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Last time we saw that a handful of common 3-manifolds – S2 × [0, 1], S3,
S1 × S2, B3, and R3 – have unique tight contact structures up to isotopy (rel
boundary, with the boundary assumed convex, where applicable). Contact ge-
ometry would probably not be very interesting if this were true in general, so
today we’ll study the 3-torus T 3 = R3/2πZ3 and prove that it has infinitely
many tight contact structures.

Before considering T 3, we’ll need to examine certain tight contact structures
on a solid torus D2 × S1. The complete classification on D2 × S1 was carried
out by Honda [3], but we only need some special cases for now.

Proposition 1. Let ξ1 and ξ2 be tight contact structures on D2 × S1 with
convex boundary, such that the characteristic foliations on ∂D2 × S1 agree and
∂D2 × S1 has two parallel dividing curves which represent the homology class
m[∂D2] + [S1] for some m ∈ Z. Then ξ1 is isotopic rel boundary to ξ2.

Proof. Pick a curve γ isotopic to ∂D2 × {∗} which intersects each dividing
curve once; then γ can be Legendrian realized simultaneously in both ξi. Let
∆i ⊂ D2 × S1 be convex disks in each ξi with boundary γ. Since |γ ∩ Γ∆i

| =
|γ ∩ Γ∂D2×S1 | = 2 and ξi is tight we know that the dividing set on each ∆i is
a single arc, so by Giroux flexibility we can insist that the ∆i have the same
characteristic foliation as well. Thus we can cut D2 × S1 along ∆i to get tight
contact structures ξ′1 and ξ′2 on B3 with identical boundaries. Then the ξ′i are
contact isotopic rel boundary and we can extend this isotopy trivially to the
glued-up contact structures ξ1 and ξ2 on D2 × S1.

Definition 2. The contact structure ξn = kerαn, n ≥ 1, on T 3 = R3/2πZ3 is
defined by the 1-form

αn = cos(nz)dx− sin(nz)dy.

Note that ξn is obtained as an n-fold cover of ξ1 in the z-direction, and ξ1
is tight because it is the boundary of the unit disk bundle of T ∗T 2, hence Stein
fillable.

Proposition 3. Each contact structure ξn is tight.
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Proof. We can check that the family of 1-forms

αs
n = (1− s)αn + sdz

consists of contact forms for all 0 ≤ s < 1, and so Gray stability says that
ξn is contact isotopic to ker(αs

n). Now write T 3 = ∂(T 2 × D2), where T 2 has
coordinates x, y and D2 has coordinates z, θ, and give T 2 ×D2 the symplectic
form ω = ωT 2 +ωD2 where each ωΣ is an area form on Σ. Certainly ω is positive
on ker(α1

n) = ker(dz), which is a foliation rather than a contact structure, but
this means that ω is also positive on ker(αs

n) for some s arbitrarily close to 1.
It follows that ξn ∼= ker(αs

n) is weakly symplectically fillable, hence tight.

Eliashberg [2] distinguished some of these by proving that ξ1 is the only
Stein fillable one, but the complete classification is due to Kanda [5].

Theorem 4. No two of the ξn are contactomorphic.

Proof. For any Legendrian K ⊂ (T 3, ξn) isotopic to a linear curve, we let tw(K)
denote tw(K,Σ) for any incompressible torus Σ containing K. This is well-
defined if tw(K) ≤ 0: we can make any two such tori be convex and intersect
transversely along K, and then their dividing sets must intersect K in the same
number of points, namely −2tw(K,Σ). Fix a primitive nonzero homology class
a[S1

x] + b[S1
y ] + c[S1

z ] ∈ H1(T 3). We claim that any Legendrian knot K in this
class with tw(K) ≤ 0 satisfies the inequality

tw(K) ≤ −|c|n,

and that there is some representative with tw(K) = −|c|n.
Suppose that a knot K with (a, b, c) = (0, 0,±1) violates this inequality, and

