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In the final lecture of the semester, we will introduce Heegaard Floer ho-
mology and talk about its relation to contact geometry. We can not hope to
cover the subject with any level of reasonable detail in such a short period, so
all proofs will be sketched at best. For a more complete introduction to Hee-
gaard Floer homology, one could read Ozsváth and Szabó’s original papers on
the subject [7, 6] or their introduction [8] and expository lectures [9].

Definition 1. Let Y be a closed 3-manifold. A Heegaard splitting of Y is a
decomposition Y = Hα ∪Hβ , where Hα and Hβ are handlebodies joined along
their common boundary Σ = ∂Hα = ∂Hβ . The surface Σ is called a Heegaard
surface.

Example 2. Let Y be S3 or any lens space. Then Y has a Heegaard splitting
consisting of a pair of solid tori. For example, when Y = S3 ⊂ C2, we can take
Hα = {(z1, z2) ∈ S3 | |z1|2 ≤ 1

2} and Hβ = {|z2|2 ≥ 1
2}, and the corresponding

Heegaard surface is the torus |z1|2 + |z2|2 = 1
2 .

Proposition 3. Every closed 3-manifold admits a Heegaard splitting.

Proof 1. Take a triangulation of Y , let Hα be a neighborhood of the 1-skeleton,
and let Hβ be a neighborhood of the 1-skeleton of the dual triangulation.

Proof 2. Take a self-indexing Morse function f : Y → [0, 3], so that if p ∈
Crit(f) then f(p) = Indf (p), and suppose that there is a single critical point
of index 0 and a single one of index 3. Then Hα = f−1([0, 3

2 ]) is a genus
g handlebody, where g is the number of index 1 critical points, and Hβ =
f−1([ 3

2 , 1]). The Heegaard surface is Σg = f−1( 3
2 ).

Proof 3. Let (B, π) be an open book decomposition of Y , and let Σ 1
2
,−Σ1

∼=
−Σ0 be two pages whose union is a smooth closed surface Σ. Then Y \Σ is a
union of the handlebodies Hα = π−1([0, 1

2 ])/ ∼ and Hβ = π−1([ 1
2 , 1])/ ∼, giving

rise to a Heegaard splitting with Heegaard surface Σ.

Given a Heegaard decomposition Y = Hα∪ΣHβ , we can describe the decom-
position completely in terms of curves on the surface Σ. We construct Hα by
attaching g 1-handles to Σ× [0, 1] along curves α1×{0}, . . . , αg×{0} and filling
in the resulting S2 on the boundary with a ball, and similarly we construct Hβ
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by attaching g 2-handles to Σ × [0, 1] along curves β1 × {1}, . . . , βg × {1} and
filling in the remaining S2 with a ball. In the Morse theory picture, the αi are
the intersection of the stable manifolds of the index 1 critical points with Σ,
and similarly the βi come from the unstable manifolds of the index 2 points.

Definition 4. AHeegaard diagram for Y is a tuple (Σg, {α1, . . . , αg}, {β1, . . . , βg}, z),
where the αi are mutually disjoint simple closed curves in Σg; the βi are as well;
these curves describe a Heegaard decomposition of Y as explained above; and
z is a point in Σg\(α1 ∪ · · · ∪ βg).

The Heegaard surface Σg is a Riemann surface, and its g-fold symmetric
product Symg(Σg) admits a natural symplectic structure and compatible almost
complex structure for which the tori Tα = α1× · · · ×αg and Tβ = β1× · · · × βg
are totally real, meaning that TT ∩ J(TT) = 0.

Definition 5. The Heegaard Floer hat chain complex is defined as

ĈF (Σg, {αi}, {βi}, z) =
⊕

x∈Tα∩Tβ

Fx

where F = Z/2Z. We remark that there are several variations, including CF+,
CF−, and CF∞, and that these can be defined with other coefficient rings
including Z, but we will not discuss these.

Note that an intersection point x ∈ Tα ∩ Tβ can be viewed as a tuple of
points (x1, . . . , xg), where xi ∈ αi ∩ βσ(i) for some permutation σ ∈ Sg.

