Math 273 Lecture 6

Steven Sivek

February 10, 2012

Giroux's criterion can be used to study Legendrian knots in tight contact structures; we will use this to develop our first complete classification of a contact geometric object, namely Legendrian representatives of the unknot in a tight contact structure.

Definition 1. Let $K \subset (M,\xi)$ be an oriented, nullhomologous Legendrian knot in a contact manifold, and let Σ be a Seifert surface for K. The *Thurston-Bennequin invariant* of K, denoted tb(K), is equal to $tw(K, \Sigma)$, the twisting of $\xi|_K$ with respect to $T\Sigma|_K$.

Since Σ is a surface with boundary, we can choose a trivialization $\xi|_{\Sigma} \cong \Sigma \times \mathbb{R}^2$ and let $\pi : \xi|_{\Sigma} \to \mathbb{R}^2$ be the projection onto the \mathbb{R}^2 factor. Parametrize K by a map $\gamma : S^1 \to M$. The *rotation number* of K with respect to Σ , denoted $r(K, \Sigma)$, is the degree of the map $\pi \circ \gamma' : S^1 \to \mathbb{R}^2 \setminus \{0\}$, i.e. the winding number of $\pi(\frac{d\gamma}{dt})$ around the origin.

We remark that $\gamma'(t)$ is a nonzero section of $\xi|_K$, and one can show that $r(K, \Sigma)$ is the obstruction to extending it to a nonzero section of ξ along all of Σ . If Σ_{ξ} has nondegenerate critical points then we can write

$$r(K,\Sigma) = r_+ - r_-$$

where $r_{+} = (e_{+}^{\text{int}} - h_{+}^{\text{int}}) + \frac{1}{2}(e_{+}^{\partial} - h_{+}^{\partial})$, with each term counting the number of positive elliptic or hyperbolic points on the interior or boundary of Σ , and likewise for r_{-} ; the proof is similar to the one where we showed that $\langle e(\xi), [\Sigma] \rangle =$ $(e_{+} - h_{+}) - (e_{-} - h_{-})$ for closed Σ .

Example 2. Let $K \subset (\mathbb{R}^3, \xi_{st})$ be an oriented Legendrian knot, and consider the front projection (i.e. the *xz*-projection) of K. Then ∂_y is a section of ξ , and we can define a nonzero section v of $\xi|_{\Sigma}$ away from the cusps of K by letting $v = \gamma'(t)$ along $\gamma(t) \in K$, letting $v = \partial_y$ outside a neighborhood of K, and interpolating between the two inside that neighborhood. Extending v to a neighborhood of each cusp, we can force v to have a zero precisely at the cusp, and a model computation shows that the sign of this zero is +1 for cusps which are oriented downward and -1 for upward cusps. We conclude that

$$r(K, \Sigma) = \frac{1}{2} \left(\#(\downarrow \text{ cusps}) - \#(\uparrow \text{ cusps}) \right).$$

It is similarly easy to compute tb(K). Let K' be a pushoff of K along the Reeb vector field ∂_z : in the front projection, this is just a slight vertical translation of K. Then tb(K) = lk(K, K'). In the Lagrangian (xy) projection, we used this to argue that lk(K, K') was the writhe of that projection. A nearly identical argument applies here, except that now each cusp contributes a $-\frac{1}{2}$ -twist, and so

$$tb(K) = writhe(K) - \frac{1}{2} \# cusps.$$

Definition 3. Let K be a oriented, nullhomologous Legendrian knot. The positive and negative stabilizations of K, denoted K^+ and K^- , are operations in a Darboux ball around a point of K which replace a smooth arc of K in the front projection with a zig-zag oriented either up or down. The orientations are chosen so that the stabilizations satisfy

$$tb(K^{\pm}) = tb(K) - 1$$

$$r(K^{\pm}) = r(K) \pm 1$$

with respect to some Seifert surface.

