − 1,
violating the adjunction inequality – so ψ(Y ′, ξ′) is nonzero and Corollary 3.15 applies. �

Finally, note that Proposition 2.20 immediately implies the following.

Corollary 3.17. Suppose K is a Legendrian knot in (Y, ξ) and the complement of K is
overtwisted. Then L(K) = 0. �

4. A map induced by Lagrangian concordances

The following relation on the set of Legendrian knots in a closed contact 3-manifold (Y, ξ)
was introduced by Chantraine [6].

Definition 4.1. Let K− and K+ be Legendrian knots in (Y, ξ) parametrized by maps γ± :
S1 → Y . We say that K− is Lagrangian concordant to K+ if there is a Lagrangian cylinder

L : S1 × R ↪→ Y × R

in the symplectization of Y and a constant T > 0 such that L(s, t) = γ−(s) for all t ≤ −T
and L(s, t) = γ+(s) for all t ≥ T . We will use L to refer both to this map and to its image.

Chantraine showed that tb and r are Lagrangian concordance invariants, and the second
author showed in [43] that the Legendrian invariant ` is well-behaved under Lagrangian con-
cordance as well. In this section we will prove similar results about the effect of Lagrangian
concordance on the invariant L. Our main result is Theorem 1.2, which we restate here.

Theorem 1.2. Suppose K− and K+ are Legendrian knots in (Y, ξ) and K− is Lagrangian
concordant to K+. Then there is a map

KHM(−Y,K+)→ KHM(−Y,K−)

which sends L(K+) to L(K−).
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The idea behind the proof is to replace a model neighborhood of the concordance L ⊂ Y ×I
with a certain symplectization so as to obtain an exact symplectic cobordism from a contact
closure of the complement of K− to a contact closure of the complement of K+, where these
complements are equipped with the contact structures used to define the invariants L(K±).
We then use the fact that the monopole Floer contact invariant for closed contact manifolds
is functorial with respect to the maps induced by exact symplectic cobordisms (see [21] and
the discussion in [2, Subsection 2.3]).

Proof of Theorem 1.2. Let α be a contact form for (Y, ξ). By Definition 4.1, there exists
a Lagrangian cylinder L ⊂ (Y × I, d(etα)) with L ∩ (Y × {±T}) = K± × {±T}, where
I = [−T − ε, T + ε] for some ε, T > 0. Observe that L is exact, meaning that the form etα|L
is exact. It suffices to show that etα vanishes on H1(L;R). For this, note that H1(L;R) is
generated by the class of K− × {−T} and∫

K−×{−T}
etα = e−T

∫
K−

α = 0

since K− is Legendrian. The Lagrangian cylinder L− := K−× I ⊂ (Y × I, d(etα)) is similarly
exact. The Weinstein Tubular Neighborhood Theorem therefore gives an exact symplecto-
morphism

ϕ : N(L−)→ N(L),

from a neighborhood of one Lagrangian to a neighborhood of the other. Exactness in this
context means that if dλ− and dλ are symplectic forms on the neighborhoods N(L−) and
N(L), then ϕ∗λ − λ− = df for some function f : N(L−) → R. We are free to choose the

identification ϕ|L− : L−
∼−→ L to be the identity on K− × [−T − ε,−T ], so that df ≡ 0 on

N(L−)∩ (Y × [−T −ε,−T ]). Since f is only determined up to a constant, we may then require
that f ≡ 0 on N(L−) ∩ (Y × [−T − ε,−T ]).

By shrinking N(L−) and N(L) if necessary, we can assume that N(L−) is of the form
N(K−)× I, where N(K−) is a standard neighborhood of K− in (Y, ξ). Let us identify N(K−)
with (S1 × D2

2, ξleg), where D2
a ⊂ C refers to the disk centered at the origin of radius a, so

that ϕ can be thought of as a map

ϕ : (S1 ×D2
2)× I → N(L).

Note that ϕ sends (S1 ×D2
2)× {±(T + ε)} to a standard neighborhood of K±.

