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Our goal in this lecture is to classify tight contact structures on S2 × [0, 1],
with similar theorems for S3, S1×S2, B3, and R3 following immediately. Given
a tight contact structure ξ on Σ × [0, 1], we can perturb it to assume that any
given level set Σt = Σ × {t} has Morse-Smale characteristic foliation, but this
is not true in general for 1-parameter families of surfaces such as Σ × [0, 1]
itself. Giroux [1] used the term “tomography” to describe the study of families
of characteristic foliations.

Definition 1. A foliation F on a surface Σ satisfies the Poincaré–Bendixson
property if the α– and ω–limit sets of each orbit are either a singular point, a
closed orbit, or a poly-cycle (a union of singular points and flow lines connecting
them).

Theorem 2 (Poincaré–Bendixson). Every foliation with isolated singular points
of a sphere or of a planar region has this property.

Remark 3. A surface Σ ⊂ (M, ξ) whose characteristic foliation has the Poincaré–
Bendixson property is convex if and only if all closed orbits of Σξ are nondegen-
erate and no flow line goes from a negative hyperbolic point to a positive one.
This follows from the same construction we used to show that Morse–Smale
implies convex.

Proposition 4. Let ξ be a contact structure on Σ × [−1, 1] with Σ × {±1}
convex. There is an isotopy rel boundary of Σ× [−1, 1] so that every non-convex
surface Σt satisfies the Poincaré-Bendixson property.

Proof. Let us first suppose that Σt is convex for all 1
2 ≤ |t| ≤ 1, with charac-

teristic foliation (Σt)ξ independent of t for 1
2 ≤ |t| ≤

3
4 , and that Σ is divided

into regions Σ+ ∪ Σ− by a curve Γ (not necessarily a dividing set!) where each
component of Σ± is planar and Σ± × { 1

2} is transverse to the characteristic
foliation (Σ±1/2)ξ. Let G± be retractions of Σ± whose boundaries are isotopic
to Γ1/2 through curves transverse to (Σ1/2)ξ.

Let h : [0, 1]→ [ 1
2 , 1] be an odd, strictly increasing function with h(t) = t for

t ≥ 3
4 . We define an isotopy φs supported on Σ × [− 3

4 ,
3
4 ] which moves points

vertically, such that φ1 sends G+ × {t} to G+ × {h(t)} for t ≥ 0 and sends
G− ×{t} to G− ×{−h(−t)} for t ≤ 0. (We can also insist that φs(G± ×{t}) is
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always some parallel G±×{t′}.) If we let ξ′ = φ∗1(ξ0), then every characteristic
foliation (Σt)ξ′ for − 3

4 ≤ t ≤
3
4 has the Poincaré–Bendixson property.

To see this, take 0 ≤ t ≤ 3
4 without loss of generality. Then ξ′|G+×{t} =

ξ|G+×{h(t)}, and 1
2 ≤ h(t) ≤ 3

4 , so by assumption ∂G+ × {t} divides Σ × {t}
into planar regions along which the characteristic foliations are independent of
t. At t ≥ 3

4 the surface Σt is convex and fixed by φs, so the surfaces Σt must all
have the Poincaré–Bendixson property for t ≥ 0. We proceed analogously when
t ≤ 0.

Now in the general case we perform an isotopy of ξ in order to construct the
curve Γ. Since Σ±1 are convex, they have dividing curves Γ±1. We can take a
multi-curve K ⊂ Σ whose complement is a union of planar regions, and by an
isotopy we can also insist that every component of K intersects and is transverse
to both Γ1 and Γ−1. Now we can apply the Legendrian realization principle to
K± = K ×{± 1

2} ⊂ Σ×{ 1
2} and then take Σ+ to be a tubular neighborhood of

K and Σ− its complement.

In particular, if (Σ×I, ξ) has convex boundary then the non-convex surfaces
Σt = Σ × {t} have either degenerate closed orbits or “retrograde connections”
from negative to positive hyperbolic points. Generically we can assume that
these retrograde connections happen at finitely many times t1, . . . , tn, and that
at those times, all critical points are nondegenerate and the retrograde connec-
tion is the only orbit connecting two hyperbolic points.

Proposition 5. The set of times t where Σt has a retrograde orbit has no
accumulation points.