stabilize if needed so that tw(K) = −n + 1. We can pass to a finite cover in
the x– and y–directions (i.e. to some (R2/2πkZ2) × (R/2πZ) so that there are
lifts T1 and T2 of the xz– and yz–planes which are disjoint from a lift K ′ of K,
and we observe that tw(K ′) = tw(K). Each Ti is convex, with 2n horizontal
dividing curves, and if we remove a neighborhood of T1 ∪ T2 then we can check
via edge-rounding that the complement is a tight D2 × S1 retracting onto K ′
whose boundary has two parallel dividing curves homologous to −n[∂D2]+[S1].
There is a diffeomorphism φ carrying this D2 × S1 to a neighborhood of the
standard Legendrian unknot with tb = −1 in (R3, ξst) which sends dividing
curves to dividing curves, and since the contact structure on D2 × S1 is unique
rel boundary we can take φ to be a contactomorphism; then since the boundary
of the neighborhood of the unknot has dividing curves representing −[∂D2]+[S1]
we conclude that φ(K ′) is a Legendrian unknot in (R3, ξst) with tb = 0. But
this violates the Thurston-Bennequin inequality, so we must have tw(K) ≤ −n.
Furthermore, the z-axis is Legendrian with tw(K) = −n, achieving equality.

Now suppose that |c| = 1 but (a, b) ∈ Z2. There is an element φ of SL3(R)
which fixes each plane parallel to the xy–plane setwise and takes (a, b, c) to
(0, 0, c), and in block form we can write

φ =

(
A0 v0

0 1

)
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where A0 ∈ SL2(R) and v is a 2× 1 vector. Then we can define a 1-parameter
family

φs =

(
As vs
0 1

)
where As ∈ SL2(R) is a path of matrices from A0 to I and vs is a path in
R2 from v0 to the origin. The family of 1-forms φ∗s(αn) are well-defined on
T 3, with φ∗0(αn) = φ∗(αn) and φ∗1(αn) = αn, and they are all contact forms,
so by Gray stability ξn is isotopic to φ∗ξn and thus φ can be taken to be a
contactomorphism. It now follows from the previous case that tw(K) ≤ −n and
equality can be achieved.

More generally, suppose that |c| > 0. Then the covering map φ : T 3 → T 3

defined by φ(x, y, z) = (x, y, |c|z) satisfies φ∗ξn = ξ|c|n, and if we lift K ⊂
(T 3, ξn) to K ′ ⊂ (T 3, ξ|c|n) by this map then tw(K ′) ≤ −|c|n by the previous
case. But tw(K) = tw(K ′), so the inequality is satisfied and again we can
achieve equality. Note that in all cases with c 6= 0, we have not needed the
hypothesis tw(K) ≤ 0 to conclude that tw(K) ≤ −|c|n.

Finally, if c = 0 then we observe that the torus {z = z0} has nonsingular
characteristic foliation by curves of slope cot(nz0). If we pick z0 so that these
curves have rational slope and are homologous to K, then any one of these
curves is Legendrian and has tw(K) = 0.

This completes the proof of the inequality, and it now follows immediately
that no two ξn are contactomorphic: indeed, given a tight contact structure ξ
on T 3 we can define a quantity

f(ξ) = min(−tw(K)),

where the minimum is taken over all Legendrian knots representing primitive
nonzero homology classes which do not contain tw = 0 representatives; if there
are no such classes, we can set f(ξ) =∞. Then f(ξ) is clearly invariant under
contactomorphisms, and f(ξn) = n, so the ξn are all distinct.

Theorem 5. Let ξ be a tight contact structure on T 3. Then ξ is contactomor-
phic to some ξn.

Proof. Suppose we have two incompressible convex tori T1 and T2 which inter-
sect in a Legendrian knot K such that #ΓTi

= −2tw(K,Ti) for each i, and let
n = −tw(K,Ti). Since ξ is tight, each dividing curve on each Ti is homotopically
(hence also homologically) nontrivial, so the dividing set on either Ti consists
of #ΓTi parallel curves which each represent a primitive element of H1(Ti).
Since Γi = −2tw(K,Ti) = |K ∩ ΓTi

|, each dividing curve on Ti intersects K
once. If h1 and h2 are the homology classes of a dividing curve on either Ti,
then h1, h2, [K] is an integral basis of H1(T 3) and so there is a diffeomorphism
T 3 → T 3 which takes K to the z–axis and T1 and T2 to the xz– and yz–planes
with 2n horizontal dividing curves on each Ti.

The dividing sets induced by ξ on T1 and T2 now match those of ξn, so by
Giroux flexibility we can make their characteristic foliations agree, and then
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ξ is identical to ξn on a neighborhood of T1 ∪ T2. The complement of this
neighborhood is a solid torus D2 × S1 with tight contact structure, and by
edge-rounding we see that it has two dividing curves on its boundary with slope
1
m , i.e. representing the homology class m[∂D2]+ [S1]. We have shown that this
contact structure on D2 × S1 is unique up to isotopy rel boundary, so ξ and ξn
are contactomorphic as desired.

