
Math 273 Lecture 4

Steven Sivek

February 3, 2012

Last time we showed that an embedded surface Σ ⊂ (M, ξ) is convex if and
only if it has dividing curves Γ, and any two sets of dividing curves are isotopic
through curves transverse to Σξ. In order to replace characteristic foliations
with convex surfaces for many applications, we will need two more results: first,
that any closed surface is C∞-close to a convex one, and second, that if Σ is
convex then we can realize any foliation divided by ΓΣ by perturbing Σ.

We begin by recalling the definition of a Morse-Smale foliation.

Definition 1. A foliation F on Σ is Morse-Smale if its singularities and closed
orbits are nondegenerate, no two hyperbolic singularities are connected by a
flow line, and the α– and ω–limit set of each flow line is either a singular point
or a closed orbit.

Theorem 2. If a surface Σ ⊂ (M, ξ) has Morse-Smale characteristic foliation,
then Σ is convex.

Proof. We will construct dividing curves Γ for Σ. Let Σ+ consist of a small
disk around each positive elliptic point, a band along the stable trajectory of
each positive hyperbolic point, and an annulus around each repelling closed
orbit of Σξ (i.e. orbits for which the Poincaré return map h satisfies h′(0) > 1).
Similarly, let Σ− consist of a small disk around each negative elliptic point, a
band along the unstable trajectory of each negative hyperbolic point, and an
annulus around each attracting closed orbit (h′(0) < 1). We make each disk,
band, or annulus small enough that Σ+ and Σ− are disjoint and Σξ is transverse
to the boundary of each.

Let ω be a volume form on Σ, and let v satisfy Lvω = α|Σ so that v directs
Σξ. If Σ± are determined by a dividing set Γ, then ω must satisfy ±divωv > 0
on Σ±. One can check by computing in local coordinates that if ω′ = efω then
divω′v = divωv+df(v), so we can rescale ω by some ef to achieve this condition.
Namely, on Σ+ we pick f to be zero near each elliptic singularity and closed
orbit and then increasing along flow lines so that df(v) is sufficiently large, and
similarly for Σ− (with f decreasing along flow lines instead).

Let A = Σ\(Σ+ ∪Σ−). Then the characteristic foliation on A is nonsingular
and transverse to the boundary and it does not contain any closed orbits, so A
must be a union of annuli and bands foliated by arcs of Aξ which are oriented
from Σ+ to Σ−. We let Γ be the cores of these annuli and bands, and pick
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ω′ = efω so that divω′v = 0 precisely along Γ. It follows that Γ divides Σξ, as
desired.

Finally, we show that the precise characteristic foliation doesn’t matter: once
we know the dividing curves Γ on Σ, we can achieve any foliation divided by Γ
by an isotopy of Σ.

Theorem 3 (Giroux flexibility). Let i : Σ → M be an embedding of Σ into
(M, ξ) with convex image, and let F be a foliation of Σ divided by i−1(ΓΣ).Given
any neighborhood U of i(Σ) in M , there is an isotopy φs : Σ→M supported in
U so that φ0 = i, each φs(Σ) is convex with dividing set ΓΣ, φs fixes i−1(ΓΣ)
for all s, and φ1(F) is the characteristic foliation of φ1(Σ).

Proof. Since i(Σ) is convex we may pass to a vertically invariant neighborhood
Σ× R, with Σ = Σ× {0}, and contact form

α0 = η0 + f0dt

for which ΓΣ = f−1(0). Furthermore, F defines a vertically invariant contact
structure ξ′ on Σ × R for which Σ is convex, so let α1 = η1 + f1dt. Since ΓΣ

divides both Σξ and F , we can take ΓΣ = f−1(0) = (f ′)−1(0), and then by a
small isotopy we can arrange for ξ and ξ′ to agree on a neighborhood of ΓΣ.
Away from this neighborhood we rescale the contact forms so that f0 = f1 = ±1
on Σ±.