Proof. Suppose there was an accumulation point at t = 0 and let ti → 0 be a
times whose retrograde orbits limit to the one at time t = 0. Choose coordinates
locally so that we are working on R2 × [−1, 1] with area form ω = dx ∧ dy at
each slice and so that the positive and negative hyperbolic points at each time
including t = 0 are at (±1, 0, ti) ∈ R2 × [−1, 1], with the retrograde orbit
equal to the line segment of the x-axis between them at height ti. Then the
characteristic foliation along each orbit is directed by a positive multiple v of
∂x, so if the contact form is

α = ηt + ftdt

then ηti = ιvω = gti(x)dy for some positive function gti on each orbit.
Along the limiting separatrix γ at t = 0 it follows that dηt

dt |t=0 is a multiple
of dy, hence (ηt ∧ dηt

dt )|t=0 = 0 along γ. On the other hand, ft has sign ±1 at
the endpoints (±1, 0, 0), so there must be a point p on the interior of γ where
f0 = 0 and f0 is increasing along γ, hence df0(∂x) > 0 at p. But α ∧ dα > 0 is
equivalent to

ftdηt + ηt ∧ (dft − η̇t) > 0

and at p we have f0 = η0 ∧ η̇0 = 0, so it follows that g0(p)df0(∂x) · dy ∧ dx =
(η0 ∧ df0)p > 0, which is a contradiction.

In fact, we can learn more from this argument. Giroux used a careful analysis
to show the following:
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Lemma 6 (Crossing lemma). Suppose that (Σt0)ξ contains a retrograde saddle-
saddle connection, i.e. a flow line from a negative hyperbolic point p− to a
positive hyperbolic point p+. There is a neighborhood (t0 − ε, t0 + ε) on which
this retrograde orbit corresponds to a pair of flow lines which cross at t = t0,
with the stable separatrix c+ of p+ passing above the negative separatrix c− of
p− for t > t0 and vice versa for t < t0.

Here is a picture of the characteristic foliation on Σt near a retrograde orbit,
at times t0 − ε, t0, and t0 + ε.

The dotted lines in the “before” and “after” pictures are a local picture of a
dividing set at each time. The dividing sets change when crossing t = t0 by the
same picture as a bypass attachment along the thin diagonal arc in the “before”
picture; if we perturb it slightly to make that arc Legendrian, then it is not
hard to see that this neighborhood of the retrograde orbit really does contain
a bypass. In particular, retrograde saddle–saddle connections are equivalent to
bypass attachments.

Suppose that Σ = S2, and that (Σ × I, ξ) is tight with convex boundary.
Then we can perturb ξ rel boundary so that there is a finite set of times ti when
Σ has a retrograde saddle–saddle connection, and since ΓΣt

must be connected
there cannot be any degenerate closed orbits: Giroux showed that these cause
the death or birth of a pair of nondegenerate closed orbits, which would change
#ΓΣt

. Every other surface Σt = Σ×{t} must be convex, since (Σt)ξ satisfies the
Poincaré–Bendixson property. This means that we can construct ξ by taking a
contact structure in which every Σt is convex and attaching a series of bypasses;
last time we observed that these must all be trivial bypasses. Thus it remains to
be seen that if we take a convex S2 and attach a bypass B, then a neighborhood
of S2∪B is diffeomorphic to S2×I where each S2×{t} is convex. This justifies
the claim that trivial bypasses really are trivial, at least on S2.

Proposition 7. Let D be a neighborhood of a retrograde orbit γ in an S2 in a
tight contact structure ξ for which all singular points are isolated and no other
arcs of (S2)ξ connect pairs of hyperbolic points. Then D× I can be isotoped rel
boundary so that each D × {t} is convex.

Proof. Let p± be the hyperbolic points of each sign at either end of γ. If γ′ is
the other half of the stable separatrix of p+, then by the Poincaré–Bendixson
property, γ′ limits to either a singular point, a closed orbit, or a poly-cycle. The
closed orbit cannot exist because ξ is tight, and no vertex of a limit poly-cycle
can be elliptic, but a poly-cycle in S2 cannot have two connected hyperbolic
vertices by assumption so γ′ must in fact limit to a singular point, and this
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point is then positive elliptic; call it e+. Similarly, the other half of the unstable
separatrix of p− limits to a negative elliptic point e−. We can include these
points in the disk D and arrange D so that Dξ has no other singularities:

We will focus on a neighborhood D′ of the flow line connecting e− to h−.
Since there are only finitely many unstable separatrices of negative hyperbolic
points, we can make D′ small enough so that it misses all of them except the
ones emanating from h−, and the one which leaves D′ never returns. If this
neighborhood were embedded in the negative region of a convex surface Σ ⊂
Σ×R, one could find a perturbation ofD′ rel boundary so that the characteristic
foliation changes inside D′ as follows:

But on the other hand we don’t actually need Σ to be convex, because the char-
acteristic foliation determines the contact structure in a neighborhood of ξ, so
we can always change the foliation in this way. This is called the Elimination
Lemma, because it allows us to eliminate pairs of elliptic and hyperbolic sin-
gularities of the same sign from a characteristic foliation, and we have already
implicitly proved it by Giroux flexibility: in a neighborhood D′ × I where our
disk is at D′×{0}, we can find some isotopy φs sending (x, 0) to (x, f(x)) where
graph(f) has the desired foliation, and we can fix f = 0 outside D′.

