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In the final lecture of the semester, we will introduce Heegaard Floer ho-
mology and talk about its relation to contact geometry. We can not hope to
cover the subject with any level of reasonable detail in such a short period, so
all proofs will be sketched at best. For a more complete introduction to Hee-
gaard Floer homology, one could read Ozsvath and Szabd’s original papers on
the subject [7, 6] or their introduction [8] and expository lectures [9].

Definition 1. Let Y be a closed 3-manifold. A Heegaard splitting of Y is a
decomposition Y = H, U Hg, where H, and Hg are handlebodies joined along
their common boundary ¥ = 0H, = 0Hg. The surface X is called a Heegaard
surface.

Example 2. Let Y be S® or any lens space. Then Y has a Heegaard splitting
consisting of a pair of solid tori. For example, when Y = S3 C C2, we can take
Hy = {(21,22) € 8% | |21]* < 3} and Hg = {|22|* > 3}, and the corresponding

Heegaard surface is the torus |z1]? + |22]? = %

Proposition 3. Fvery closed 3-manifold admits a Heegaard splitting.

Proof 1. Take a triangulation of Y, let H, be a neighborhood of the 1-skeleton,
and let Hg be a neighborhood of the 1-skeleton of the dual triangulation. [

Proof 2. Take a self-indexing Morse function f : Y — [0,3], so that if p €
Crit(f) then f(p) = Ind;(p), and suppose that there is a single critical point

of index 0 and a single one of index 3. Then H, = f~'([0,2]) is a genus
¢ handlebody, where g is the number of index 1 critical points, and Hg

f7([3,1]). The Heegaard surface is Xy = f~1(3).
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Proof 3. Let (B, 7) be an open book decomposition of Y, and let E%, -3
—Yo be two pages whose union is a smooth closed surface ¥. Then Y'\X is a
union of the handlebodies H, = 7~ 1([0,1])/ ~ and Hg = 7~ 1([$,1])/ ~, giving
rise to a Heegaard splitting with Heegaard surface X. O

Given a Heegaard decomposition Y = H, Uy, Hg, we can describe the decom-
position completely in terms of curves on the surface 3. We construct H, by
attaching g 1-handles to ¥ x [0, 1] along curves ay x {0}, ..., oy x {0} and filling
in the resulting S? on the boundary with a ball, and similarly we construct Hg



by attaching g 2-handles to ¥ x [0,1] along curves 51 x {1},..., 3, x {1} and
filling in the remaining S? with a ball. In the Morse theory picture, the a; are
the intersection of the stable manifolds of the index 1 critical points with X,
and similarly the §; come from the unstable manifolds of the index 2 points.

Definition 4. A Heegaard diagram for Y is a tuple (2,4, {ou, ..., g}, {B1,..., 84}, 2),

where the o; are mutually disjoint simple closed curves in ¥4; the §; are as well;
these curves describe a Heegaard decomposition of Y as explained above; and
z is a point in Xg\ (a1 U--- U By).

The Heegaard surface ¥, is a Riemann surface, and its g-fold symmetric
product Sym?(%,) admits a natural symplectic structure and compatible almost
complex structure for which the tori T, = a1 x --- x ayg and Tg = 81 X --- X By
are totally real, meaning that 7T N J(TT) = 0.

Definition 5. The Heegaard Floer hat chain complex is defined as

CF(Sg,{ai},{8:},2) = € Fx

xeT,NTg

where F = Z/27Z. We remark that there are several variations, including CF*,
CF~, and CF*, and that these can be defined with other coefficient rings
including Z, but we will not discuss these.

Note that an intersection point x € T, N Tg can be viewed as a tuple of
points (x1,...,z4), where z; € a; N B,(;) for some permutation o € S,,.

Definition 6. Let x and y be points of T, N Tg. A Whitney disk from x to y
is a holomorphic map

u: (D? 0D?) = (Sym?(%,), T, U Ts)

sending i to x, —i to y, and such that for any « € 9D we have u(x) € T, if
Re(x) < 0 and u(z) € Tg otherwise. Let ma(x,y) denote the space of homotopy
classes of Whitney disks from x to y. Define n.(u) to be the number of points
of intersection of u with the hypersurface {2} x Sym? 71(29); this only depends
on the homotopy class of w.

Definition 7. For any point x,y € T, N Tg, define the differential d by the

formula M)
B — M@)Y
= ¥y #(%Y)
yE€T.NTp pema(x,y)

n(g)=1

Nz (d’):O
where M(¢) is the moduli space of holomorphic representatives of ¢, and p(¢),
the Maslov index of ¢, is its expected dimension. The R-action comes from
viewing D? equivalently as an infinite strip in C, say {z € C | 0 < Re(z) < 1},
and using the translation ¢ - u(z) = u(z + it).



Theorem 8. The homology group ﬁ(Y) = H*(E‘F'(Eg,{cu}{ﬁi},z)) is an
mwvariant of Y for any Heegaard splitting satisfying an admissibility condition
and for a generic perturbation of the almost complex structure.

