Math 273 Lecture 5

Steven Sivek

February 8, 2012

Now that we know that tight contact structures exist, we can begin to answer some basic questions about them: for example, when does a convex surface have a tight neighborhood? The answer relies in part on an understanding of Legendrian knots in convex surfaces, originally due to Kanda and proved by Honda in full generality.

Theorem 1 (Legendrian Realization Principle). Let $\Sigma \subset (M, \xi)$ be a convex surface, and let $C \subset \Sigma$ be a multicurve which is transverse to Γ_{Σ} . Suppose that C is nonisolating: in other words, that every component of $\Sigma \setminus C$ intersects Γ_{Σ} . Then there is an isotopy ϕ_s of Σ through convex surfaces, supported in an arbitrarily small neighborhood of Σ and fixing Γ_{Σ} , so that $\phi_s(C)$ is always transverse to Γ_{Σ} and $\phi_1(C)$ is Legendrian.

Proof. A curve $\gamma : S^1 \to \Sigma$ is Legendrian if and only if $\dot{\gamma}(t) \in \xi_{\gamma(t)} \cap T_{\gamma(t)}\Sigma$, i.e. if $\gamma(S^1)$ is a union of flow lines of the characteristic foliation. Thus our goal will be to construct such a foliation \mathcal{F} of Σ for the multicurve C which is divided by Γ_{Σ} ; having done so, we can then apply the Giroux flexibility theorem.

Consider a component Σ_0 of $\Sigma \setminus (\Gamma_{\Sigma} \cup C)$ as a surface with corners, and assume without loss of generality that $\Sigma_0 \subset \Sigma_+$. Each smooth component γ of $\partial \Sigma_0$ is a circle or arc. If γ belongs to Γ_{Σ} then \mathcal{F} must be flowing out of Σ_0 on a neighborhood of γ . If γ belongs to C then it is either a circle, in which case we let it be a repelling closed orbit of \mathcal{F} , or an arc. If $\gamma \subset C$ is an arc, we put a positive hyperbolic point on its interior with γ its unstable separatrix, and if its endpoints do not belong to Γ_{Σ} then we put positive elliptic points on its boundary; otherwise we just let γ be a nonsingular flowline of \mathcal{F} .

For $\gamma \subset \partial \Sigma$, let $n = tw(\gamma, \Sigma)$. We assume that Σ has been perturbed into the standard form, so that the contact structure near γ is modeled by $\gamma = S^1 \times \{(0,0)\} \subset S^1_{\theta} \times \mathbb{R}^2_{x,y}$ with contact form

$$\alpha = \cos(n\theta)dx - \sin(n\theta)dy$$

if n > 0, or $\alpha = dy - xd\theta$ if n = 0, and $\Sigma = S^1 \times [0,1] \times \{0\}$. Then \mathcal{F} is determined by Σ_{ξ} near γ . Thus we have defined \mathcal{F} on a neighborhood of $\partial \Sigma_0$.

Write $\partial \Sigma_0 = \gamma_- \cup \gamma_+$, where \mathcal{F} flows out of Σ_0 along γ_- and in along γ_+ . We know that γ_- is nonempty because the nonisolating assumption means that $\partial \Sigma_0$ intersects Γ_{Σ} . If γ_+ is empty, we place a single elliptic source in the interior of Σ_0 and then remove a small neighborhood of that point from Σ_0 ; the new component of $\partial \Sigma_0$ lies in γ_+ . We now extend \mathcal{F} to all of Σ_0 by embedding Σ_0 in $\Sigma_0 \times [-1, 1]$ so that γ_{\pm} is the part of Σ_0 at height ± 1 . For generic embeddings, the height function has no extrema along $int(\Sigma_0)$ and is Morse-Smale, so we define \mathcal{F} to be its downward gradient flow. The singularities added by this process are all hyperbolic, and we can arrange for them to be positive.

Repeating this procedure on each component of $\Sigma_+ \setminus (\Gamma_{\Sigma} \cup C)$, and the analogous procedure on $\Sigma_- \setminus (\Gamma_{\Sigma} \cup C)$, yields the desired foliation.

Proposition 2. Let C be a closed Legendrian curve transverse to Γ_{Σ} . Then $tw(C, \Sigma) = -\frac{1}{2}|C \cap \Gamma_{\Sigma}|.$

Proof. The characteristic foliation we have just constructed puts a hyperbolic singularity on every arc of $C \setminus \Gamma_{\Sigma}$, so there are $|C \cap \Gamma_{\Sigma}|$ singularities of \mathcal{F} along C and these are exactly the points $p \in C$ where $\xi_p = T_p \Sigma$. We claim that at each singularity, ξ and $T\Sigma$ intersect negatively, so that each of the points contributes $-\frac{1}{2}$ to the twisting number.