For our situation we need a stronger version of the Elimination Lemma,
however, since we want to isotope D′×I rel boundary so that no surface φ1(D′×
{t}) has a retrograde orbit. In order to do so, let ψ : (−ε, ε)→ [0, 1] be an even,
compactly supported bump function with ψ(0) = 1, and define the isotopy

φs(x, t) = (x, t+ ψ(t)f(x)).

(We need to check that this is well-defined, but d
dt (t+ψ(t)f(x)) = 1+ψ′(t)f(x) >

0 as long as we rescale f to make it sufficiently small.) We will also arrange f
and (S2)ξ so that the horizontal line through e− and p− is a union of flow lines
of φs(D × {0}) at all times, and that the orbit leaving D′ along e− does not
connect to another hyperbolic point.

This isotopy certainly fixes the boundary of D′ × I and eliminates e− and
h− in D′ × {0}, so that φ1(D × {0}) no longer has a retrograde orbit. We may
have introduced new retrograde orbits in other disks φ1(D × {t}) by accident,
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however, so we need to check that this does not happen. But at all times around
t = 0 where φ1(D′ × {t}) has no more negative hyperbolic points, this cannot
happen because only the horizontal flow line can connect to a hyperbolic point,
namely h+, and as we follow it left out of D′ it not limit to another hyperbolic
point. Otherwise, when φ1(D′ × {t}) still has a hyperbolic point coming from
h−, we know that the unstable separatrix of h− will connect to an elliptic point
because it was already redirected away from h+ in the first place.

Since our isotopy φ1 eliminates the retrograde orbit from D×I, we conclude
that the image of every surface S2 × {t} will be convex, as desired.

Theorem 8. Any two tight contact structures ξ, ξ′ on S2 × I with the same
characteristic foliation on S2 × ∂I are isotopic rel boundary.

Proof. We have shown that each contact structure can be isotoped rel boundary
so that every surface S2 × {t} is convex in both ξ and ξ′. Now change ξ′ by
a continuous isotopy fixing S2 × ∂I so that each dividing curve on S2 × {t} is
brought to the dividing curve of ξ on S2×{t}. Since the two contact structures
are convex at every level and divided by the same family of curves, they are
isotopic rel boundary.

Theorem 9. Up to isotopy, there is a unique tight contact structure on B3 with
convex boundary and a given characteristic foliation on ∂B3. There is a unique
tight contact structure up to isotopy on each of S3, R3, and S1 × S2.

Proof. We know tight contact structures exist on each of these. Given two
tight contact structures ξ, ξ′ on B3 with the same characteristic foliation on the
boundary, we can find contactomorphic Darboux balls B,B′ ⊂ B3 and remove
them one at a time. The remaining contact manifolds are ξ|S2×I and ξ′|S2×I ,
and both are tight with the same characteristic foliation on S2×∂I, so they are
isotopic and this extends over B and B′.

Suppose there are two tight contact structures ξ, ξ′ on S3. Remove contac-
tomorphic Darboux balls from each; the complements are tight contact balls,
hence they are isotopic as well.

For ξ, ξ′ on R3, given n > 0 we can let Σ and Σ′ be perturbations of the
sphere of radius n which are convex for ξ and ξ′ respectively, and by Giroux
flexibility we can arrange for them to have the same characteristic foliations.
We identify invariant neighborhoods of Σ and Σ′ by a contact isotopy for all
n > 0, and similarly for Darboux balls centered at the origin, and then the
regions between the neighborhoods of Σ at radii n and n + 1 (and likewise for
Σ′) are tight S2× I with convex boundaries, hence they are all isotopic as well.

Finally, for ξ, ξ′ on S1 × S2 we take convex perturbations of a sphere Σ =
{∗} × S2 with the same characteristic foliation. The complement of a standard
neighborhood of Σ is a tight S2 × I with a fixed boundary, hence is unique up
to isotopy.

Finally, we note as a corollary that trivial bypasses are trivial when attached
to any convex surface, not just S2.
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Proposition 10. Let Σ be a convex surface and B a trivial bypass attached
along some arc α ⊂ Σ. Then a neighborhood of Σ ∪ B is contactomorphic rel
boundary to (Σ× I, ξ) in which every Σ× {t} is convex.

Proof. Cut out a small disk D around α which contains the disk cobounded
by α and one of the dividing curves; we can realize ∂D as a Legendrian curve
so that D is convex, and by Giroux’s criterion it has a tight neighborhood.
The Right-to-Life Principle says that we can find a trivial bypass along α in a
vertically invariant neighborhood of D, which is also tight, so a neighborhood of
the union of D and the trivial bypass is a topological D× I with a tight contact
structure. But the tight contact structure on D × I ∼= B3 is unique (given the
characteristic foliation along its boundary), so we can isotope it fixing ∂D × I
so that each D × {t} becomes convex. This isotopy extends trivially to all of
Σ× I, and it follows that each Σ× {t} becomes convex as well.
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