Definition 6. Let x and y be points of Tα ∩ Tβ . A Whitney disk from x to y
is a holomorphic map

u : (D2, ∂D2)→ (Symg(Σg),Tα ∪ Tβ)

sending i to x, −i to y, and such that for any x ∈ ∂D we have u(x) ∈ Tα if
Re(x) < 0 and u(x) ∈ Tβ otherwise. Let π2(x,y) denote the space of homotopy
classes of Whitney disks from x to y. Define nz(u) to be the number of points
of intersection of u with the hypersurface {z}× Symg−1(Σg); this only depends
on the homotopy class of u.

Definition 7. For any point x,y ∈ Tα ∩ Tβ , define the differential ∂̂ by the
formula

∂̂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

#

(
M(φ)

R

)
· y

whereM(φ) is the moduli space of holomorphic representatives of φ, and µ(φ),
the Maslov index of φ, is its expected dimension. The R-action comes from
viewing D2 equivalently as an infinite strip in C, say {z ∈ C | 0 ≤ Re(z) ≤ 1},
and using the translation t · u(z) = u(z + it).
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Theorem 8. The homology group ĤF (Y ) = H∗(ĈF (Σg, {αi}, {βi}, z)) is an
invariant of Y for any Heegaard splitting satisfying an admissibility condition
and for a generic perturbation of the almost complex structure.

The proof is long and difficult, but the main idea is that any two Heegaard
splittings can be related by a sequence of moves called isotopies, handleslides,
and stabilizations, and in each case one can construct a chain map between the
two chain complexes involved which gives an isomorphism on homology. The
admissibility condition is needed to ensure that the moduli spaces involved in
defining ∂̂ are compact.

Example 9. The 3-sphere has a Heegaard diagram consisting of a solid torus
T 2 with α a meridian and β a longitude. The complex ĈF (T 2, α, β, z) has a
single generator x = α ∩ β, so ĤF (S3) = F.

Example 10. The product S1×S2 has an admissible Heegaard diagram of the
form (T 2, α, β, z), where α and β are parallel curves which have been perturbed
to intersect twice. The complex then has a pair of generators x and y, for which
there are two holomorphic disks connecting x to y, so the differential is zero
mod 2 and ĤF (S1 × S2) = F2.

Heegaard Floer homology comes with some extra structure. For example, it
has a natural decomposition in terms of Spinc-structures,

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s),

and given a smooth cobordism W from Y1 to Y2 there is an induced map

ĤF (W ) : ĤF (Y1)→ ĤF (Y2)

which respects this decomposition and is defined by counting holomorphic tri-
angles rather than bigons with given boundary conditions in some appropriate
manifold. A knot K ⊂ Y may be described by a doubly pointed Heegaard di-
agram (Σ, {αi}, {βi}, z, w), where the knot is determined by arcs connecting z
and w in each handlebody (or equivalently by the union of the Morse flowlines
through each basepoint), and the function nw(u) which counts intersections of a
Whitney disk u with the hypersurface {w}×Symg−1(Σ) provides a filtration on
ĈF (Y ) whose associated graded object is the knot Floer homology ĤFK(Y,K).

Using the Giroux correspondence, Ozsváth and Szabó [4] associated an in-
variant c(ξ) ∈ ĤF (−Y ) to any contact structure ξ on Y . Honda, Kazez, and
Matić [3] gave an alternate construction of c(ξ), which we will discuss here.

Let (B, π) be an open book decomposition supporting (Y, ξ) and take the
Heegaard surface Σ = Σ 1

2
∪ −Σ0 as above, giving a Heegaard splitting Hα =

π−1([0, 1
2 ])/ ∼ and Hβ = π−1([ 1

2 , 1])/ ∼. Let a1, . . . , ar be a set of arcs which
cut Σ0 into a disk. Define a set of arcs b1, . . . , br such that each bi is isotopic to
ai by a small isotopy; this isotopy pushes ∂ai in the direction determined by the
orientation of ∂Σ0 to get ∂bi; and ai ∩ bi consists of a single point xi where the
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arcs intersect transversely with positive sign. Then the curves αi = ∂(ai× [0, 1
2 ])

in Σ specify a handle decomposition of Hα, and the curves βi = ∂(bi × [ 1
2 , 1])

likewise give a handle decomposition of Hβ .
In terms of a Heegaard diagram, if we view Σ as the boundary of Hα =