For the rescaled contact forms η0 + dt and η1 + dt, we observe that dη0 and
dη1 are area forms on Σ, so if ηs = (1− s)η0 + sη1 then any linear combination

αs = ηs + dt

is a contact form as well. We now apply Moser’s trick one more time to realize
this by an isotopy φs: given the equation α̇s = Lvαs, by setting v = g∂t + w
with w ∈ TΣ, we get

η1 − η0 = d(g + ιwηs) + ιwdηs

which we can solve by finding w such that ιwdηs = η1 − η0 and then setting
g = −ιwηs. Since v does not depend on the t coordinate at all, the image of Σ
under this isotopy remains transverse to ∂t, and it is fixed near ΓΣ.

Corollary 4. Let Σ ⊂ (M, ξ) be a convex surface. Then

〈e(ξ), [Σ]〉 = χ(Σ+)− χ(Σ−),

from which it follows that

χ(Σ) + |〈e(ξ), [Σ]〉| = 2 max(χ(Σ+), χ(Σ−)).

Proof. Perturb Σ so that Σξ is Morse-Smale and directed by a vector field v, and
then construct the dividing set Γ as above. In particular, Σ+ contains exactly the
positive singularities of v, so χ(Σ+) = e+−h+, and similarly χ(Σ−) = e−−h−.
The corollary follows once we recall that

〈e(ξ), [Σ]〉 = (e+ − h+)− (e− − h−).

2



At this point we should remark that we will also wish to consider convex
surfaces with Legendrian boundary. Suppose K is a component of ∂Σ; then by
the contact neighborhood theorem, K has a neighborhood N contactomorphic
to S1 × R2 with contact form

α = cos(θ)dx− sin(θ)dy

and K = S1 × {(0, 0)}. We can perform a C0-small isotopy of Σ ∩N fixing K
so that Σ wraps uniformly around K in a smaller neighborhood N ′ of K. Then
since

ξ = span(∂θ, sin(θ)∂x + cos(θ)∂y)

the foliation Σξ has singularities alongK whenever sin(θ)∂x+cos(θ)∂y is tangent
to Σ. One can compute that if Σ twists in the left handed direction around
K, then a singular point p of Σξ on K is positive iff it is a source of the
flow along K, whereas the opposite is true if Σ twists in the right handed
direction. In particular, if tw(K,Σ) > 0 then we cannot make Σ convex, whereas
if tw(K,Σ) ≤ 0 we can by putting Σ in a standard form near K via a C0-small
isotopy. This standard form is given by

α = cos(nθ)dx− sin(nθ)dy

with Σ given locally by x ≥ 0, y = 0 and n = −tw(K,Σ).
The rest of the theorems we have proved about convex surfaces and charac-

teristic foliations still hold for surfaces with Legendrian boundary: we need only
allow a C0-small isotopy near the boundary and a C∞-small isotopy everywhere
else.

In particular, consider the case of an overtwisted disk D ⊂ (M, ξ). The
boundary of D is Legendrian by definition, and tw(∂D,Σ) = 0, so we can make
D convex. By taking the model disk of radius π in the xy-plane in the standard
overtwisted structure

ξot = ker(cos(r)dz + r sin(r)dθ)

on R3 and pushing the interior up slightly, we see that D can be made convex
with characteristic foliation having a unique singular point at the origin; this
singularity is positive and elliptic, and the leaves of Dξ spiral outward toward
their limit cycle ∂D. We have now shown by Giroux flexibility that every
overtwisted contact structure contains an overtwisted disk of this form.

With this description of an overtwisted disk in hand, we are finally ready to
sketch a proof that tight contact structures exist. This technique of “filling by
holomorphic disks” was used successfully by both Eliashberg and Gromov.

Theorem 5. Let (X,J) be a Stein domain with plurisubharmonic exhaustion
function φ : X → R having regular value c, and let M = φ−1(c) have contact
structure ξ = TM ∩ J(TM). Then ξ is tight.