Let Y− be the sutured contact manifold obtained from the sutured Legendrian knot com-
plement Y r (S1 ×D2

1), which is defined using the above identification of N(K−) ⊂ Y with
S1×D2

2, by attaching a bypass as prescribed in Subsection 3.1 (for the construction of L(K−)).
We can assume that the contact structure on Y− agrees with ξ outside of S1 × D2

1.5. Let
D− = ((Ȳ−, R−, r−,m−, η−), ξ̄−) be a marked contact closure of Y−, where Ȳ− is built from a
contact preclosure of Y− by attaching a [−1, 1]-invariant contact structure on R−× [−1, 1], so
that r− and m− are inclusion maps. Let

Z = Ȳ− r (Y− r (S1 ×D2
2)),

and let A refer to the regions of Y and Z given by S1 × (D2
2 r D2

1.5). Let (X,ω) be the
symplectic manifold formed by gluing the symplectization Z× I to the complement (Y × I)r
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ϕ((S1 ×D2
1.5)× I) by the map

ϕ : A× I → ϕ(A× I),

as depicted in Figure 2.

ϕ

1

1.5

2

1.5

2

Figure 2. Top, a schematic of Z, with the region A shown in gray. Bottom,
a schematic of (Y × I) r ϕ((S1 ×D2

1.5)× I), with ϕ(A) shown in gray.

Let Y ϕ
± be the sutured contact manifold obtained from the sutured Legendrian knot com-

plement (Y ×{±(T + ε)})rϕ((S1×D2
1)×{±(T + ε)}) by attaching a bypass as prescribed in

Subsection 3.1. By construction, (X,ω) is a symplectic cobordism from (Ȳ ϕ
− , ξ̄

ϕ
−) to (Ȳ ϕ

+ , ξ̄
ϕ
+),

where (Ȳ ϕ
± , ξ̄

ϕ
±) is the contact manifold underlying a marked contact closure

Dϕ
± = ((Ȳ ϕ

± , R
ϕ
±, r

ϕ
±,m

ϕ
±, η

ϕ
±), ξ̄ϕ±)

of Y ϕ
± (the additional data is naturally inherited from D−). In particular, the Legendrian

invariant L(K±) ∈ KHM(−Y,K±) is represented by the contact class

ψ(Ȳ ϕ
± , ξ̄

ϕ
±) ∈ SHM(−Dϕ

±) = }HM •(−Ȳ ϕ
± |−R

ϕ
±; Γ−ηϕ±).

To complete the proof of Theorem 1.2, it therefore suffices to show that the induced map

(7) }HM •(X|−Rϕ−; Γ−ν) : }HM •(−Ȳ ϕ
+ |−R

ϕ
+; Γ−ηϕ+)→ }HM •(−Ȳ ϕ

− |−R
ϕ
−; Γ−ηϕ−)

sends ψ(Ȳ ϕ
+ , ξ̄

ϕ
+) to ψ(Ȳ ϕ

− , ξ̄
ϕ
−), up to multiplication by a unit in R, where ν = ηϕ− × I ⊂

Z × I ⊂ X is a cylindrical cobordism from ηϕ− to ηϕ+. This would follow from the work in [21]
(see also [2, Theorem 2.22 & Remark 2.24]) if we knew that (X,ω) were an exact symplectic
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cobordism from (Ȳ ϕ
− , ξ̄

ϕ
−) to (Ȳ ϕ

+ , ξ̄
ϕ
+). This is true after a slight modification (replacing X

with X̃ below).

We first show that the 2-form ω is exact. Suppose λ− and λ are global primitives for the
symplectic forms on the pieces Z×I and (Y ×I)rϕ((S1×D2

1.5)×I) coming from the Liouville
vector field ∂t. Since ϕ is an exact symplectomorphism, we have that ϕ∗λ − λ− = df and
dλ = ω on the intersection of these pieces, which we will identify as A× I. Let ρ : A→ [0, 1]
be a smooth cutoff function which is equal to 1 on a neighborhood of S1 × D2

2 and 0 on a
neighborhood of S1 ×D2

1.5. Define the 1-form

λX =


λ− on (Z rA)× I
λ− + d(ρf) on A× I
λ on (Y × I) r ϕ((S1 ×D2

2)× I).

