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Now that we know that tight contact structures exist, we can begin to answer
some basic questions about them: for example, when does a convex surface
have a tight neighborhood? The answer relies in part on an understanding of
Legendrian knots in convex surfaces, originally due to Kanda and proved by
Honda in full generality.

Theorem 1 (Legendrian Realization Principle). Let ¥ C (M, &) be a convex
surface, and let C C X be a multicurve which is transverse to I's. Suppose
that C is nonisolating: in other words, that every component of X\C' intersects
I's. Then there is an isotopy ¢s of X through convex surfaces, supported in
an arbitrarily small neighborhood of ¥ and fizing I's;, so that ¢s(C) is always
transverse to I's, and ¢1(C) is Legendrian.

Proof. A curve v : S' — X is Legendrian if and only if 4(¢) € vy N2, ie.
if 4(S1) is a union of flow lines of the characteristic foliation. Thus our goal will
be to construct such a foliation F of ¥ for the multicurve C' which is divided
by I's; having done so, we can then apply the Giroux flexibility theorem.

Consider a component Yy of ¥\(I's U C) as a surface with corners, and
assume without loss of generality that ¥y C ;. Each smooth component v of
0% is a circle or arc. If v belongs to I's; then F must be flowing out of 3y on
a neighborhood of v. If v belongs to C then it is either a circle, in which case
we let it be a repelling closed orbit of F, or an arc. If v C C' is an arc, we put
a positive hyperbolic point on its interior with « its unstable separatrix, and
if its endpoints do not belong to I's; then we put positive elliptic points on its
boundary; otherwise we just let v be a nonsingular flowline of F.

For v C 9%, let n = tw(y,3). We assume that ¥ has been perturbed
into the standard form, so that the contact structure near ~ is modeled by
v =5"x{(0,0)} C S§ x R%, with contact form

a = cos(nf)dx — sin(nf)dy

if n >0, or @« =dy—adfif n =0, and ¥ = S! x [0,1] x {0}. Then F is
determined by X¢ near . Thus we have defined F on a neighborhood of 9%.

Write 0%¢ = v— U4, where F flows out of ¥y along v_ and in along 7.
We know that v_ is nonempty because the nonisolating assumption means that
0% intersects I's,. If v, is empty, we place a single elliptic source in the interior



of ¥y and then remove a small neighborhood of that point from Xy; the new
component of 0% lies in v;.. We now extend F to all of 3y by embedding ¥ in
Yo x [=1,1] so that vy is the part of ¥y at height +1. For generic embeddings,
the height function has no extrema along int(¥y) and is Morse-Smale, so we
define F to be its downward gradient flow. The singularities added by this
process are all hyperbolic, and we can arrange for them to be positive.
Repeating this procedure on each component of ¥, \(I's UC'), and the anal-
ogous procedure on X_\(I's U C), yields the desired foliation. O

Proposition 2. Let C be a closed Legendrian curve transverse to I's. Then
tw(C,X) = f%|C’ Nyl

Proof. The characteristic foliation we have just constructed puts a hyperbolic
singularity on every arc of C'\I'y, so there are |C'NI'y| singularities of F along C'
and these are exactly the points p € C' where &, = T,X. We claim that at each
singularity, £ and T'Y intersect negatively, so that each of the points contributes
—% to the twisting number.

To see this, consider a standard neighborhood 3 x R of ¥ with contact form
a = 1+ fdt and contact vector field v = &y, and recall that I's = f~1(0).
Let {v1,v2} be an oriented basis for TS along C, with v; tangent to C, and
suppose that ¢,,7 = 1 near C NI's. Then —fvy + J; € £ near these points, so
the intersection of £ with T'Y is indeed negative, as desired. O

Using the Legendrian Realization Principle, we can now identify convex sur-
faces with tight neighborhoods.

Theorem 3 (Giroux’s Criterion). Let ¥ C (M,§) be a convex closed surface.
Then ¥ has a tight neighborhood if and only if ¥ = S? and I's; is connected or
¥ # 5% and T's, has no contractible components.

Proof. We deal first with the case ¥ = S2. If I's is connected, then we have
already seen that ¥ has a tight neighborhood: the unit sphere in (R3, &) pro-
vided one such example. Otherwise, let D C S? be a disk in a slightly larger
neighborhood D’ for which D’NI's, = dD. Take a simple closed curve C C D'\ D
parallel to D. Then C is nonisolating since |I's;| > 1, so we can apply the Leg-
endrian Realization Principle to make it Legendrian. Then C' is a Legendrian
knot which bounds a disk and tw(C,X) = 0, so that disk is overtwisted.