It now remains to find the tori T1 and T2 and the knot K. Let T be a convex
torus and L a Legendrian knot isotopic to a linear curve such that L intersects
T transversely in a single point, #ΓT is as small as possible, and L maximizes
tw(L) ≤ 0 among all such choices of L and T .

Let c be a connected component of ΓT , and let γ and γ′ be linear curves
in T for which γ · c = γ′ · c = 1 and γ is not homologous to γ′; then γ ∪ γ′ is
non-isolating, so we can Legendrian realize it with |γ ∩ ΓT | = |γ′ ∩ ΓT | = #ΓT .
We can also insist that γ and γ′ intersect at the point L∩T , although they will
not be transverse at this point.

We claim that there is a convex torus S containing L for which S ∩ T =
γ. Take S to be any incompressible torus containing L which intersects T
transversely at γ. In a neighborhood of T we can choose a generic contact
vector field v which is transverse to both T and L, and we can perturb S along
γ so that v is transverse to S as well in a neighborhood of γ. Now S is convex
along a neighborhood of γ ∪L, and we can find a C∞–small perturbation away
from that neighborhood which makes S convex as desired.

Now we claim that we are done if γ is not homotopic to a dividing curve of
S. Indeed, in this case we observe that γ intersects every dividing curve of S,
so

#ΓT = |γ ∩ ΓT | = −2tw(γ) = |γ ∩ ΓS | ≥ #ΓS .

Since we assumed #ΓT was minimal, we must have #ΓS = #ΓT = −2tw(γ),
and so we can take (T1, T2,K) = (S, T, γ). Thus from now on we will assume
that γ is homotopic to a dividing curve of S, and by the same argument as
above we will construct a convex torus S′ ⊃ L with S′ ∩T = γ′ and S ∩S′ = L.
Again, if γ′ is not homotopic to a dividing curve of S′ we are done because we
can take (T1, T2,K) = (S′, T, γ′).

At this point we choose (T1, T2,K) = (S, S′, L). Indeed, we have #ΓS =
#ΓS′ , and we just need to check that both of these equal −2tw(L). The com-
ponents of ΓS are homotopic to γ = S ∩ T , so algebraically L intersects each of
them once. If L intersects each dividing curve once geometrically then we are
done, since this implies that #ΓS = |L ∩ ΓS | = −2tw(L), so suppose instead
that L intersects some component c ⊂ ΓS more than once. Then we can find a
disk in S cobounded by arcs of c and L, and an innermost such disk would give
rise to a bypass D in S\L; let L′ be the destabilization of L along D. If D is dis-
joint from γ (and hence T ) then |L′∩T | = |L∩T | = 1 and 0 ≥ tw(L′) > tw(L),
contradicting the assumption that tw(L) was maximal. Therefore D ⊂ S must
intersect γ = S ∩ T .

Push the curve γ off of D in S, and call the resulting curve γ0. We can
Legendrian realize L′ ∪ γ0 so that tw(γ0) > tw(γ). If T ′ is a convex torus
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isotopic to T and containing γ′ ∪ γ0, then ΓT ′ must consist of curves parallel to
γ0. Indeed, if this is not the case then each curve of ΓT ′ intersects γ0 at least
once, and so

#ΓT ′ ≤ |ΓT ′ ∩ γ0| = −2tw(γ0) < −2tw(γ) = #ΓT

which contradicts the minimality of #ΓT . Then each curve in ΓT ′ must intersect
γ′, so

#ΓT ≤ #ΓT ′ ≤ −2tw(γ′) = #ΓT

and so we must have #ΓT = #ΓT ′ . But now since tw(L′) > tw(L) we should
have chosen (T ′, L′) rather than (T, L), which is a contradiction. We con-
clude that L does intersect each dividing curve in S exactly once, so the choice
(T1, T2,K) = (S, S′, L) suffices and we are done.

One can ask which closed 3-manifolds other than the 3-torus have infinitely
many tight contact structures. This question has been completely answered:

Theorem 6. An irreducible, closed 3-manifold has infinitely many isomorphism
classes of tight contact structures if and only if it contains an incompressible
torus.

The proof that an incompressible torus suffices is due to Honda, Kazez,
and Matić [4], and involves cutting a tight contact structure open along such a
convex torus and splicing in a T 2 × I which looks like some (T 3, ξn) cut open
along a convex torus isotopic to {z = z0}. The fact that an incompressible torus
is necessary was proved by Colin, Giroux, and Honda [1].
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