The proof is long and difficult, but the main idea is that any two Heegaard
splittings can be related by a sequence of moves called isotopies, handleslides,
and stabilizations, and in each case one can construct a chain map between the
two chain complexes involved which gives an isomorphism on homology. The
admissibility condition is needed to ensure that the moduli spaces involved in
defining 0 are compact.

Example 9. The 3-sphere has a Heegaard diagram consisting of a solid torus
T? with o a meridian and § a longitude. The complex CF(T?,a, 3,z) has a
single generator x = a N 3, so HF(S?) =F.

Example 10. The product S' x S? has an admissible Heegaard diagram of the
form (T2, , 3, z), where o and 3 are parallel curves which have been perturbed
to intersect twice. The complex then has a pair of generators x and y, for which
there are two_holomorphic disks connecting x to y, so the differential is zero
mod 2 and HF(S! x $?) = F2.

Heegaard Floer homology comes with some extra structure. For example, it
has a natural decomposition in terms of Spin®-structures,

HF(Y)= P HF(Y,s),
s€Spinc(Y)

and given a smooth cobordism W from Y7 to Y5 there is an induced map
HF(W): HF(Y,) — HF(Y3)

which respects this decomposition and is defined by counting holomorphic tri-
angles rather than bigons with given boundary conditions in some appropriate
manifold. A knot K C Y may be described by a doubly pointed Heegaard di-
agram (X, {a;}, {5}, z,w), where the knot is determined by arcs connecting z
and w in each handlebody (or equivalently by the union of the Morse flowlines
through each basepoint), and the function n,,(u) which counts intersections of a
Whitney disk u with the hypersurface {w} x Sym?~*(X) provides a filtration on
5]\7(3/) whose associated graded object is the knot Floer homology ﬁ{(Y, K).
Using the Giroux correspondence, Ozsvath and Szab6 [4] associated an in-
variant ¢(§) € ﬁ’(fY) to any contact structure £ on Y. Honda, Kazez, and
Matié [3] gave an alternate construction of ¢(§), which we will discuss here.
Let (B, ) be an open book decomposition supporting (Y, ¢) and take the
Heegaard surface ¥ = Z% U —3y as above, giving a Heegaard splitting H, =
71([0,3])/ ~ and Hg = 7 *([3,1])/ ~. Let ay,...,a, be a set of arcs which
cut Xy into a disk. Define a set of arcs b1, ..., b, such that each b; is isotopic to
a; by a small isotopy; this isotopy pushes da; in the direction determined by the
orientation of 0% to get db;; and a; N b; consists of a single point x; where the



likewise give a handle decomposition of Hg.

In terms of a Heegaard diagram, if we view ¥ as the boundary of H, =

(o x [0, 3])/ ~ then each curve q; is the union of a; C £y and a; C X1, and
each curve 3; is the union of b; C Z% and h(b;) C Xp. (Recall that we glue the
mapping torus of h together by identifying b; C 31 with h(b;) C Xo.) We can
place a basepoint z in X 1 outside all of the thin strips cobounded by «; and
Bi, and identify a distinguished generator x € 6’?’(2, {Bi},{ai}, 2) as the set
{z1,...,2,} where we view each x; = a; N b; inside Z%.
Remark 11. Note that we have switched the order of {«;} and {8;} in the chain
complex. If (3,{c;},{f;}) is a Heegaard diagram for Y, then (X, {8;}, {a;})
is a Heegaard diagram for —Y: if the former comes from a self-indexing Morse
function f :Y — [0, 3], then the latter comes from 3 — f : =Y — [0, 3].

As an example, we consider two open books for S3. The first is an annulus
with monodromy a right-handed Dehn twist, which supports the standard tight
contact structure &ytq, and the Heegaard surface is a torus.

« /| |a
7
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21 2 2=2,,U-2

Here the element x is the unique generator of ﬁ‘(Tz, {8}, {a}, 2), so dx =0 and

[x] generates ﬁ’(ﬂsﬁ) = F. On the other hand, if we take the monodromy to
be a left-handed Dehn twist, this open book still corresponds to S* and supports
some contact structure &, but this time we get a larger chain complex:

wan v, 7 g

b B

21 2 2=2,,U-2



Now 6’?‘(T2 {8}, {a}, 2z) has three generators X, y1,yz, and we have highlighted
Whitney disks which show that 8y1 = 8y2 = x. In this chain complex, the class
[y1 + y2] generates HF(—S3) and [x] = 0.

Proposition 12. The element x is a cycle in 6’1\7(2, {B:}.{ai}, 2), i.e. Ox = 0.