Theorem 4 (Thurston-Bennequin inequality). Let K be a Legendrian knot with Seifert surface Σ . Then $r(K, \Sigma) = \langle e(\xi), [\Sigma] \rangle$ if Σ is convex, and if ξ is tight then

$$tb(K) + |r(K, \Sigma)| \le -\chi(\Sigma).$$

Proof. We will prove the inequality for $tb(K) + r(K, \Sigma)$ first. Note that tb + r is preserved under positive stabilization, so we will apply enough of these stabilizations to assume that $tb(K) \leq 0$. This allows us to make Σ convex.

Since $tb(K) = -\frac{1}{2}|\Gamma_{\Sigma} \cap K|$, there are -tb(K) arcs of Γ_{Σ} with both endpoints on K. We can compute $\chi(\Sigma)$ from $\chi(\Sigma_{+})$ and $\chi(\Sigma_{-})$ by observing that we glue Σ_{\pm} together along a set of arcs and closed circles; the circles have Euler characteristic 0, but we must subtract $1 = \chi(\delta)$ from $\chi(\Sigma_{+}) + \chi(\Sigma_{-})$ for each arc δ involved in the gluing, and so

$$\chi(\Sigma) = \chi(\Sigma_+) + \chi(\Sigma_-) + tb(K).$$

Next, we observe that $r(K, \Sigma) = \chi(\Sigma_+) - \chi(\Sigma_-)$. Indeed, if we glue two copies of Σ_+ along the -tb(K) arcs of $\partial \Sigma \cap \Sigma_+$ then the resulting surface Σ' satisfies $\chi(\Sigma') = 2\chi(\Sigma_+) - tb(K)$. Now $\partial \Sigma'$ is transverse to the characteristic foliation of Σ' , and in particular Σ' has two singularities for each interior singular point of Σ_+ and one for each boundary singular point, so $\chi(\Sigma') = 2r_+$. Similarly we have $2\chi(\Sigma_-) - tb(K) = 2r_-$, and combining these we get

$$r(K,\Sigma) = r_+ - r_- = \chi(\Sigma_+) - \chi(\Sigma_-) = \langle e(\xi), [\Sigma] \rangle.$$

Finally, we combine these equations to get

$$tb(K) + r(K, \Sigma) = \chi(\Sigma) - 2\chi(\Sigma_{-}).$$

Now by Giroux's criterion, any disk components of $\Sigma \setminus \Gamma_{\Sigma}$ must intersect $\partial \Sigma$, so Σ_+ has at most -tb(K) disks; since these are the only components with positive Euler characteristic, it follows that $\chi(\Sigma_+) + tb(K) \leq 0$. In particular, we have $\chi(\Sigma) - \chi(\Sigma_-) \leq 0$, hence

$$tb(K) + r(K, \Sigma) = -\chi(\Sigma) + 2(\chi(\Sigma) - \chi(\Sigma_{-})) \le -\chi(\Sigma).$$

To finish the proof, we note that reversing the orientation of K changes the sign of $r(K, \Sigma)$ but preserves tb(K) and $-\chi(\Sigma)$, hence $tb(K) - r(K, \Sigma) \leq -\chi(\Sigma)$ as well.

For Legendrian knots in (\mathbb{R}^3, ξ_{st}) , the Thurston-Bennequin inequality implies that $tb(K) \leq 2g(K) - 1$, and so we can speak of the maximal Thurston-Bennequin number $\overline{tb}(K)$ for a topological knot K. This is an interesting invariant in its own right, and there are a wide variety of techniques to compute it, including refinements of this inequality using the smooth 4-ball genus or the s and t invariants in Khovanov and knot Floer homology, and bounds from knot polynomials including the Kauffman and HOMFLY polynomials. For more on many of these bounds, see [1].

Remark 5. We showed in the course of the proof that $r(K, \Sigma) = \langle e(\xi), [\Sigma] \rangle$ for convex Σ , which we can always achieve by stabilizing K. In particular, $r(K, \Sigma)$ does not depend on Σ if either $e(\xi) = 0$ or $H_2(M, K) \cong \mathbb{Z}$ (in which case all Seifert surfaces are homologous). This is true for the standard tight contact structure on \mathbb{R}^3 or S^3 , or indeed on any homology sphere, so in this case we will unambiguously write r(K).

