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In this lecture we continue the classification of overtwisted contact structures
on a closed 3-manifold Y . Let ξ and ξ′ be overtwisted contact structures which
are homotopic as plane fields. Our strategy will be to find a nice triangulation
T of Y , in which the 1-skeleton T (1) is Legendrian, the 2-skeleton T (2) is convex,
and each 3-ball is overtwisted in both ξ and ξ′. We call such T an overtwisted
triangulation of Y . If we can get ξ and ξ′ to agree on the 2-skeleton, then we
can reduce the problem to studying overtwisted contact structures on B3.

Proposition 1. Let Y have overtwisted contact structures ξ and ξ′ and a fixed
triangulation T . If ξ and ξ′ have the same Euler class, then we can find an iso-
topy φt of Y such that (φ1)∗ξ = ξ′ in a neighborhood of T (2) and T is overtwisted
with respect to both (φ1)∗ξ and ξ′.

Proof. We will perform the isotopy by moving T around with respect to one
contact structure or the other and then applying Gray stability to realize this
as an isotopy of Y . We apply a C0-small perturbation of T to make T (1)

Legendrian with respect to either contact structure, stabilizing edges as needed
so that ξ = ξ′ near T (1) and each face D of T (2) has tb(∂D) < 0. Then a C∞-
small perturbation lets us make each face convex with dividing set ΓD having
endpoints on the interior of an edge. It will suffice to show that for every D, ΓD
is the same up to isotopy for both contact structures, and that ΓD contains a
simple closed curve; then by Giroux’s criterion either 3-ball adjacent to D will
be overtwisted.

We can assume by an isotopy of either contact structure that there is an
overtwisted disk ∆ in some fixed simplex σ of the triangulation. Let σ′ be
another simplex which shares a face D ⊂ T (2) with σ. Take a parallel copy
∆′ of ∆ in an I-invariant neighborhood, and push D by an isotopy fixing ∂D
so that it contains ∆′ and is still convex. Now D splits σ ∪ σ′ into two new
simplices σ1∪σ′1, both of which are overtwisted because they contain I-invariant
neighborhoods of the overtwisted ∆′, and we achieved this by an isotopy which
fixed all of T (2) except the interior of D. Repeating this finitely many times
since Y is compact, we can now assume that every simplex σ is overtwisted.

The last step is to ensure that the dividing sets on T (2) with respect to ξ
and ξ′ are identical. Note that if we stabilize some arc of T (1), this adds a
boundary-parallel arc to either the positive region or the negative region of each
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adjacent face D depending on the sign of the stabilization; thus we can change
χ(R+(ΓD))− χ(R−(ΓD)) by ±1 for each face D containing the stabilized arc.

We define a 2-cocycle δ on the faces of T by the formula

δ(D) = [χ(R+(ΓξD))− χ(R−(ΓξD))]− [χ(R+(Γξ
′

D))− χ(R−(Γξ
′

D))].

Then [δ] = e(ξ) − e(ξ′) = 0, and δ is even since an Euler class of a contact
structure is even, so δ = 2dθ for some 1-cocycle θ ∈ Hom(C1(M),Z). For a
fixed 1-simplex γ ⊂ T (1), we let n = θ(γ). If n > 0, we change the triangulation
with respect to ξ by stabilizing γ positively n times and with respect to ξ′ by
stabilizing n times; if n < 0 then we stabilize each in the opposite direction.
Repeating this for each arc of T (1) preserves the property that ξ = ξ′ in a
neighborhood of T (1), and also ensures that

χ(R+(ΓξD))− χ(R−(ΓξD)) = χ(R+(Γξ
′

D))− χ(R−(Γξ
′

D))

for each face D of T (2).
At this point we use the generalized Right-to-Life Principle to get the divid-

ing sets on each face to agree. Fix a faceD along the boundary of the overtwisted
simplex σ. We can find a series of bypass moves which convert ΓξD into Γξ

′

D, and
since each of these corresponds to a real bypass, we can achieve these moves by
an isotopy of D which fixes its boundary. Repeating this procedure along each
face of T (2) completes the proof.

