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Our goal in this lecture is to begin the study of embedded surfaces in contact
manifolds, which will allow us to better understand tight contact structures.

Definition 1. Let Σ ⊂ (M, ξ = ker(α)) be a compact embedded surface with
area form ω. The characteristic foliation of Σ, denoted Σξ, is the singular
foliation determined by the vector field X on Σ which satisfies ιXω = α|Σ.

The foliation Σξ only depends on the vector field X up to a nonzero scalar
function, so it is independent of both ω and α. Note also that at a point p ∈ Σ,
we have αp(Xp) = ωp(Xp, Xp) = 0, so Xp ∈ ξp, and Xp = 0 if and only if
ξp = TpΣ; in other words, at each nonsingular point p of X the characteristic
foliation spans the line TpΣ ∩ ξp.

Example 2. Let α = dz + r2dθ be a contact form for (R3, ξst) in cylindrical
coordinates, and let Σ = S2 be the unit sphere. Then ξst is spanned by the
vectors ∂r and r2∂z − ∂θ away from the origin, while TpΣ at a point (r, θ, z) is
orthogonal to r∂r+z∂z , so TpΣ = ξst iff r = 0. Thus the characteristic foliation
on Σ has singular points at the poles (0, 0,±1) and is directed at other points
(r, θ, z) by the line through rz∂r + ∂θ − r2∂z.

Example 3. The contact structure ξ = ker(cos(r)dz + r sin(r)dθ)) on R3 has
overtwisted disk

D = {(r, θ, 0) | r ≤ π}.

At each point we have ξp = span(∂r, r sin(r)∂z − cos(r)∂θ), so Dξ consists of
radial line segments with singularities at the origin and along ∂D.

Definition 4. The divergence of a vector field X with respect to Σ is the
function satisfying

divω(X) · ω = LXω = d(ιXω).

The set of p ∈ Σ where Xp = 0 and divω(X) 6= 0 only depends on X up to
nonzero scalars: if f 6= 0 then

divω(fX) · ω = df ∧ ιXω + divω(X) · fω = divω(X) · fω,

and both ω and fω are area forms.
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Lemma 5. A vector field X defines the characteristic foliation Σξ for some
contact structure ξ on a neighborhood of Σ if and only if Xp = 0 implies
divω(X) 6= 0 at p.

Proof. If X = Σξ and ξ = ker(α), then Xp = 0 implies TpΣ = ξp, so in
particular (ιXω)p = αp and (dιXω)p = dαp. This is an area form on ξp = TpΣ,
so divω(X) 6= 0 at p.

Conversely, suppose that divω(X) 6= 0 whenever Xp = 0. Let β = ιXω and
f = divωX, so that dβ = fω; if βp = 0 then by assumption f(p) 6= 0. Choose a
1-form γ on Σ so that β ∧ γ ≥ 0, with β ∧ γ > 0 if βp 6= 0, and define

α = β + t(df − γ) + fdt

on a neighborhood Σ× Rt. Then

dα = fω − dt ∧ γ − tdγ

and so

α ∧ dα = (β + t(df − γ)) ∧ (−dt ∧ γ) + fdt ∧ (fω − tdγ)

= ((β ∧ γ + tdf ∧ γ + f(fω − tdγ)) ∧ dt.

In particular, α is a contact form on some sufficiently small neighborhood Σ×
(−ε, ε) if β ∧ γ+ f2ω > 0. Both terms are nonnegative, and whenever β ∧ γ = 0
we have β = 0, hence f 6= 0 and thus f2ω > 0, so the sum is positive as
desired.

Suppose that Σ0 and Σ1 are surfaces in contact manifolds (Mi, ξi), and that
there is a diffeomorphism φ : Σ0 → Σ1 carrying one characteristic foliation to
the other. Giroux showed that one can then extend φ to a contactomorphism
φ̃ : N(Σ0)→ N(Σ1): to prove this, one takes contact forms αi on neighborhoods
N(Σi) = Σi×R, extends φ to these neighborhoods, rescales the forms so that α0

and φ∗α1 agree on Σ0 ×{0}, and then uses Moser’s trick as before to construct
an isotopy between the contact structures on a neighborhood Σ0×(−ε, ε). Thus
the diffeomorphism class of Σξ determines ξ on a neighborhood of Σ.

