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Last time we showed that every open book decomposition (B, π) of a closed,
oriented 3-manifold Y is supported by a unique contact structure ξ(B,π) up to
isotopy, so that there is a well-defined map

{open book decompositions of Y } −→ {contact structures on Y} /isotopy.

In this lecture we will construct a map in the opposite direction.

Definition 1. A contact cell decomposition of (Y, ξ) is a CW-decomposition of
Y such that the 1-skeleton is Legendrian, each 2-cellD satisfies tw(∂D,D) = −1,
and the restriction of ξ to any 3-cell is tight.

Proposition 2. Let (Y, ξ) be a closed contact 3-manifold. Then (Y, ξ) admits
a contact cell decomposition.

Proof. Since Y is compact, it admits a cover by finitely many Darboux balls.
Take a triangulation T which is fine enough so that every 3-cell is contained
in one of these Darboux balls, and then apply a C0-small perturbation to
the 1-skeleton to make it Legendrian, then each condition is satisfied except
tw(∂D,D) = −1. However, the Thurston-Bennequin inequality tells us that
tw(∂D,D) ≤ −1 for each 2-cell D, so we can perturb it to be convex. If some
face satisfies tw(∂D,D) < −1, then since D lives inside a tight Darboux ball its
dividing set ΓD consists of −tw(∂D,D) ≥ 2 properly embedded arcs. We can
then find a non-isolating multicurve C ⊂ D so that each component of D\C
contains exactly one dividing arc, apply the Legendrian realization principle to
C, and add it to the 1-skeleton. This splits D into convex faces Di which each
have one dividing curve and hence satisfy tw(∂D,D) = −1, as desired.

The 1-skeleton of a contact cell decomposition is a Legendrian graph G.
Given such a graph, we can find an embedded connected surface Σ ⊂ Y which
retracts onto G and satisfies TpΣ = ξp if and only if p ∈ G. We call this the
ribbon of G, and let B = ∂Σ be its boundary; then B is a transverse link, as
one can see by constructing Σ inside a model neighborhood of G.

Proposition 3. The boundary B of the ribbon of G is the binding of an open
book decomposition of Y with pages diffeomorphic to Σ.
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Proof. Let X(B) = Y \N(B) and ΣX = Σ ∩ X(B). If we parametrize the
neighborhood N(B) as a union of components S1

θ ×D2
(r,φ), then we can express

a neighborhood N(ΣX) as the product ΣX × [−ε, ε] where each ΣX × {t} has
boundary {φ = t} on ∂N(B). It remains to be seen that X(Σ) = X(B)\N(ΣX)
can be viewed as a similar product. Note that the exterior X(Σ) has boundary
A ∪ (ΣX × {±ε}), where A ⊂ ∂N(B) is the union of annuli φ 6∈ (−ε, ε), fibered
by circles {φ = const.}, and there is one annulus for each component of B.

LetD1, . . . , Dk be the 2-cells of the contact cell decomposition. Then eachDi

has Legendrian boundary with twisting number −1, and since B is locally a pair
of push-offs of ∂Di determined by the contact framing we can take B to intersect
each Di in exactly two points. Each D′i = Di ∩X(Σ) intersects A in a pair of
arcs which connect two components of ∂A, and it intersects each ΣX × {±ε}
in a single arc: this is easily seen by drawing a picture of N(ΣX) ∪ N(B)
twisting along ∂Di. Furthermore, since N(ΣX) ∪ N(B) is a neighborhood of
a surface which retracts onto the 1-skeleton G, it follows that if we take these
neighborhoods sufficiently small then X(Σ)\

⋃
iD
′
i is a disjoint union of balls,

each contained in a different 3-cell of the contact cell decomposition.
Cut X(Σ) open along D′1. In the boundary of the resulting manifold X1 =

X(Σ)\N(D′1), we have cut the surfaces ΣX × {±ε} along a single arc and the
annuli A along a pair of arcs; let Σ±1 be the complement of the arc in ΣX×{±ε}
and let A1 be the complement of those arcs in A together with the two copies
of D′1 in ∂X1. Since the arcs D′i ∩ A are transverse to the fibration of A by
circles, we can extend the fibration of A\∂D′1 across each copy of D′1 to fiber
each component of A1 by circles. The result is that ∂X1 = Σ+

1 ∪ Σ−1 ∪ A1 and
A1 is fibered by circles which agree with the original fibration of A.

