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Giroux’s criterion can be used to study Legendrian knots in tight contact
structures; we will use this to develop our first complete classification of a contact
geometric object, namely Legendrian representatives of the unknot in a tight
contact structure.

Definition 1. Let K ⊂ (M, ξ) be an oriented, nullhomologous Legendrian
knot in a contact manifold, and let Σ be a Seifert surface for K. The Thurston-
Bennequin invariant of K, denoted tb(K), is equal to tw(K,Σ), the twisting of
ξ|K with respect to TΣ|K .

Since Σ is a surface with boundary, we can choose a trivialization ξ|Σ ∼=
Σ×R2 and let π : ξ|Σ → R2 be the projection onto the R2 factor. Parametrize
K by a map γ : S1 →M . The rotation number of K with respect to Σ, denoted
r(K,Σ), is the degree of the map π ◦γ′ : S1 → R2\{0}, i.e. the winding number
of π(dγdt ) around the origin.

We remark that γ′(t) is a nonzero section of ξ|K , and one can show that
r(K,Σ) is the obstruction to extending it to a nonzero section of ξ along all of
Σ. If Σξ has nondegenerate critical points then we can write

r(K,Σ) = r+ − r−

where r+ = (eint
+ − hint

+ ) + 1
2 (e∂+ − h∂+), with each term counting the number

of positive elliptic or hyperbolic points on the interior or boundary of Σ, and
likewise for r−; the proof is similar to the one where we showed that 〈e(ξ), [Σ]〉 =
(e+ − h+)− (e− − h−) for closed Σ.

Example 2. Let K ⊂ (R3, ξst) be an oriented Legendrian knot, and consider
the front projection (i.e. the xz-projection) of K. Then ∂y is a section of ξ,
and we can define a nonzero section v of ξ|Σ away from the cusps of K by
letting v = γ′(t) along γ(t) ∈ K, letting v = ∂y outside a neighborhood of K,
and interpolating between the two inside that neighborhood. Extending v to a
neighborhood of each cusp, we can force v to have a zero precisely at the cusp,
and a model computation shows that the sign of this zero is +1 for cusps which
are oriented downward and −1 for upward cusps. We conclude that

r(K,Σ) =
1

2
(#(↓ cusps)−#(↑ cusps)) .
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It is similarly easy to compute tb(K). Let K ′ be a pushoff of K along
the Reeb vector field ∂z: in the front projection, this is just a slight vertical
translation of K. Then tb(K) = lk(K,K ′). In the Lagrangian (xy-) projection,
we used this to argue that lk(K,K ′) was the writhe of that projection. A
nearly identical argument applies here, except that now each cusp contributes
a − 1

2 -twist, and so

tb(K) = writhe(K)− 1

2
#cusps.

Definition 3. Let K be a oriented, nullhomologous Legendrian knot. The
positive and negative stabilizations of K, denoted K+ and K−, are operations
in a Darboux ball around a point of K which replace a smooth arc of K in the
front projection with a zig-zag oriented either up or down. The orientations are
chosen so that the stabilizations satisfy

tb(K±) = tb(K)− 1

r(K±) = r(K)± 1

with respect to some Seifert surface.

Theorem 4 (Thurston-Bennequin inequality). Let K be a Legendrian knot with
Seifert surface Σ. Then r(K,Σ) = 〈e(ξ), [Σ]〉 if Σ is convex, and if ξ is tight
then

tb(K) + |r(K,Σ)| ≤ −χ(Σ).

Proof. We will prove the inequality for tb(K) + r(K,Σ) first. Note that tb +
r is preserved under positive stabilization, so we will apply enough of these
stabilizations to assume that tb(K) ≤ 0. This allows us to make Σ convex.

Since tb(K) = − 1
2 |ΓΣ∩K|, there are −tb(K) arcs of ΓΣ with both endpoints

on K. We can compute χ(Σ) from χ(Σ+) and χ(Σ−) by observing that we
glue Σ± together along a set of arcs and closed circles; the circles have Euler
characteristic 0, but we must subtract 1 = χ(δ) from χ(Σ+) + χ(Σ−) for each
arc δ involved in the gluing, and so

χ(Σ) = χ(Σ+) + χ(Σ−) + tb(K).

Next, we observe that r(K,Σ) = χ(Σ+) − χ(Σ−). Indeed, if we glue two
copies of Σ+ along the −tb(K) arcs of ∂Σ ∩ Σ+ then the resulting surface Σ′

satisfies χ(Σ′) = 2χ(Σ+) − tb(K). Now ∂Σ′ is transverse to the characteristic
foliation of Σ′, and in particular Σ′ has two singularities for each interior singular
point of Σ+ and one for each boundary singular point, so χ(Σ′) = 2r+. Similarly
we have 2χ(Σ−)− tb(K) = 2r−, and combining these we get

r(K,Σ) = r+ − r− = χ(Σ+)− χ(Σ−) = 〈e(ξ), [Σ]〉.

