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Now that we know that tight contact structures exist, we can begin to answer
some basic questions about them: for example, when does a convex surface
have a tight neighborhood? The answer relies in part on an understanding of
Legendrian knots in convex surfaces, originally due to Kanda and proved by
Honda in full generality.

Theorem 1 (Legendrian Realization Principle). Let Σ ⊂ (M, ξ) be a convex
surface, and let C ⊂ Σ be a multicurve which is transverse to ΓΣ. Suppose
that C is nonisolating: in other words, that every component of Σ\C intersects
ΓΣ. Then there is an isotopy φs of Σ through convex surfaces, supported in
an arbitrarily small neighborhood of Σ and fixing ΓΣ, so that φs(C) is always
transverse to ΓΣ and φ1(C) is Legendrian.

Proof. A curve γ : S1 → Σ is Legendrian if and only if γ̇(t) ∈ ξγ(t) ∩ Tγ(t)Σ, i.e.
if γ(S1) is a union of flow lines of the characteristic foliation. Thus our goal will
be to construct such a foliation F of Σ for the multicurve C which is divided
by ΓΣ; having done so, we can then apply the Giroux flexibility theorem.

Consider a component Σ0 of Σ\(ΓΣ ∪ C) as a surface with corners, and
assume without loss of generality that Σ0 ⊂ Σ+. Each smooth component γ of
∂Σ0 is a circle or arc. If γ belongs to ΓΣ then F must be flowing out of Σ0 on
a neighborhood of γ. If γ belongs to C then it is either a circle, in which case
we let it be a repelling closed orbit of F , or an arc. If γ ⊂ C is an arc, we put
a positive hyperbolic point on its interior with γ its unstable separatrix, and
if its endpoints do not belong to ΓΣ then we put positive elliptic points on its
boundary; otherwise we just let γ be a nonsingular flowline of F .

For γ ⊂ ∂Σ, let n = tw(γ,Σ). We assume that Σ has been perturbed
into the standard form, so that the contact structure near γ is modeled by
γ = S1 × {(0, 0)} ⊂ S1

θ × R2
x,y with contact form

α = cos(nθ)dx− sin(nθ)dy

if n > 0, or α = dy − xdθ if n = 0, and Σ = S1 × [0, 1] × {0}. Then F is
determined by Σξ near γ. Thus we have defined F on a neighborhood of ∂Σ0.

Write ∂Σ0 = γ− ∪ γ+, where F flows out of Σ0 along γ− and in along γ+.
We know that γ− is nonempty because the nonisolating assumption means that
∂Σ0 intersects ΓΣ. If γ+ is empty, we place a single elliptic source in the interior
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of Σ0 and then remove a small neighborhood of that point from Σ0; the new
component of ∂Σ0 lies in γ+. We now extend F to all of Σ0 by embedding Σ0 in
Σ0 × [−1, 1] so that γ± is the part of Σ0 at height ±1. For generic embeddings,
the height function has no extrema along int(Σ0) and is Morse-Smale, so we
define F to be its downward gradient flow. The singularities added by this
process are all hyperbolic, and we can arrange for them to be positive.

Repeating this procedure on each component of Σ+\(ΓΣ ∪C), and the anal-
ogous procedure on Σ−\(ΓΣ ∪ C), yields the desired foliation.

Proposition 2. Let C be a closed Legendrian curve transverse to ΓΣ. Then
tw(C,Σ) = − 1

2 |C ∩ ΓΣ|.

Proof. The characteristic foliation we have just constructed puts a hyperbolic
singularity on every arc of C\ΓΣ, so there are |C∩ΓΣ| singularities of F along C
and these are exactly the points p ∈ C where ξp = TpΣ. We claim that at each
singularity, ξ and TΣ intersect negatively, so that each of the points contributes
− 1

2 to the twisting number.
To see this, consider a standard neighborhood Σ×R of Σ with contact form

α = η + fdt and contact vector field v = ∂t, and recall that ΓΣ = f−1(0).
Let {v1, v2} be an oriented basis for TΣ along C, with v1 tangent to C, and
suppose that ιv2η = 1 near C ∩ ΓΣ. Then −fv2 + ∂t ∈ ξ near these points, so
the intersection of ξ with TΣ is indeed negative, as desired.

Using the Legendrian Realization Principle, we can now identify convex sur-
faces with tight neighborhoods.

Theorem 3 (Giroux’s Criterion). Let Σ ⊂ (M, ξ) be a convex closed surface.
Then Σ has a tight neighborhood if and only if Σ = S2 and ΓΣ is connected or
Σ 6= S2 and ΓΣ has no contractible components.

Proof. We deal first with the case Σ = S2. If ΓΣ is connected, then we have
already seen that Σ has a tight neighborhood: the unit sphere in (R3, ξst) pro-
vided one such example. Otherwise, let D ⊂ S2 be a disk in a slightly larger
neighborhoodD′ for whichD′∩ΓΣ = ∂D. Take a simple closed curve C ⊂ D′\D
parallel to ∂D. Then C is nonisolating since |ΓΣ| > 1, so we can apply the Leg-
endrian Realization Principle to make it Legendrian. Then C is a Legendrian
knot which bounds a disk and tw(C,Σ) = 0, so that disk is overtwisted.