(Σ0 × [0, 1
2 ])/ ∼ then each curve αi is the union of ai ⊂ Σ0 and ai ⊂ Σ 1

2
, and

each curve βi is the union of bi ⊂ Σ 1
2
and h(bi) ⊂ Σ0. (Recall that we glue the

mapping torus of h together by identifying bi ⊂ Σ1 with h(bi) ⊂ Σ0.) We can
place a basepoint z in Σ 1

2
outside all of the thin strips cobounded by αi and

βi, and identify a distinguished generator x ∈ ĈF (Σ, {βi}, {αi}, z) as the set
{x1, . . . , xr} where we view each xi = ai ∩ bi inside Σ 1

2
.

Remark 11. Note that we have switched the order of {αi} and {βi} in the chain
complex. If (Σ, {αi}, {βi}) is a Heegaard diagram for Y , then (Σ, {βi}, {αi})
is a Heegaard diagram for −Y : if the former comes from a self-indexing Morse
function f : Y → [0, 3], then the latter comes from 3− f : −Y → [0, 3].

As an example, we consider two open books for S3. The first is an annulus
with monodromy a right-handed Dehn twist, which supports the standard tight
contact structure ξstd, and the Heegaard surface is a torus.

b

a

h(b)

a
x

z

α

β

Σ1/2 Σ0 Σ=Σ1/2∪-Σ0

Here the element x is the unique generator of ĈF (T 2, {β}, {α}, z), so ∂̂x = 0 and
[x] generates ĤF (−S3) = F. On the other hand, if we take the monodromy to
be a left-handed Dehn twist, this open book still corresponds to S3 and supports
some contact structure ξot, but this time we get a larger chain complex:

b

a

h(b)

a
x

z

α

β

Σ1/2 Σ0 Σ=Σ1/2∪-Σ0

y1

y2
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Now ĈF (T 2, {β}, {α}, z) has three generators x,y1,y2, and we have highlighted
Whitney disks which show that ∂̂y1 = ∂̂y2 = x. In this chain complex, the class
[y1 + y2] generates ĤF (−S3) and [x] = 0.

Proposition 12. The element x is a cycle in ĈF (Σ, {βi}, {αi}, z), i.e. ∂̂x = 0.

Proof. Consider a holomorphic disk u : D2 → Symg(Σ) from x to another
generator y which contributes to ∂̂x. By identifying u(p) ∈ Symg(Σ) with a set
of g points of Σ, some of which may coincide, we lift u to a map û : D̂ → Σ where
D̂ is a branched cover of D2. Since u(∂D2) ⊂ Tα ∪ Tβ we know that û(∂D̂) ⊂
(
⋃
αi)∪ (

⋃
βi), and since nz(u) = 0 we also see that z is not in the image of û.

In particular, if the image of û intersects in a region of Σ\(α1 ∪ · · · ∪ βg) then it
must contain that whole region, since holomorphic maps are open, and since it
avoids the region of Σ 1

2
containing z we conclude that Image(û)∩Σ 1

2
is a union

of the thin strips between each pair ai and bi.
We now claim that the image of û has the “wrong” orientation to be counted

as a holomorphic disk. Let δ be an oriented arc of ∂D̂ which includes in its
interior a corner p of ∂D̂ such that û(p) = xi ∈ x for some i. Since u is a
disk from x to y, as we travel along δ the image of û must pass from αi to βi.
However, the thin strips are oriented in the opposite way: if u is orientation-
preserving, then along any region of the image of û inside a thin strip, the
boundary orientation forces us to travel from βi to αi near xi. This means that
there are no disks counted in the definition of ∂̂x after all.

Theorem 13. The homology class c(ξ) = [x] ∈ ĤF (−Y ) is an invariant of the
contact structure ξ; that is, it does not depend on the open book decomposition
or the choice of arcs ai.