Proof. Suppose ξ is overtwisted, and let Σ be an overtwisted disk with the
characteristic foliation described above and singular point p. Bishop’s theorem
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says that since p is elliptic and TpΣ = ξp is a complex line in TpX, there is a
family of holomorphic disks

ψs : (D2, ∂D2)→ (X,Σ)

for 0 < s < δ such that the images Ds = ψs(D
2) are all disjoint, and there is

a neighborhood N ⊂ Σ of p such that the boundaries ∂Ds = ψs(∂D) foliate
N −p. Some hard analysis shows that the moduli spaceM of such holomorphic
disks is 1-dimensional, and so given any disk ψs0 we can extend it to a family ψs
for s ∈ (s0 − ε, s0 + ε): i.e.M is an open interval. We will assume for now that
these holomorphic disks do not fill all of the interior of Σ, so {ψ(∂D2) | ψ ∈M}
avoids a neighborhood of ∂Σ. Let ω = −d(dφ ◦ J) be the symplectic form
induced by the complex structure.

First, we wish to investigate the behavior of each holomorphic disk in M.
We claim that the function fs = φ ◦ ψs is subharmonic, meaning ∆fs ≥ 0 and
∆fs does not vanish everywhere. Indeed, if x and y are the coordinates on D2,
then using the formula

2∆f · dx ∧ dy = d(fxdy − fydx) = −d(df ◦ i)

with f = φ ◦ ψs and noting that ψs is holomorphic gives

2∆f · dx ∧ dy = −d(dφ ◦ dψs ◦ i) = −d(dφ ◦ J ◦ dψs) = ψ∗s (−d(dφ ◦ J)) = ψ∗sω.

This last quantity is equal to

ω((Dψs · ∂x, Dψs · ∂y)dx ∧ dy = ω(Dψs · ∂x, J(Dψs · ∂x))dx ∧ dy

and since ω(v, Jv) > 0 whenever v 6= 0, we have ∆f ≥ 0 with equality if and
only if Dψs = 0. Thus fs satisfies a strong maximum principle: it is maximized
only along ∂D2, and it is increasing in the outward normal direction along ∂D2.

From the strong maximum principle we conclude that each Ds is transverse
to M along its boundary. Furthermore, we claim that ∂Ds is transverse to the
characteristic foliation Σξ, which along ∂Ds is the real line ξ ∩ TΣ. If this were
not the case at some x ∈ ∂Ds, then TxDs would contain the line ξx ∩ TxΣ, and
since TxDs is a complex line containing some v ∈ ξ it also contains Jv ∈ ξ,
hence TxDs = ξx ⊂ TxM which contradicts the transversality.

Next, we consider the topology of the moduli spaceM. Given a disk Ds =
ψs(D

2) with boundary in Σ, the boundary bounds another disk D′s ⊂ Σ such
that Ds ∪D′s is a sphere bounding a ball Bs. We have∫

Ds∪D′
s

ω =

∫
Bs

dω = 0

and so
∫
Ds
ω is bounded above by

∫
Σ
|ω|. Thus we can apply the Gromov

compactness theorem and consider the limit curve D at the end ψs0 of the
compactification M. There cannot be any bubbling on the interior of D: if
there is a sphere bubble S, then∫

S

ω = −
∫
∂S

dφ ◦ J = 0
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contradicting the fact that holomorphic curves have positive symplectic area. If
there is bubbling on the boundary then ∂Ds is transverse to Σξ, so outside a
fixed neighborhood of ∂Σ the angle between ∂Ds and Σξ is bounded away from
0. Thus the limit ψs0 : (D2, ∂D2) → (X,Σ) is also an embedded holomorphic
disk. One can show that it is smooth, so it really is an element ofM and then
we can extendM to the open interval (s0−ε, s0 +ε). This contradicts the claim
that ψs0 ∈ ∂M, unless ψs0 touches ∂Σ after all.

We conclude that ψs0 has a point where ψs0(∂D2) is tangent to ∂Σ, and
hence to the characteristic foliation along ∂Σ. But we just showed that ψs0(∂D2)
is transverse to Σξ, so we have a contradiction and Σ cannot exist.

Corollary 6. The standard contact structure (R3, ξst = ker(dz− ydx)) is tight.

Proof. Since the Stein fillable structure (S3, ξst) we have seen on S3 = ∂B4

(with φ(z1, z2) = |z1|2 + |z2|2) is tight, any Darboux ball around a point in
(S3, ξst) is tight, and so some neighborhood N of the origin in (R3, ξst) is tight
as well. If (R3, ξst) contains an overtwisted disk D, then we observe that for r
large enough the image of N under the contactomorphism

φ(x, y, z) = (rx, ry, r2z)

of (R3, ξst) will contain D, contradicting the tightness of ξst|N .