If we repeat this process for each of D′2, . . . , D′k, the resulting manifold Xk

is a union of balls B3
i , as argued above, and each ∂B3

i consists of two disks
belonging to Σ±k (which can be viewed as a subsurface of ΣX × {±ε}) and an
annulus Aik fibered by circles. We can extend this fibration of Aik across all of
B3
i to write B3

i = D2 × I, where each circle ∂D2 ×{t} is one of the circle fibers
on Aik. Thus we can also write Xk = (

⋃
D2
i ) × I in a way which respects the

fibration on Ak.
Now we reverse the cutting process and glue the copies of D′k back together.

Since the fibration of D′k by arcs is the same on either copy, we can extend the
fibration of Xk to a fibration of Xk−1, and similarly for each D′i. The result is a
fibration X(Σ) = Σ′ × I for some Σ′, and since Σ′ × ∂I ∼= ∂X(Σ) = ΣX ×{±ε}
we conclude that Σ′ ∼= ΣX . Furthermore, our original annuli A are identified
with ∂Σ′ × I so that each ∂Σ′ × {t} is a fiber of the fibration of A by circles.
This means that X(B) is fibered over the circle by surfaces diffeomorphic to
ΣX , as desired.

We remark that this construction can be taken as a proof that every closed
3-manifold Y admits an open book decomposition: using contact surgery and
the standard contact structure on S3, we can construct a contact structure ξ
on Y and then construct this open book decomposition from a contact cell
decomposition. Of course, we would also like to know that the open book we
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have constructed supports the original contact structure. For this, we recall one
characterization of this property:

Lemma 4. The open book decomposition (B, π) supports the contact structure
ξ if and only if ξ admits a contact form (possibly after an isotopy) for which
the Reeb vector field is positively tangent to B and positively transverse to the
pages of π.

We will also need the following gluing result.

Lemma 5. Let (M,Ξ) be a contact manifold, and let D be a convex, properly
embedded disk whose dividing set consists of boundary-parallel arcs. If Ξ|M\D
is tight, then Ξ is tight on all of M .

Proof. We use a technique due to Colin called “isotopy discretization” [1]. Sup-
pose that M contains an overtwisted disk ∆ which intersects D in some poten-
tially complicated way, and let D′ be an embedded disk in M which is isotopic
rel boundary to D but disjoint from ∆. We take an isotopy from D to D′ and
discretize it, finding a sequence of embedded disks

D0 = D,D1, . . . , Dm = D′

so that each pairDi, Di+1 intersect only along the boundary and cobound a ball.
Then the contact structure on M\Di+1 is obtained from the contact structure
on M\Di by attaching some bypasses along Di. If Di has boundary-parallel
dividing set, then all possible bypasses are either trivial or forbidden, so if
M\Di is tight, then these bypasses must all be trivial. This means that M\Di

is actually contact isotopic to M\Di+1, and ΓDi+1
∼= ΓDi . But M\D0 is tight

by assumption, so we conclude that M\Dm = M\D′ is well, contradicting the
fact that ∆ ⊂M\D′. Therefore (M,Ξ) must have actually been tight.

Theorem 6. The open book decomposition (B, π) constructed from (Y, ξ) in
Proposition 3 supports ξ.

Proof. Since we already observed that B is a transverse knot, we will take the
neighborhood N(B) to be a standard contact neighborhood of radius r0 which is
contactomorphic to (S1

θ×D2
(r,φ), kerα) with α = dθ+r2dφ near each component.

If we consider the vector field

R = (1− a(r))∂θ + b(r)∂φ

for some smooth, nondecreasing function a(r) satisfying a(r) = r4 near r = 0
and a(r) = 1 near r = r0, and

b(r) =

∫ r

0

a′(t)

t2
dt

so that b(0) = 0 and a′(r) = r2b′(r), then we can check that LRα = 0, so R is
a contact vector field and thus it is the Reeb vector field for the contact form
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α(R)α once we have arranged that α(R) 6= 0 everywhere. (This can be done
by shrinking N(B) if necessary.) At r = 0 we have R = ∂θ, so R is positively
tangent to the binding B, and for r > 0 the ∂φ-component of R is positive so
it is positively transverse to the pages {φ = const.} inside N(B). Furthermore,
at r = r0 we have R = b(r0)∂φ, and so the flow of R preserves the boundary
∂N(B).