Now suppose we have homotopic overtwisted contact structures ξ and ξ′ and
an overtwisted triangulation T of Y such that ξ and ξ′ agree on a neighborhood
N of T (2). Then Y \N is a union of overtwisted balls, and if we connect pairs of
them by standard neighborhoods of Legendrian arcs until they are all connected
then we get an overtwisted 3-ballB with respect to either structure so that ξ = ξ′

on its complement.
If ∂B has more than one dividing curve (note that Γ∂B is the same for both

ξ and ξ′), then we claim it has at least three. Indeed, if #Γ∂B = 2 then ∂B
has positive and negative regions an annulus and a pair of disks, in some order,
so that 〈e(ξ), ∂B〉 = χ((∂B)+) − χ((∂B)−) = ±2, but 〈e(ξ), ∂B〉 = 0 because
∂B is null-homologous. Therefore we can find a bypass arc α which intersects
three different dividing curves (if not, say if (∂B)+ is a pair of pants, then a
similar Euler characteristic argument applies). Since we made the faces of T (2)

have closed dividing curves, Y \B is overtwisted, so there exists a bypass in Y \B
along α, and we can add this bypass to B to decrease #Γ∂B by two. Again,
this works simultaneously in both contact structures because they coincide on
Y \B. By repeating this process until a single dividing curve remains, we have
shown:

Lemma 2. If ξ and ξ′ are overtwisted and have the same Euler class then there
is an embedded ball B ⊂ M with convex boundary such that ξ|Y \B = ξ′|Y \B,
there is a single dividing curve on ∂B with respect to both contact structures,
and each contact structure is overtwisted on both B and Y \B.
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Take Darboux balls inside B with respect to either contact structure; these
are isotopic rel boundary, so if we remove them as well as Y \B we are left
with homotopic overtwisted contact structures ξ and ξ′ on S2 × I which agree
on a neighborhood of S2 × ∂I and have one dividing curve on each boundary
component. Now we have shown that ξ is stably isotopic to some multiple
bypass triple attachment ∆n0 , i.e. ξ ◦ ∆a = ∆a+n0 for some a, and similarly
ξ ◦ ∆b = ∆b+m0 for some b and m0. Since Y \B is overtwisted, we may take
any admissible arc on ∂B = S2×{1} and use the Right-to-Life Principle to find
max(a, b) bypass triples along that arc inside Y \B; attaching them all to B, we
now have ξ|S2×I = ∆n and ξ′|S2×I = ∆m up to actual isotopy.

We now recall the Pontryagin-Thom construction, generalized to manifolds
M with boundary. Given a trivialization of the tangent bundle TM , a co-
oriented plane field ξ on M determines a smooth map f : M → S2 by sending
each point p to the oriented unit normal to ξp. We pick a regular value c ∈ S2

and a basis b of TcS2, and we associate to f the framed link Lf = f−1(c)
with basis bf = f∗b for its normal bundle. Note that ξ ∼= f∗(TS2), so e(ξ) =
f∗(e(TS2)); in other words, f∗ : Z → H2(M ;Z) sends 2 to the Euler class of
M . Since 1 ∈ H2(S2,Z) is Poincaré dual to a regular value c of f , it follows
that f∗(1) is dual to the preimage f−1(c) = Lf and so e(ξ) = 2 · PD(Lf ).

Theorem 3 ([3]). Two plane fields ξ, ξ′ on M are homotopic rel boundary if
and only if for any common regular value c of the corresponding maps f, f ′ :
M → S2, the framed links (Lf , bf ) and (Lf ′ , bf ′) are relatively framed cobordant,
meaning that they are related by a framed cobordism (Σ, b) ⊂ M × I which is
constant along ∂M×I. Furthermore, it suffices to check this for a single common
regular value.

If two plane fields ξ, ξ′ agree on the complement of a ball B3, we may
consider their relative Pontryagin submanifolds (L, b), (L′, b′) ⊂ B3. We have
a relative cobordism Σ from L to L′, since B3 is contractible, but we may not
be able to extend the framings across Σ. Thus we remove a small disk with
unknotted boundary U from int(Σ), and we can give U a framing δ for which
(L, b) is relatively framed cobordant to (L′, b′) ∪ (U, δ).

Definition 4. Given plane fields ξ, ξ′ as above, let d be the divisibility of
e = e(ξ) = e(ξ′). We define the obstruction class

d3(ξ, ξ′) ∈ Z/dZ

to be the linking number l(U,U ′), where U ′ is a push-off of U determined by
the framing δ.