Remark 7. One can also prove this by showing that (R3, ξst) is contactomorphic
to the complement of any point of (S3, ξst) by using stereographic projection.

Corollary 8. S2 × S1 has a tight contact structure.

Proof. Last time we found a convex S2 in (R3, ξst) with a single dividing curve.
This S2 has an R-invariant neighborhood (S2 ×R, ξ) which must be tight since
it embeds in ξst, so the translation t 7→ t+ 1 induces a contact structure ξ0 on
the quotient S2 × S1. If ξ0 had an overtwisted disk then it would lift to the
cover (S2 × R, ξ), which contradicts the fact the ξ is tight.

Gromov and Eliashberg actually showed something stronger than this the-
orem: let (M, ξ) be a contact manifold in the boundary of a symplectic man-
ifold (X,ω) such that ω|ξ > 0. Then the holomorphic filling argument can be
generalized to show that ξ is tight. (Alternative proofs using Seiberg–Witten
theory and Heegaard Floer homology were given by Kronheimer–Mrowka and
Ozsváth–Szabó, respectively.) Such contact structures are called weakly sym-
plectically semi-fillable, and there is a hierarchy of different types of fillable
contact structures between these and the Stein fillable ones.

We claim that ξst is the only tight contact structure on S3 up to isotopy.
This will require significant effort to prove, involving an analysis of tight contact
structures on S2 × I, and we will not prove it in this lecture. However, we can
draw an interesting topological consequence from this and the method of filling
by holomorphic disks; this proof is due to Eliashberg.
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Theorem 9 (Cerf’s theorem). Every orientation-preserving diffeomorphism of
S3 = ∂B4 extends to a diffeomorphism of B4.

Proof. Let φ : S3 → S3 be a diffeomorphism, and change φ by an isotopy so
that φ is the identity on a neighborhood of the north and south poles. Then
φ∗ξst is a tight contact structure, so by our claim of uniqueness, φ∗ξst must be
isotopic to ξst; in other words, modifying φ by another smooth isotopy which is
fixed near the poles, we can assume that φ∗ξst = ξst.

Given coordinates (x1, y1, x2, y2) on S3 ⊂ C2, we can foliate the complement
of the poles by the spheres

Σt = {y2 = t}

for −1 < t < 1. Let Σ′t = φ(Σt); we observe that Σ′t = Σt for t near
±1, and that φ sends the characteristic foliation of Σt to that of Σ′t. We
can check that the characteristic foliation on Σt has two elliptic singularities
p±t = (0, 0,±

√
1− t2, t) of sign ±1, and since the union of all p±t is an unknot

U we can insist that φ fixes a ball containing U . Each twice-punctured sphere
Σt\p±t has a foliation F by the boundaries of holomorphic disks

Ds,t = {(x1, y1, s, t)}.

Using Bishop’s theorem, we can also find families of holomorphic disks D′s,t
around the elliptic points φ(p±t ) ∈ Σ′t, and the boundaries of these disks give a
foliation F ′ of Σ′t\φ(p±t ) while (as we showed in the proof that fillable implies
tight) being transverse to the characteristic foliation of Σ′t.

In particular, we have smooth foliations φ(F) and F ′ of Σ′t\φ(p±t ) which are
transverse to the characteristic foliation (Σ′t)ξst , and so by an isotopy along the
leaves of (Σ′t)ξst we see that φ is isotopic to a diffeomorphism of S3 fixing a
neighborhood of U for which φ(F) = F ′ for each t. There is now a compact
disk C of pairs (s, t) for which φ(Ds,t) is not necessarily D′s,t.

We have reduced the theorem to the following problem: given φ(∂Ds,t) =
∂D′s,t for all s, t ∈ C, such that φ extends to a diffeomorphism φ(Ds,t) = D′s,t
for s, t ∈ ∂C, does φ extend over all disks Ds,t? The restriction map Diff(D2)→
Diff(S1) is a Serre fibration with contractible fiber, so we are done.
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