Next, we extend the Reeb vector field across the neighborhood N(ΣX) =
ΣX× [−ε, ε]. On any page ΣX×{t}, we have already arranged R = b(r0)∂t near
∂ΣX × {t}, and we can extend it over the interior of the page by arranging the
product ΣX× [−ε, ε] to be an I-invariant neighborhood of ΣX×{0} = Σ∩X(B)
and letting R = b(r0)∂t. Again, this is a contact vector field and it is positively
transverse to the pages, so R is now the Reeb vector field for an appropriate
rescaling of the contact form on N(B) ∪ N(ΣX). In particular, since R never
lies in the contact planes it follows that ΣX is a convex surface with no dividing
curves; this is allowed because its boundary is transverse rather than Legendrian.

We now wish to extend the Reeb vector field to the exterior X(Σ). In the
notation of the proof of Proposition 3, the boundary of X(Σ) is the union of
ΣX × {±ε} and the annuli A, and we know that R points into X(Σ) along
ΣX × {ε}, points out of X(Σ) along ΣX × {−ε}, and is tangent to the annuli
A. We can identify a neighborhood N(A) ⊂ X(Σ) of the form A × I, where
A = A × {0} and A′ = A × {1} is a parallel set of annuli and the Reeb flow
takes N(A) ∩ (ΣX × {−ε}) to N(A) ∩ (ΣX × {ε}).

Let F = ΣX ∪A′∪−ΣX be a surface diffeomorphic to the double of ΣX . We
give F a singular foliation induced by the characteristic foliation on ΣX ∪−ΣX
and extend it across A′ ∼= ∂ΣX × I so that it connects the leaves of ΣX to the
leaves of −ΣX in a nonsingular fashion; then F is divided by a set Γ which we
identify with the cores of the annuli A. This means we can find an R-invariant
contact structure ξF on F × R for which this foliation is the characteristic
foliation on any F×{t}. Since ∂t is a contact vector field for ξF and is positively
transverse to ξF along ΣX , we can take a contact form for ξF such that ∂t is
the Reeb vector field on ΣX × R. We then take a diffeomorphism

f : ΣX × {ε} → ΣX × {0} ⊂ F × R

which identifies the characteristic foliation on ΣX × {ε} induced by ξ with
(ΣX)Fξ . Using the flows of the Reeb vector fields R and ∂t, respectively, we
extend f to a neighborhood of ΣX × {ε} ⊂ X(Σ). Since N(A) ⊂ X(Σ) is the
image of a neighborhood of ∂ΣX ×{ε} under the flow of −R, we use the flow of
−∂t to extend f to an embedding of N(ΣX ×{ε})∪N(A) into F ×R, and then
finally we extend f along ΣX × {−ε} by an embedding which misses the image
of the neighborhood of ΣX ×{ε} but preserves the characteristic foliation. The
result is a contact embedding of a neighborhood of ∂X(R) into F × R, whose
image lies in a neighborhood of ΣX × R.

The embedding f extends topologically over all of X(Σ), though maybe not
as a contact embedding, and the pulled back contact structure f∗ξF is tight
because ξF is tight by Giroux’s criterion. Furthermore, we know that f∗ξF is
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identical to ξ on a neighborhood of ∂X(Σ). Thus we would like to show that
ξ|X(Σ) is tight, and then since X(Σ) is a contact handlebody it is not hard to
show ξ|X(Σ) must be isotopic to f∗ξF rel boundary: cut X(Σ) into a union of
tight 3-balls along convex disks, each of which has a single dividing arc, so there
is a unique way to glue them back together.

In order to see that ξ|X(Σ) is tight, we recall that X(Σ) can be cut open
along finitely many disks D′1, . . . , D′k, each of which is convex with dividing set
a single arc, to get a union of 3-balls B3

i which all lie in Darboux balls and are
therefore tight. We conclude by the above gluing lemma that ξ|X(Σ) is tight, so
we can perform an isotopy to replace ξ|X(Σ) with f∗ξF , arranging for the Reeb
vector field to be f∗∂t, which is positively transverse to the pages of the open
book on X(Σ). We now have a globally defined Reeb vector field on Y which
is positively transverse to the pages everywhere and also positively tangent to
the binding. We conclude that (B, π) supports ξ after all.

Corollary 7. Given any Legendrian knot L ⊂ (Y, ξ), there is an open book
decomposition (B, π) such that L lies entirely within one of the pages Σθ.

Proof. We form a contact cell decomposition which contains L in its 1-skeleton
G, and then L lies in the ribbon of G, which forms a page of the corresponding
open book decomposition.
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