Then λX is a globally defined primitive for ω, and its restriction to the boundary component
Ȳ ϕ
− is a contact form for ξ̄ϕ−, since f ≡ 0 near this boundary component. On the other hand,

ω|Ȳ ϕ+ = dλ+ for some contact form λ+ for ξ̄ϕ+, but we do not know that λX |Ȳ ϕ+ is itself a

contact form because of the d(ρf) term. To remedy this, we apply a result of Eliashberg [14,
Proposition 3.1]. His result says that we can glue a symplectic (Ȳ ϕ

+ × [1, C],Ω) to Ȳ ϕ
+ ⊂ ∂X

so that Ω is an exact 2-form whose primitive agrees with the primitive λX of ω near Ȳ ϕ
+ ×{1}

and Ω is the symplectization of Ȳ ϕ
+ near Ȳ ϕ

+ × {C}. The result is a symplectic form ω̃ = dλ̃
on the cobordism

X̃ = X ∪Ȳ ϕ+ (Ȳ ϕ
+ × [1, C])

from Ȳ ϕ
− to Ȳ ϕ

+ so that λ̃ restricts to contact forms for (Ȳ ϕ
− , ξ̄

ϕ
−) and (Ȳ ϕ

+ , ξ̄
ϕ
+). Replacing X

with X̃ in (7), we have the desired result. �

Remark 4.2. A decorated concordance (L, γ) ⊂ Y × I from (K−, p−) to (K+, p+) is a con-
cordance L from K− to K+ together with an embedded arc γ ⊂ L from p− to p+. Based on
Juhász’s work [23], we expect that such an (L, γ) should induce a well-defined map (i.e., one
that is independent of the auxiliary choices in its construction)

F(L,γ) : KHM(−Y,K+, p+)→ KHM(−Y,K−, p−),

defined in a manner similar to the construction of the map in Theorem 1.2. More generally, we
expect that decorated cobordisms between based knots should induced well-defined maps on
KHM, and that there should be an analogue of Theorem 1.2 for exact Lagrangian cobordisms
of arbitrary genus. It is worth noting that, even without such an analogue, we can prove the
following.

Lemma 4.3. Suppose U is the Legendrian unknot in (S3, ξstd) with tb = −1. If U is exact
Lagrangian cobordant to a Legendrian knot K with gs(K) > 0, then L(K) 6= 0 over R/2R.

Proof. The existence of such a cobordism implies, by [6, Theorem 1.3], that tb(K) = 2gs(K)−
1. Corollary 3.16 then implies that L(K) 6= 0 over R/2R. �
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5. Examples and nonreversible Lagrangian concordances

We end with some examples. The first two illustrate how Theorem 1.2 can be used to deduce
the nonvanishing of L. All provide new examples of nonreversible Lagrangian concordances.

Example 5.1. For the first example (suggested by Lenny Ng), consider the Legendrian knots
represented by the grid diagrams in Figure 3 (which can be converted to front diagrams by
smoothing all northeast and southwest corners and rotating 45◦ counterclockwise). This figure
describes a Lagrangian concordance from a negative stabilization U− of the tb = −1 Legendrian
unknot to a Legendrian representative K of the knot m(820) with (tb(K), r(K)) = (−2,−1).
Proposition 3.13 tells us that L(U) 6= 0. Theorem 3.7 then implies that L(U−) 6= 0. We may
therefore conclude from Theorem 1.2 that L(K) 6= 0 as well.

Figure 3. Inserting a Lagrangian saddle [13] along the dotted line and then
capping off a Legendrian unknot to build a Lagrangian concordance from U−
to a Legendrian m(820), shown here in reverse.

Example 5.2. For the next example, consider Figure 4, which describes a Lagrangian concor-
dance from a negative stabilization C− of a Legendrian representative C of m(52) with tb(C) =
tb(m(52)) = 1 to a Legendrian representative K of m(11n71) with tb(K) = tb(m(11n71)) = 0
and r(K) = −1. The knot m(52) has smooth slice genus gs = 1, and tb(C) = 2gs(C) − 1,
so L(C) 6= 0 over R/2R by Corollary 3.16. Theorem 3.7 then implies that L(C−) 6= 0 over
R/2R. We may therefore conclude that L(K) 6= 0 over R/2R, by Theorem 1.2.