To see this, consider a standard neighborhood $\Sigma \times \mathbb{R}$ of Σ with contact form $\alpha = \eta + f dt$ and contact vector field $v = \partial_t$, and recall that $\Gamma_{\Sigma} = f^{-1}(0)$. Let $\{v_1, v_2\}$ be an oriented basis for $T\Sigma$ along C, with v_1 tangent to C, and suppose that $\iota_{v_2}\eta = 1$ near $C \cap \Gamma_{\Sigma}$. Then $-fv_2 + \partial_t \in \xi$ near these points, so the intersection of ξ with $T\Sigma$ is indeed negative, as desired.

Using the Legendrian Realization Principle, we can now identify convex surfaces with tight neighborhoods.

Theorem 3 (Giroux's Criterion). Let $\Sigma \subset (M, \xi)$ be a convex closed surface. Then Σ has a tight neighborhood if and only if $\Sigma = S^2$ and Γ_{Σ} is connected or $\Sigma \neq S^2$ and Γ_{Σ} has no contractible components.

Proof. We deal first with the case $\Sigma = S^2$. If Γ_{Σ} is connected, then we have already seen that Σ has a tight neighborhood: the unit sphere in (\mathbb{R}^3, ξ_{st}) provided one such example. Otherwise, let $D \subset S^2$ be a disk in a slightly larger neighborhood D' for which $D' \cap \Gamma_{\Sigma} = \partial D$. Take a simple closed curve $C \subset D' \setminus D$ parallel to ∂D . Then C is nonisolating since $|\Gamma_{\Sigma}| > 1$, so we can apply the Legendrian Realization Principle to make it Legendrian. Then C is a Legendrian knot which bounds a disk and $tw(C, \Sigma) = 0$, so that disk is overtwisted.

Suppose that $\Sigma \neq S^2$ and some component of Γ_{Σ} bounds a disk D. If $|\Gamma_{\Sigma}| = 1$, then we pick a nonseparating curve away from this disk and realize it as a Legendrian curve γ consisting entirely of singularities of Σ_{ξ} . We can then apply a "folding" operation to create three parallel circles of singularities, the result of which is that we have added two dividing curves parallel to γ in a neighborhood of γ . Thus we have perturbed Σ by an arbitrarily small isotopy (but *not* one through convex surfaces) supported away from D to ensure that $|\Gamma_{\Sigma}| > 1$. We can now use the Legendrian Realization Principle just as before to find an overtwisted disk in a neighborhood of D.

Finally, consider the case $\Sigma \neq S^2$ and no component of Γ_{Σ} bounds a disk. Pass to an \mathbb{R} -invariant neighborhood $\Sigma \times \mathbb{R}$, and let $\tilde{\Sigma} \cong \mathbb{R}^2$ be the universal cover of Σ . Let $D_1 \subset D_2 \subset \ldots$ be a set of convex disks, not necessarily with Legendrian boundary, whose union is all of $\tilde{\Sigma}$, and perturb them along their boundaries so that $\Gamma_{\tilde{\Sigma}}$ is transverse to each ∂D_i ; we remark that $\Gamma_{\tilde{\Sigma}}$ has no closed components by assumption. If $\Sigma \times \mathbb{R}$ is overtwisted, then we can lift an overtwisted disk to $\tilde{\Sigma} \times \mathbb{R}$ and so some $D_i \times \mathbb{R}$ will contain an overtwisted disk.

We will now embed D_i in a convex S^2 with a single dividing curve, proving that D_i is in fact tight. If $\Gamma_{\Sigma} \cap D_i$ consists of more than one arc, we take two endpoints which are adjacent along ∂D_i and belong to different components; otherwise we take the endpoints of the unique arc of $\Gamma_{\Sigma} \cap D_i$. In either case Γ_{Σ} must intersect ∂D_i with opposite signs at these points, since Γ_{Σ} can be oriented as the boundary of Σ_+ or $-\Sigma_-$ and the arc connecting these points in ∂D_i runs through exactly one of Σ_{\pm} . We enlarge D_i by gluing on a small disk along a neighborhood of that arc, with dividing curve a single arc δ connecting the two chosen endpoints of Γ_{Σ} ; this operation lowers $|\Gamma_{\Sigma}|$ by 1, or if it was already equal to 1 then it makes Γ_{Σ} into a single closed curve. Once Γ_{Σ} is a single closed curve, we can cap off D_i with a disk to get the desired convex S^2 .