Suppose that ¥ # S2? and some component of I's bounds a disk D. If
U] = 1, then we pick a nonseparating curve away from this disk and realize
it as a Legendrian curve vy consisting entirely of singularities of ¥¢. We can
then apply a “folding” operation to create three parallel circles of singularities,
the result of which is that we have added two dividing curves parallel to v in a
neighborhood of 4. Thus we have perturbed ¥ by an arbitrarily small isotopy
(but not one through convex surfaces) supported away from D to ensure that
|II'ss| > 1. We can now use the Legendrian Realization Principle just as before
to find an overtwisted disk in a neighborhood of D.

Finally, consider the case ¥ # S? and no component of I's, bounds a disk.
Pass to an R-invariant neighborhood ¥ x R, and let ¥ 2 R2 be the universal



cover of . Let D1 C Dy C ... be a set of convex disks, not necessarily with
Legendrian boundary, whose union is all of 3, and perturb them along their
boundaries so that 'y, is transverse to each 0D;; we remark that 'y has no
closed components by assumption. If ¥ x R is overtwisted, then we can lift an
overtwisted disk to 2 x R and so some D; x R will contain an overtwisted disk.

We will now embed D; in a convex S? with a single dividing curve, proving
that D; is in fact tight. If I's N D; consists of more than one arc, we take two
endpoints which are adjacent along 0D; and belong to different components;
otherwise we take the endpoints of the unique arc of I's N D;. In either case I'y
must intersect 0D; with opposite signs at these points, since 'y, can be oriented
as the boundary of ¥ or —¥_ and the arc connecting these points in 9D; runs
through exactly one of ¥. We enlarge D; by gluing on a small disk along a
neighborhood of that arc, with dividing curve a single arc § connecting the two
chosen endpoints of I'y; this operation lowers |I's| by 1, or if it was already
equal to 1 then it makes I'y; into a single closed curve. Once I'y is a single
closed curve, we can cap off D; with a disk to get the desired convex S2.

The only thing that remains is to check that this enlargement operation can
be done. We first extend the contact form 1+ fdt along a neighborhood N of §
so that f = 0 exactly on §. We now have to extend it to the disk D cobounded
by ON and 0D;, which lies entirely within either ¥, or ¥_, so by rescaling we
can assume that f = 1 along 0D (or f = —1 if D C ¥;). The contact form
must then be 8 + dt for some 1-form [ such that dg is an area form on D and
dp = dn along 0D. Let w be an area form on D satisfying

Jo2= o

and for which w = dn on a neighborhood of dD. Let ¢ : D — [0, 1] be a cutoff
function which is supported in a small neighborhood of 9D where 7 is defined,
and for which ¢ = 1 on a smaller neighborhood of dD. Then w — d(¢n) is a
well-defined 2-form which is zero near 0D, and

/Dw*d(wn):/Dw* aDwn:()

so [w —d(yn)] = 0 in H2(D). By the Poincaré lemma it is exact, so we can
write w — d(¢n) = d for some A supported on int(D) and thus w = d(¢n + A).
Letting 8 = ¥n + A completes the proof. O

We can now use Giroux’s criterion to prove the previously mentioned fact
that tight contact structures can have only finitely many Euler classes on a given
manifold. The following proposition is due to Eliashberg.

Proposition 4. Let M be a closed, oriented 3-manifold with tight contact struc-
ture £, and let ¥ C M be a closed embedded surface. Then

[(e(€), D] < —x(%)
if ©# 82, and if ¥ = S? then (e(£),[X]) = 0.



Proof. Perturb ¥ to make it convex.We have shown that for any convex surface
X C M,

(e(€), [X]) = x(E4) —x(2-),
and if ¥ = S? then Giroux’s criterion says that ¥, and ¥_ are both disks,
hence the right side is zero. For ¥ # S2| it is clear that x(X) = x(Z4) + x(Z-),
and so
X(3) + [(e(€), )] = 2max(x(Z4), x(X-))-

No component of ¥, is closed: if that were the case, then we could rescale the
contact form on a neighborhood of that component C' to be a = 1+ dt, so then
da = dn is an area form on C' with total area

/da:/ a=0,
c ac

a contradiction. Furthermore, no component of ¥, is a disk by Giroux’s cri-
terion, so every component must have Euler characteristic at most 0 and thus
X(24+) < 0. The same is true for ¥_, so we are done. O

Theorem 5. Let M be closed and oriented. There are only finitely many classes
e € H?(M;Z) which are Euler classes of tight contact structures.

Proof. The universal coeflicient theorem says that
H?(M;7Z) = Hom(Hy(M;Z),7) @ torsion,

solet X1, ..., %, be embedded surfaces representing an integral basis of Hy(M;Z),
none of which are spheres. For any tight contact structure £ on M, we can write
e(§) = > cifi + g, where the f; are the classes dual to ¥; and g is torsion, and
then the previous proposition implies |¢;| < —x(X;) for all i, so there are only
finitely many possible values for e(§). O

Since we have seen that any even Euler class supports an overtwisted contact
structure, this suggests that tight contact structures are in general much harder
to find.