Proof. Consider a holomorphic disk v : D? — Sym?(¥) from x to another
generator y which contributes to ox. By identifying u(p) € Sym?(¥) with a set
of g points of X, some of which may coincide, we lift u to a map 4 : D — ¥ where
D'is a branched cover of D2. Since u(aDg) C T, UTs we know that 4(dD) C
(Uas) U (UBs), and since n,(u) = 0 we also see that z is not in the image of 4.
In particular, if the image of @ intersects in a region of ¥\(a; U---U fBy) then it
must contain that whole region, since holomorphic maps are open, and since it
avoids the region of X1 containing z we conclude that Image(d) NX 1 is a union
of the thin strips between each pair a; and b;.

We now claim that the image of 4 has the “wrong” orientation to be counted
as a holomorphic disk. Let & be an oriented arc of D which includes in its
interior a corner p of D such that @(p) = z; € x for some i. Since u is a
disk from x to y, as we travel along ¢ the image of & must pass from «; to ;.
However, the thin strips are oriented in the opposite way: if u is orientation-
preserving, then along any region of the image of @ inside a thin strip, the
boundary orientation forces us to travel from 3; to ; near ;. This means that
there are no disks counted in the definition of dx after all. O

Theorem 13. The homology class c(§) = [x] € El\?(—Y) is an invariant of the
contact structure &; that is, it does not depend on the open book decomposition
or the choice of arcs a;.

In particular, for the contact structures &gq and & on S supported by the
above open books we have ¢(&q) = 1 € F and ¢(&ot) = 0.

The independence of the choice of arcs a; follows from relating the invariant
for one choice of arcs to the invariant for another by a series of handleslides,
which give isomorphisms of HF (=Y). At this point we can use the Giroux
correspondence: it is enough to show invariance under positive stabilization
of the open book. This is not the strategy used in [3], but Honda, Kazez,
and Mati¢ prove in [2, Section 3.2] in slightly more generality (for partial open
books and sutured Floer homology) that a positive stabilization of an open
book corresponds to a series of isotopies, handleslides, and stabilizations of
the associated Heegaard diagram, and that the corresponding isomorphisms of
HF (=Y) carry the contact element for the original open book to the contact
element for the stabilized one.

Proposition 14. Let (Y, &) be obtained from (Y,€) by Legendrian surgery on
a knot K CY. Then the map

HF(-Y') = HF(-Y)

corresponding to the associated 2-handle cobordism sends ¢(&') to ¢(€).



Proof (sketch). We can construct an abstract open book decomposition (S, h)
for (Y,¢) for which K is a nonseparating curve in a page, by using a contact
cell decomposition with K in the 1-skeleton. Then one can show that (Y, ¢’) is
supported by the open book (S, ho 7 ), where 7k is a right-handed Dehn twist
along K C S. (We leave it as an exercise to prove this, at least topologically;
note that since the Reeb vector field is transverse to the page containing K,
both the page framing and the contact framing of K agree.)

Take a basis of arcs ay,...,a, for S with push-offs by,...,b, so that K
intersects by exactly once, is parallel to by, and misses bs, ..., b,.. Then if (S, h)
gives us a Heegaard diagram (3, {8;},{a;}, z) for =Y, the Heegaard diagram
(S,h o 7)) associated to —Y” has the form (X, {8}, B2, ..., 05}, {au}, z) where
B1 and B differ only inside —Sy C X. The surgery cobordism map then has a
very simple description, and one can verify that it takes ¢(£’) to ¢(§). O

Corollary 15. If (Y,§) is overtwisted then c(§) = 0.

Proof. Since £ is overtwisted, there is a Legendrian link L C (Y,€) on which
Legendrian surgery gives us the contact manifold (53, &), and so repeated ap-
plication of the above proposition gives a map OF (—S3) — HF (=Y) carrying
c(&ot) = 0 to ¢(§). O

Proposition 16. If (Y,£) is Stein fillable then c¢(§) # 0.

Proof. Stein fillable contact structures are the result of Legendrian surgery on
a Legendrian link L C (#*(St x §2), &ta) for some k > 0, so it suffices to check
that -

c(&swa) € HF(—#7(S' x S?))

is nonzero. When k = 0 this is the fact that (S3,&q) has nonzero invariant,
which we have already seen. For k& = 1 we can use the fact that the open
book with annular pages and trivial monodromy supports a contact structure
on S! x S2? with nonzero invariant, so it must be &gq because all others are
overtwisted. Similarly, for & > 1 the desired contact structure comes from
an open book with trivial monodromy and one can check in this case that

C(fstd) 75 0. O

Thus the Heegaard Floer contact invariant detects tight contact structures:
if ¢(£) # 0 then & must be tight, and for example this is always the case when
£ is Stein fillable. This nonvanishing result has been strengthened to strongly
symplectically fillable contact structures [1|, and to weakly fillable structures
if one uses an appropriate system of twisted coefficients [5], but there are also
many nonfillable tight contact structures for which ¢(¢) # 0. This has played
a very prominent role in contact geometry in recent years, both in helping to
classify tight contact structures and in topological applications such as a proof
of the fact that Heegaard Floer homology detects the Thurston norm [5].
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