A generic foliation induced by a vector field X has isolated singular points,
so in order to discuss the singularities we can assume that the singular point in
question is p = (0, 0) in R2 with area form ω = dx∧ dy. If X = f∂x + g∂y, then
the foliation is determined by the flow lines of X, i.e. by the equation

γ̇ = X ◦ γ,

with linearization A =

(
fx fy
gx gy

)
, and we can compute divωX = tr(A).

Definition 6. A singular point is elliptic if det(A) > 0 and hyperbolic if
det(A) < 0.

Definition 7. Suppose the foliation on (Σ, ω) is induced by a contact structure
ξ and has a singular point at p. We define the sign of p to be the sign of divXω.
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Since the contact form restricts to ιXω on Σ, ξ is oriented by dιXω =
(divωX)ω, and so sign(p) is 1 iff ξp and TpΣ have the same orientation. If p
is elliptic then it’s either a source or a sink depending on the sign of LXω =
(divωX)ω, hence sign(p) = 1 for a source and −1 for a sink. If p is hyperbolic
then the eigenvalues of A are real and have opposite signs, and divωX is their
sum, so sign(p) is the sign of whichever eigenvalue is larger in magnitude.

Definition 8. Let γ ⊂ Σ be a periodic orbit of the flow of the vector field X.
On a sufficiently small neighborhood S1 × (−ε, ε) of γ, the flow line leaving a
point (p, t) will first hit {p} × (−ε, ε) at another point (p, h(t)); the function
h is called the Poincaré return map, and if h′(0) 6= 1 then we say that γ is
nondegenerate.

Definition 9. A foliation is Morse-Smale if the singularities and closed orbits
are nondegenerate, the α– and ω–limit set of each flow line (i.e. the set of all
limit points lim γti(x) with ti → −∞ or ti → +∞) is either a singular point
or a closed orbit, and there are no flow lines connecting pairs of hyperbolic
singularities.

Theorem 10. Given a closed, orientable surface Σ ⊂ (M, ξ), there is a C∞-
small perturbation Σ′ of Σ so that Σ′ξ is Morse-Smale.

Proof. Write ξ = ker(α). The condition α∧dα is a Cr-open condition for r ≥ 1,
and Morse-Smale vector fields are dense in the C∞ topology by a theorem of
Peixoto, so we can pick an arbitrarily small 1-form β for which ξt = ker(α+ tβ)
is a contact structure for 0 ≤ t ≤ 1 and Σξ1 is Morse-Smale. We use Gray’s
stability theorem to find a small isotopy of M for which ψ∗t ξt = ψ0, and then
take Σ′ = ψ−1

1 (Σ).

We can now use the characteristic foliation to investigate the topology of Σ.

Proposition 11. Let Σ ⊂ (M, ξ) be closed and orientable, with Morse-Smale
characteristic foliation. If e± and h± count the number of elliptic and hyperbolic
singularities of each sign, then

χ(Σ) = (e+ − h+) + (e− − h−)

〈e(ξ), [Σ]〉 = (e+ − h+)− (e− − h−).

Proof. The characteristic foliation is determined by a Morse-Smale vector field
X on Σ which lies in ξp∩TpΣ at each point p. We compute χ(Σ) = 〈e(TΣ), [Σ]〉
and 〈e(ξ), [Σ]〉 by counting the number of zeros of X with appropriate signs.
Relative to TΣ, the index of each singular point p is 1 if p is elliptic and −1
if p is hyperbolic, and relative to ξ we must change the signs of the indices
of the negative points, since those are the points where ξ has the opposite
orientation.

In particular we have an equality

χ(Σ) + 〈e(ξ), [Σ]〉 = 2(e+ − h+).
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Eventually we will show that if ξ is tight and Σ 6= S2 then we can perturb Σ so
that e+ = 0, leading to the inequality

|〈e(ξ), [Σ]〉| ≤ −χ(Σ).