Suppose that Σ 6= S2 and some component of ΓΣ bounds a disk D. If
|ΓΣ| = 1, then we pick a nonseparating curve away from this disk and realize
it as a Legendrian curve γ consisting entirely of singularities of Σξ. We can
then apply a “folding” operation to create three parallel circles of singularities,
the result of which is that we have added two dividing curves parallel to γ in a
neighborhood of γ. Thus we have perturbed Σ by an arbitrarily small isotopy
(but not one through convex surfaces) supported away from D to ensure that
|ΓΣ| > 1. We can now use the Legendrian Realization Principle just as before
to find an overtwisted disk in a neighborhood of D.

Finally, consider the case Σ 6= S2 and no component of ΓΣ bounds a disk.
Pass to an R-invariant neighborhood Σ × R, and let Σ̃ ∼= R2 be the universal
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cover of Σ. Let D1 ⊂ D2 ⊂ . . . be a set of convex disks, not necessarily with
Legendrian boundary, whose union is all of Σ̃, and perturb them along their
boundaries so that ΓΣ̃ is transverse to each ∂Di; we remark that ΓΣ̃ has no
closed components by assumption. If Σ× R is overtwisted, then we can lift an
overtwisted disk to Σ̃×R and so some Di ×R will contain an overtwisted disk.

We will now embed Di in a convex S2 with a single dividing curve, proving
that Di is in fact tight. If ΓΣ ∩Di consists of more than one arc, we take two
endpoints which are adjacent along ∂Di and belong to different components;
otherwise we take the endpoints of the unique arc of ΓΣ ∩Di. In either case ΓΣ

must intersect ∂Di with opposite signs at these points, since ΓΣ can be oriented
as the boundary of Σ+ or −Σ− and the arc connecting these points in ∂Di runs
through exactly one of Σ±. We enlarge Di by gluing on a small disk along a
neighborhood of that arc, with dividing curve a single arc δ connecting the two
chosen endpoints of ΓΣ; this operation lowers |ΓΣ| by 1, or if it was already
equal to 1 then it makes ΓΣ into a single closed curve. Once ΓΣ is a single
closed curve, we can cap off Di with a disk to get the desired convex S2.

The only thing that remains is to check that this enlargement operation can
be done. We first extend the contact form η+ fdt along a neighborhood N of δ
so that f = 0 exactly on δ. We now have to extend it to the disk D cobounded
by ∂N and ∂Di, which lies entirely within either Σ+ or Σ−, so by rescaling we
can assume that f = 1 along ∂D (or f = −1 if D ⊂ Σ+). The contact form
must then be β + dt for some 1-form β such that dβ is an area form on D and
dβ = dη along ∂D. Let ω be an area form on D satisfying∫

D

ω =

∫
∂D

η

and for which ω = dη on a neighborhood of ∂D. Let ψ : D → [0, 1] be a cutoff
function which is supported in a small neighborhood of ∂D where η is defined,
and for which ψ = 1 on a smaller neighborhood of ∂D. Then ω − d(ψη) is a
well-defined 2-form which is zero near ∂D, and∫

D

ω − d(ψη) =

∫
D

ω −
∫
∂D

ψη = 0

so [ω − d(ψη)] = 0 in H2
c (D). By the Poincaré lemma it is exact, so we can

write ω − d(ψη) = dλ for some λ supported on int(D) and thus ω = d(ψη + λ).
Letting β = ψη + λ completes the proof.

We can now use Giroux’s criterion to prove the previously mentioned fact
that tight contact structures can have only finitely many Euler classes on a given
manifold. The following proposition is due to Eliashberg.

Proposition 4. LetM be a closed, oriented 3-manifold with tight contact struc-
ture ξ, and let Σ ⊂M be a closed embedded surface. Then

|〈e(ξ), [Σ]〉| ≤ −χ(Σ)

if Σ 6= S2, and if Σ = S2 then 〈e(ξ), [Σ]〉 = 0.
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Proof. Perturb Σ to make it convex.We have shown that for any convex surface
Σ ⊂M ,

〈e(ξ), [Σ]〉 = χ(Σ+)− χ(Σ−),

and if Σ = S2 then Giroux’s criterion says that Σ+ and Σ− are both disks,
hence the right side is zero. For Σ 6= S2, it is clear that χ(Σ) = χ(Σ+) +χ(Σ−),
and so

χ(Σ) + |〈e(ξ), [Σ]〉| = 2 max(χ(Σ+), χ(Σ−)).

No component of Σ+ is closed: if that were the case, then we could rescale the
contact form on a neighborhood of that component C to be α = η+ dt, so then
dα = dη is an area form on C with total area∫

C

dα =

∫
∂C

α = 0,

a contradiction. Furthermore, no component of Σ+ is a disk by Giroux’s cri-
terion, so every component must have Euler characteristic at most 0 and thus
χ(Σ+) ≤ 0. The same is true for Σ−, so we are done.

Theorem 5. LetM be closed and oriented. There are only finitely many classes
e ∈ H2(M ;Z) which are Euler classes of tight contact structures.

Proof. The universal coefficient theorem says that

H2(M ;Z) ∼= Hom(H2(M ;Z),Z)⊕ torsion,

so let Σ1, . . . ,Σr be embedded surfaces representing an integral basis ofH2(M ;Z),
none of which are spheres. For any tight contact structure ξ onM , we can write
e(ξ) =

∑
cifi + g, where the fi are the classes dual to Σi and g is torsion, and

then the previous proposition implies |ci| ≤ −χ(Σi) for all i, so there are only
finitely many possible values for e(ξ).

Since we have seen that any even Euler class supports an overtwisted contact
structure, this suggests that tight contact structures are in general much harder
to find.
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