In particular, for the contact structures ξstd and ξot on S3 supported by the
above open books we have c(ξstd) = 1 ∈ F and c(ξot) = 0.

The independence of the choice of arcs ai follows from relating the invariant
for one choice of arcs to the invariant for another by a series of handleslides,
which give isomorphisms of ĤF (−Y ). At this point we can use the Giroux
correspondence: it is enough to show invariance under positive stabilization
of the open book. This is not the strategy used in [3], but Honda, Kazez,
and Matić prove in [2, Section 3.2] in slightly more generality (for partial open
books and sutured Floer homology) that a positive stabilization of an open
book corresponds to a series of isotopies, handleslides, and stabilizations of
the associated Heegaard diagram, and that the corresponding isomorphisms of
ĤF (−Y ) carry the contact element for the original open book to the contact
element for the stabilized one.

Proposition 14. Let (Y ′, ξ′) be obtained from (Y, ξ) by Legendrian surgery on
a knot K ⊂ Y . Then the map

ĤF (−Y ′)→ ĤF (−Y )

corresponding to the associated 2-handle cobordism sends c(ξ′) to c(ξ).
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Proof (sketch). We can construct an abstract open book decomposition (S, h)
for (Y, ξ) for which K is a nonseparating curve in a page, by using a contact
cell decomposition with K in the 1-skeleton. Then one can show that (Y ′, ξ′) is
supported by the open book (S, h ◦ τK), where τK is a right-handed Dehn twist
along K ⊂ S. (We leave it as an exercise to prove this, at least topologically;
note that since the Reeb vector field is transverse to the page containing K,
both the page framing and the contact framing of K agree.)

Take a basis of arcs a1, . . . , ar for S with push-offs b1, . . . , br so that K
intersects b1 exactly once, is parallel to b2, and misses b3, . . . , br. Then if (S, h)
gives us a Heegaard diagram (Σ, {βi}, {αi}, z) for −Y , the Heegaard diagram
(S, h ◦ τK) associated to −Y ′ has the form (Σ, {β′1, β2, . . . , βr}, {αi}, z) where
β1 and β′1 differ only inside −S0 ⊂ Σ. The surgery cobordism map then has a
very simple description, and one can verify that it takes c(ξ′) to c(ξ).

Corollary 15. If (Y, ξ) is overtwisted then c(ξ) = 0.

Proof. Since ξ is overtwisted, there is a Legendrian link L ⊂ (Y, ξ) on which
Legendrian surgery gives us the contact manifold (S3, ξot), and so repeated ap-
plication of the above proposition gives a map ĤF (−S3)→ ĤF (−Y ) carrying
c(ξot) = 0 to c(ξ).

Proposition 16. If (Y, ξ) is Stein fillable then c(ξ) 6= 0.

Proof. Stein fillable contact structures are the result of Legendrian surgery on
a Legendrian link L ⊂ (#k(S1×S2), ξstd) for some k ≥ 0, so it suffices to check
that

c(ξstd) ∈ ĤF (−#k(S1 × S2))

is nonzero. When k = 0 this is the fact that (S3, ξstd) has nonzero invariant,
which we have already seen. For k = 1 we can use the fact that the open
book with annular pages and trivial monodromy supports a contact structure
on S1 × S2 with nonzero invariant, so it must be ξstd because all others are
overtwisted. Similarly, for k > 1 the desired contact structure comes from
an open book with trivial monodromy and one can check in this case that
c(ξstd) 6= 0.

Thus the Heegaard Floer contact invariant detects tight contact structures:
if c(ξ) 6= 0 then ξ must be tight, and for example this is always the case when
ξ is Stein fillable. This nonvanishing result has been strengthened to strongly
symplectically fillable contact structures [1], and to weakly fillable structures
if one uses an appropriate system of twisted coefficients [5], but there are also
many nonfillable tight contact structures for which c(ξ) 6= 0. This has played
a very prominent role in contact geometry in recent years, both in helping to
classify tight contact structures and in topological applications such as a proof
of the fact that Heegaard Floer homology detects the Thurston norm [5].
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