This will show that there can only be finitely many Euler classes of tight contact
structures, even though every even class represents an overtwisted structure.

It turns out that we often don’t need all the information in a characteristic
foliation to determine the contact structure near Σ. The point of convex surface
theory, originally developed by Giroux, is to be able to describe ξ near a surface
in terms of very simple information.

Definition 12. A contact vector field v is a vector field on M whose flow
preserves ξ.

Write ξ = ker(α). If the flow φt of v preserves ξ then φ∗tα = fα for some
nonzero function f ; since Lvα = d

dt φ
∗
tα|t=0, we see that v is contact if and only

if Lvα = gα for some function g.

Example 13. Let R be the Reeb vector field of α, i.e. the unique vector field
satisfying α(R) = 1 and ιRdα = 0. Then

LRα = d(ιRα) + ιRdα = d(1) + 0 = 0,

so R is a contact vector field.

In fact, let v be a contact vector field which is transverse to ξ. Then f(p) =
αp(v) is nonzero for all p, and one can show that v is the Reeb vector field for
the contact form 1

f α. Thus the set of contact vector fields transverse to ξ is
precisely the set of Reeb fields of contact forms for ξ.

Lemma 14. Any function H : M → R determines a unique contact vector field
v satisfying

ιvα = −H
ιvdα = dH − (ιRαdH)α

where Rα is the Reeb vector field for the contact form α.

Proof. Write v = fRα + w, where f is a function and w ∈ ξ. Then the first
equation gives f = −H, and the second gives ιwdα = dH − (ιRαdH)α, which
is uniquely solvable for w because dα is nondegenerate on ξ. Thus v is unique,
and it is contact since Lvα = −(ιRαdH)α.

Similarly, given a contact vector field v, we can define H = −ιvα and H, v
will satisfy these equations. Thus if we have a locally defined contact vector
field v, the function H will be defined on the same domain and we can use any
extension of H to the rest of M to define v globally.

Definition 15. A surface Σ ⊂ (M, ξ) is convex if there is a contact vector field
which is transverse to Σ.
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Proposition 16. A surface Σ ⊂ (M, ξ) is convex iff there is an embedding
φ : Σ × R ↪→ M , with Σ = φ(Σ × {0}), such that φ∗(ξ) is invariant in the R
direction.

Proof. If φ exists and t is the R coordinate then ∂t is a contact vector field on
Σ×R, so φ∗(∂t) is the desired field and it is transverse to Σ. Conversely, suppose
Σ is transverse to the contact vector field v. Take the corresponding function H
and cut it off smoothly outside a small neighborhood of Σ to get a new contact
vector field v′ which is still transverse to Σ; if we make the neighborhood small
enough then the flow of v′ will be well-defined and not have any closed orbits.
Then we define φ(p, t) to be the time t flow of the point p ∈ Σ along v′.

Given the Σ×R coordinates on a neighborhood of a convex surface Σ, then,
we can write the contact structure locally as

α = η + fdt,

where η and f are a 1-form and function on Σ and the condition α ∧ dα > 0 is
equivalent to fdη−df ∧η > 0 on Σ. If Σ has area form ω then the characteristic
foliation is determined by ιXω = η, so Σξ is singular exactly where η = 0.

Definition 17. Let Σ be a surface with singular foliation F . A multi-curve
Γ ⊂ Σ transverse to F divides F if Σ admits a volume form ω and a vector field
v directing F such that Σ\Γ = Σ+ t Σ− with ±Lvω > 0 on Σ± and v points
out of Σ+ along Γ.

Example 18. If Σ is convex and has contact form α = η+fdt on a neighborhood
Σ×R, then the curve ΓΣ = f−1(0) divides Σ. Indeed, we take ω0 = fdη−df ∧η
and v0 to be the vector field X with ιXω0 = η, which directs Σξ by definition,
and Σ± = {p ∈ Σ | ±f(p) > 0}. If ΓΣ is not transverse to Σξ then there is
a point p ∈ f−1(0) where dfp(X)=0, and then X ∈ ker(fdη − df ∧ η) which
contradicts the fact that α is contact.