Finally, we combine these equations to get

tb(K) + r(K,Σ) = χ(Σ)− 2χ(Σ−).
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Now by Giroux’s criterion, any disk components of Σ\ΓΣ must intersect ∂Σ, so
Σ+ has at most −tb(K) disks; since these are the only components with positive
Euler characteristic, it follows that χ(Σ+) + tb(K) ≤ 0. In particular, we have
χ(Σ)− χ(Σ−) ≤ 0, hence

tb(K) + r(K,Σ) = −χ(Σ) + 2(χ(Σ)− χ(Σ−)) ≤ −χ(Σ).

To finish the proof, we note that reversing the orientation of K changes the sign
of r(K,Σ) but preserves tb(K) and −χ(Σ), hence tb(K)− r(K,Σ) ≤ −χ(Σ) as
well.

For Legendrian knots in (R3, ξst), the Thurston-Bennequin inequality im-
plies that tb(K) ≤ 2g(K) − 1, and so we can speak of the maximal Thurston-
Bennequin number tb(K) for a topological knot K. This is an interesting invari-
ant in its own right, and there are a wide variety of techniques to compute it,
including refinements of this inequality using the smooth 4-ball genus or the s
and t invariants in Khovanov and knot Floer homology, and bounds from knot
polynomials including the Kauffman and HOMFLY polynomials. For more on
many of these bounds, see [1].

Remark 5. We showed in the course of the proof that r(K,Σ) = 〈e(ξ), [Σ]〉 for
convex Σ, which we can always achieve by stabilizing K. In particular, r(K,Σ)
does not depend on Σ if either e(ξ) = 0 or H2(M,K) ∼= Z (in which case all
Seifert surfaces are homologous). This is true for the standard tight contact
structure on R3 or S3, or indeed on any homology sphere, so in this case we will
unambiguously write r(K).

Remark 6. The Thurston-Bennequin inequality (proved in full generality by
Eliashberg) gives a knot-theoretic characterization of tightness: if ξ is tight
then tb(K) + |r(K,Σ)| ≤ −χ(Σ), but if ξ is overtwisted then the boundary of
an overtwisted disk violates this inequality. In fact, Bennequin first proved that
the standard contact structure on R3 is tight by proving this inequality, or more
accurately its analogue sl(K) ≤ −χ(Σ) for transverse knots, for ξst.

From the equation tb(K)+r(K,Σ) = χ(Σ)−2χ(Σ−) and χ(Σ) = 1−2g(Σ) we
see that tb±r is always odd. For a Legendrian representative of an unknot in the
tight R3, this and the Thurston-Bennequin inequality are the only restrictions
on tb and r: any values for which tb+ |r| ≤ −1 and tb+r is odd can be achieved
by an appropriate stabilization of the unknot with (tb, r) = (−1, 0). It turns
out that for unknots the values of tb and r uniquely determine the Legendrian
knot type:

Theorem 7 (Eliashberg–Fraser). If two Legendrian representatives of the un-
knot in (R3, ξst) have the same values of tb and r, then they are Legendrian
isotopic.

Remark 8. This is definitely not true for other knot types: the first example is
52, for which Chekanov identified two distinct Legendrian representatives with
tb = 1 and r = 0.
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Proof. By the Thurston-Bennequin inequality, we know that ifK is a Legendrian
representative of the unknot then tb(K) ≤ −1, so we can find a convex disk D
bounded by K. We will study this disk to see that first of all, if tb(K) < −1
then K can be destabilized, and second, that if tb(K) = −1 then K is unique.
We observe that ΓD cannot contain any closed curves, or else we could use the
Legendrian Realization Principle to find a parallel curve with tb = 0, which is
impossible. Therefore ΓD consists of −tb(K) properly embedded arcs.

Suppose tb(K) < −1. Then some dividing curve a ⊂ ΓD is boundary-
parallel; let ∆ be the disk it bounds. By Giroux flexibility, we can pick the
characteristic foliation on ∆ so that it has an elliptic point p on ∂∆\a whose
leaves all exit ∆ transverse to a, and the adjacent elliptic points on K are con-
nected by a union of flow lines parallel to a. We let ∆′ be the disk bounded by
this union of flow lines and containing ∆. Then D\∆′ has Legendrian boundary
with two corners and one less dividing curve, so if we smooth this boundary at
the corners then we get an unknot K ′ with tb(K ′) = tb(K)+1. It is straightfor-
ward to check that K is a stabilization of K ′, i.e. that K is Legendrian isotopic
to one of (K ′)± depending on the sign of p.

Now suppose that tb(K) = −1. Then Γ∆ is a single arc, and we can arrange
the characteristic foliation on ∆ to have two elliptic singularities of opposite
signs on ∂∆, with ∆ξ a family of arcs connecting them. These arcs are all
Legendrian, so if we fix one such arc a then by an isotopy we can make ∆ξ an
arbitrarily small neighborhood of a. But any two Legendrian arcs are isotopic,
so any tb = −1 unknot can be isotoped into a small neighborhood of, say, the
arc a0 = [0, 1]x × {(0, 0)} in R3. Given any disks in this neighborhood with the
same characteristic foliation ∆ξ, which contain a0 as a leaf, we can construct a
Legendrian isotopy between their boundaries, so K is unique.
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