Remark 6. The Thurston-Bennequin inequality (proved in full generality by Eliashberg) gives a knot-theoretic characterization of tightness: if ξ is tight then $tb(K) + |r(K, \Sigma)| \leq -\chi(\Sigma)$, but if ξ is overtwisted then the boundary of an overtwisted disk violates this inequality. In fact, Bennequin first proved that the standard contact structure on \mathbb{R}^3 is tight by proving this inequality, or more accurately its analogue $sl(K) \leq -\chi(\Sigma)$ for transverse knots, for ξ_{st} .

From the equation $tb(K)+r(K, \Sigma) = \chi(\Sigma)-2\chi(\Sigma_{-})$ and $\chi(\Sigma) = 1-2g(\Sigma)$ we see that $tb\pm r$ is always odd. For a Legendrian representative of an unknot in the tight \mathbb{R}^3 , this and the Thurston-Bennequin inequality are the only restrictions on tb and r: any values for which $tb+|r| \leq -1$ and tb+r is odd can be achieved by an appropriate stabilization of the unknot with (tb,r) = (-1,0). It turns out that for unknots the values of tb and r uniquely determine the Legendrian knot type:

Theorem 7 (Eliashberg–Fraser). If two Legendrian representatives of the unknot in (\mathbb{R}^3, ξ_{st}) have the same values of tb and r, then they are Legendrian isotopic.

Remark 8. This is definitely not true for other knot types: the first example is 5_2 , for which Chekanov identified two distinct Legendrian representatives with tb = 1 and r = 0.

Proof. By the Thurston-Bennequin inequality, we know that if K is a Legendrian representative of the unknot then $tb(K) \leq -1$, so we can find a convex disk D bounded by K. We will study this disk to see that first of all, if tb(K) < -1then K can be destabilized, and second, that if tb(K) = -1 then K is unique. We observe that Γ_D cannot contain any closed curves, or else we could use the Legendrian Realization Principle to find a parallel curve with tb = 0, which is impossible. Therefore Γ_D consists of -tb(K) properly embedded arcs.

Suppose tb(K) < -1. Then some dividing curve $a \subset \Gamma_D$ is boundaryparallel; let Δ be the disk it bounds. By Giroux flexibility, we can pick the characteristic foliation on Δ so that it has an elliptic point p on $\partial \Delta \backslash a$ whose leaves all exit Δ transverse to a, and the adjacent elliptic points on K are connected by a union of flow lines parallel to a. We let Δ' be the disk bounded by this union of flow lines and containing Δ . Then $D \backslash \Delta'$ has Legendrian boundary with two corners and one less dividing curve, so if we smooth this boundary at the corners then we get an unknot K' with tb(K') = tb(K) + 1. It is straightforward to check that K is a stabilization of K', i.e. that K is Legendrian isotopic to one of $(K')^{\pm}$ depending on the sign of p.

Now suppose that tb(K) = -1. Then Γ_{Δ} is a single arc, and we can arrange the characteristic foliation on Δ to have two elliptic singularities of opposite signs on $\partial \Delta$, with Δ_{ξ} a family of arcs connecting them. These arcs are all Legendrian, so if we fix one such arc *a* then by an isotopy we can make Δ_{ξ} an arbitrarily small neighborhood of *a*. But any two Legendrian arcs are isotopic, so any tb = -1 unknot can be isotoped into a small neighborhood of, say, the arc $a_0 = [0,1]_x \times \{(0,0)\}$ in \mathbb{R}^3 . Given any disks in this neighborhood with the same characteristic foliation Δ_{ξ} , which contain a_0 as a leaf, we can construct a Legendrian isotopy between their boundaries, so *K* is unique.

References

 Lenhard Ng, A skein approach to Bennequin-type inequalities, Int. Math. Res. Not. (2008), Art. ID rnn116, 18 pp.