Let A be a product neighborhood ΓΣ × [−1, 1] of ΓΣ on which the charac-
teristic foliation consists of arcs {∗} × [−1, 1]. On Σ\A we take the area form
ω = 1

|f |ω0 and v = v0. Then one can compute

±Lvω =
1

f2
ω > 0

on Σ±, and we leave it as an exercise to extend ω, v smoothly across A.

Remark 19. Using the Σ × R model neighborhood with contact vector field
v = ∂t, we have vp ∈ ξp if and only if f = 0. In other words, we can identify
ΓΣ = {p ∈ Σ | vp ∈ ξp}. We also observe that ΓΣ is nonempty: if f 6= 0 then
we can rescale and take α′ = η′ + dt with dη′ > 0, and then

∫
∂Σ
α′ =

∫
Σ
dα′ =∫

Σ
dη′ > 0, which is a contradiction whenever ∂Σ is nonempty or Legendrian.

Example 20. Consider (R3, ξst) with the contact form

α = dz + xdy − ydx = dz + r2dθ
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discussed earlier. This has a contact vector field v = x∂x + y∂y + 2z∂z (in fact,
Lvα = 2α), and since ξ = span(x∂z−∂y, y∂z+∂x), it follows that v ∈ ξ iff z = 0.
Thus the unit sphere Σ is convex and divided by the equator ΓΣ = {z = 0}.

Theorem 21. Let Σ ⊂ (M, ξ) be orientable with Legendrian boundary. Then
Σ is convex if and only if the characteristic foliation Σξ admits dividing curves.

Proof. We have shown one direction: if Σ is convex, then ΓΣ = {p ∈ Σ | vp ∈ ξp}
divides Σξ. Now suppose instead that Σξ is divided by Γ, with area form ω and
vector field v. Given a function f on Σ, the 1-form

α = ιvω + fdt

defines an R-invariant plane field on a neighborhood Σ× R which is contact iff

fLvω − df ∧ ιvω > 0

on Σ, or equivalently iff f ·divωv−df(v) > 0. Remove a tubular neighborhood A
of Γ, and let f = ±1 on Σ±\A; then df(v) = 0 there and f ·divωv = ±divωv > 0,
so α is contact away from A.

Parametrize a slightly enlarged A = Γ × I which is still foliated by arcs
{p} × [−ε, ε] so that each (p, s) is the time-s flow under −v of (p, 0); in other
words, v = −∂s. Let

h(p, s) = exp

(
−
∫ s

0

divωv(p, t)dt

)
and set f = g · h for some function g(p, s); then

fdivωv − df(v) = ghdivωv +
∂(gh)

∂s
=
∂g

∂s
· h

and so we want ∂g∂s ·h > 0, with gh = ±1 near s = ±ε. This can be accomplished
by setting g = ± 1

h near s = ±ε and insisting that g be a smooth, increasing
function in between. If we further require g to satisfy g(p, 0) = 0, then we will
also have Γ = f−1(0).

Theorem 22. Let Σ be convex with two sets of dividing curves Γ0 and Γ1.
Then Γ0 and Γ1 are isotopic through curves transverse to Σξ.

Proof. In the proof of the previous theorem we constructed contact forms αi =
ι∂tω + fidt on Σ × R with Γi = f−1

i (0). Let αt = ι∂tω + ((1 − t)f0 + tf1)dt
and check that each αt is a contact form. Then by the Moser’s trick argument
mentioned above there is an isotopy ψt × idR of Σ × R carrying α0 to α1, and
each f−1

t (0) remains transverse to Σξ, so ψt is the desired isotopy.

Next time we will show that convex surfaces are everywhere, in the sense
that any surface with Morse-Smale characteristic foliation has dividing curves
and thus is convex. Furthermore, if Σ is convex with dividing set Γ and F is any
foliation divided by Γ, then Σ may be perturbed to have characteristic foliation
F . Thus the dividing curves are in some sense all we need to understand the
contact structure near Σ.
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