Figure 4. A Lagrangian concordance from a negatively stabilized Legendrian
m(52) to a Legendrian m(11n71), shown in reverse.

Remark 5.3. It is worth noting that the strategies used in the two examples above to deduce
nonvanishing results for L cannot be used to deduce the analogous nonvanishing of Legen-
drian contact homology (LCH) for these Legendrian representatives of m(820) and m(11n71):
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although LCH behaves naturally with respect to Lagrangian concordance [13], it vanishes
for stabilized knots [8]. By this we mean that if K is a stabilized Legendrian knot, then the
Legendrian contact homology DGA A(K) associated to K contains an element x such that
∂x = 1, which causes A(K) to be equivalent to the trivial DGA.

On the other hand, LCH can be used to show that the Lagrangian concordances described
in these examples are nonreversible: if there were a concordance from any of these K to the
respective stabilized knot S, then by [13] there would be a morphism f : A(S) → A(K)
between their respective DGAs. Since S is stabilized, there exists an element x ∈ A(S) such
that ∂x = 1. But since f is a DGA morphism it both is a chain map, so that ∂(f(x)) =
f(∂x) = f(1), and an algebra homomorphism, so f(1) = 1; thus the element y = f(x) of
A(K) satisfies ∂y = 1, and so A(K) is trivial. Each K in the examples above achieves the
Kauffman bound on tb, so A(K) admits an ungraded augmentation [41] (i.e. a chain map
(A(K), ∂)→ (Z/2Z, 0) which is also an algebra morphism) and is thus necessarily nontrivial.

The first examples of nonreversible Lagrangian concordances were found by Chantraine in
[7]. Our examples above provide new instances of this phenomenon. Given a nonreversible
Lagrangian concordance, one can find infinitely many distinct such concordances by connect
summing. Below, we provide the first infinite family of nonreversible Lagrangian concordances
between prime knots. These examples also indicate that results in LCH may sometimes (but
not always, as shown above) provide more information than our results for L, cf. Remark 5.5.
We compare the two here because to the best of our knowledge, LCH is the only non-classical
Legendrian invariant other than L and the `g of [43] which is known to behave naturally under
Lagrangian concordance.

Example 5.4. Figure 5 shows the first four members K1,K2,K3,K4 of an infinite family of
Legendrian knots, where Kn is a Legendrian representative the pretzel knot P (n, 3,−3). It is
straightforward to compute that tb(Kn) = −(n + 4), and that r(Kn) is 0 for odd n and ±1,
depending on a choice of orientation, for even n.

Figure 5. A family of Legendrian pretzel knots.

For each n, there is a Lagrangian concordance from a Legendrian unknot Un to Kn, as
illustrated in Figure 6 for n = 4. Note that L(Un) = 0 by Theorem 3.7 since Un is a positive
stabilization, so we cannot use Theorem 1.2 to determine whether L(Kn) vanishes. On the
other hand, each Kn admits an ungraded normal ruling, shown in Figure 7 for n = 4, which
implies that the Legendrian contact homology A(Kn) admits an ungraded augmentation [18].
Thus, A(Kn) is nonvanishing. Since A(Un) is trivial but A(Kn) is not, it follows that the
Lagrangian concordance from Un to Kn is nonreversible for each n.
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Figure 6. A Lagrangian concordance from U4 to K4, built by inserting a Leg-
endrian unknot filled with a Lagrangian cap, performing a Legendrian isotopy,
and then using a Lagrangian saddle to surger two cusps together.

Figure 7. An ungraded normal ruling of K4.

Remark 5.5. We expect that L(Kn) = 0 for all n. Indeed, each Kn has thin Khovanov
homology [44]. Hence, by a well-known conjecture (cf. [1, Conjecture 1.3] and [40]), it should
have thin knot Floer homology as well (and does for n odd, as computed in [37]). Ng, Ozsváth
and Thurston showed in [35] that the GRID invariant [38] of an HFK-thin Legendrian knot
with tb− r < 2τ − 1 vanishes. This inequality holds for Kn since Kn is slice. In future work
we intend to identify L(Kn) with the GRID invariant, so it should follow that L(Kn) = 0 as
well.
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