The only thing that remains is to check that this enlargement operation can be done. We first extend the contact form $\eta + f dt$ along a neighborhood N of δ so that f = 0 exactly on δ . We now have to extend it to the disk D cobounded by ∂N and ∂D_i , which lies entirely within either Σ_+ or Σ_- , so by rescaling we can assume that f = 1 along ∂D (or f = -1 if $D \subset \Sigma_+$). The contact form must then be $\beta + dt$ for some 1-form β such that $d\beta$ is an area form on D and $d\beta = d\eta$ along ∂D . Let ω be an area form on D satisfying

$$\int_D \omega = \int_{\partial D} \eta$$

and for which $\omega = d\eta$ on a neighborhood of ∂D . Let $\psi : D \to [0, 1]$ be a cutoff function which is supported in a small neighborhood of ∂D where η is defined, and for which $\psi = 1$ on a smaller neighborhood of ∂D . Then $\omega - d(\psi\eta)$ is a well-defined 2-form which is zero near ∂D , and

$$\int_D \omega - d(\psi\eta) = \int_D \omega - \int_{\partial D} \psi\eta = 0$$

so $[\omega - d(\psi\eta)] = 0$ in $H_c^2(D)$. By the Poincaré lemma it is exact, so we can write $\omega - d(\psi\eta) = d\lambda$ for some λ supported on int(D) and thus $\omega = d(\psi\eta + \lambda)$. Letting $\beta = \psi\eta + \lambda$ completes the proof.

We can now use Giroux's criterion to prove the previously mentioned fact that tight contact structures can have only finitely many Euler classes on a given manifold. The following proposition is due to Eliashberg.

Proposition 4. Let M be a closed, oriented 3-manifold with tight contact structure ξ , and let $\Sigma \subset M$ be a closed embedded surface. Then

$$|\langle e(\xi), [\Sigma] \rangle| \le -\chi(\Sigma)$$

if $\Sigma \neq S^2$, and if $\Sigma = S^2$ then $\langle e(\xi), [\Sigma] \rangle = 0$.

Proof. Perturb Σ to make it convex. We have shown that for any convex surface $\Sigma \subset M$,

$$\langle e(\xi), [\Sigma] \rangle = \chi(\Sigma_+) - \chi(\Sigma_-),$$

and if $\Sigma = S^2$ then Giroux's criterion says that Σ_+ and Σ_- are both disks, hence the right side is zero. For $\Sigma \neq S^2$, it is clear that $\chi(\Sigma) = \chi(\Sigma_+) + \chi(\Sigma_-)$, and so

$$\chi(\Sigma) + |\langle e(\xi), [\Sigma] \rangle| = 2 \max(\chi(\Sigma_+), \chi(\Sigma_-)))$$

No component of Σ_+ is closed: if that were the case, then we could rescale the contact form on a neighborhood of that component C to be $\alpha = \eta + dt$, so then $d\alpha = d\eta$ is an area form on C with total area

$$\int_C d\alpha = \int_{\partial C} \alpha = 0,$$

a contradiction. Furthermore, no component of Σ_+ is a disk by Giroux's criterion, so every component must have Euler characteristic at most 0 and thus $\chi(\Sigma_+) \leq 0$. The same is true for Σ_- , so we are done.

Theorem 5. Let M be closed and oriented. There are only finitely many classes $e \in H^2(M; \mathbb{Z})$ which are Euler classes of tight contact structures.

Proof. The universal coefficient theorem says that

$$H^2(M;\mathbb{Z}) \cong \operatorname{Hom}(H_2(M;\mathbb{Z}),\mathbb{Z}) \oplus \operatorname{torsion},$$

so let $\Sigma_1, \ldots, \Sigma_r$ be embedded surfaces representing an integral basis of $H_2(M; \mathbb{Z})$, none of which are spheres. For any tight contact structure ξ on M, we can write $e(\xi) = \sum c_i f_i + g$, where the f_i are the classes dual to Σ_i and g is torsion, and then the previous proposition implies $|c_i| \leq -\chi(\Sigma_i)$ for all i, so there are only finitely many possible values for $e(\xi)$. \Box

Since we have seen that *any* even Euler class supports an overtwisted contact structure, this suggests that tight contact structures are in general much harder to find.