We need to check that this is really well-defined modulo d, which is an easy
extension of the case ∂M = ∅ proved in [1] as follows. Suppose that (L, b) is
framed cobordant to (L, b + n) for some n. The framed cobordism Σ ⊂ M × I
can be glued together to give a closed surface Σ̃ ⊂ M × S1 of self-intersection
n. Now the homology class α = [Σ̃] − [L × S1] ∈ H2(M × S1;Z) has trivial
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intersection with Y × {0}, so it is the image of some class ã in H2(M). This
means that α2 = 0 and [L× S1]2 = 0, so

n = (α+ [L× S1])2 = 2α · [L× S1].

On the other hand 2α·[L×S1] inM×S1 is the same as α̃·2[L] = 〈2·PD([L]), α̃〉
in M , so n = 〈e(ξ), α̃〉. It follows that n is a multiple of d. Similarly, given a
class α̃ ∈ H2(M) with 〈e(ξ), α̃〉 = d, one can use α̃ to construct such a framed
cobordism by hand. Therefore d3(ξ, ξ′) is well-defined modulo d, and two plane
fields with the same Euler class e agree if and only if d3(ξ, ξ′) = 0 in Z/dZ.

We now reduced the theorem to the following statement: if the contact
structures are isotopic to ∆m and ∆n on S2 × I as plane fields, then they are
isotopic on all of Y . Huang [3] has shown that if η′ is the result of attaching a
bypass triple to η, then d3(η, η′) = −1. Letting d denote the divisibility of the
Euler class e = e(ξ) = e(ξ′), and recalling that d3(ξ, ξ′) = 0 because ξ and ξ′

are homotopic, it follows that d divides m− n. Since we can move some bypass
triples from S2 × I to Y \B so that the contact structures on S2 × I are now
both isotopic to ∆min(m,n) but differ on Y \B by these bypass triples, it will now
suffice to prove the following.

Proposition 5. Let Σ be a closed surface and η an I-invariant contact structure
on Σ× I. Then η ◦∆l is stably isotopic rel boundary to η, where l = 〈e(η),Σ〉.

Proof. We can change the dividing set on Σ by any number of bypass moves:
given an arc, we simply attach the associated bypass triangle to Σ and push
the last two bypasses in the triangle away from Σ, and this preserves the stable
isotopy type of η. Thus we take g(Σ)+1 oriented nonseparating dividing curves
γ1, . . . , γg+1, which collectively split Σ into two connected genus-0 components
Σ0 and Σ1 which are exchanged by an involution of Σ; and then we add another
p dividing curves inside Σ1 and q inside Σ0, each of which bounds a small disk
with no other dividing curves inside. It follows that

〈e(η),Σ〉 = 2(p− q)

so we will take p and q positive such that 2(p− q) = l, and the resulting surface
is a convex representative of Σ. Its positive region Σ+ is equal to Σ0 minus the
q disks inside it, plus the p disks that were placed inside Σ1, and similarly for
the negative region Σ−.

Fix one of the p dividing curves, and let α1, . . . , αp−1 be disjoint bypass arcs
with one endpoint on the fixed curve γ+ and the other points of intersection
with ΓΣ both on the same contractible dividing curve so that each one of these p
dividing curves intersects some αi. Similarly, fix a curve γ− among the other set
of q dividing curves and use it to identify disjoint bypass arcs β1, . . . , βq−1. It is
easy to check that a bypass triple along any αi or βj consists of three consecutive
trivial bypasses, hence ∆αi

and ∆βj
are isotopic to contact structures induced

by isotopies.
To make these isotopies precise, fix small disks D± in Σ such that D±∩ΓΣ =

γ±. If we fix an oriented curve c ⊂ Σ which intersects one of D± transversely
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in an arc, and an annular neighborhood A ⊃ c containing D± for which A\D±
does not intersect the dividing set, then there is an isotopy φt supported in
A which transports D± once around c and satisfies φ0 = id and φ1(D±) =
D±. We let Φ(γ±, D±, c) denote the corresponding map Σ × I → Σ × I, and
ξΦ(γ±,D±,c) the induced contact structure. According to [2, Lemma 6.12], if
c travels once clockwise around a single dividing curve c′, then ξΦ(γ±,D±,c) is
isotopic rel boundary to ∆2

α where α is a trivial bypass arc which intersects
c once and c′ twice; the proof uses a local computation which says that both
operations lower the d3 invariant by 2 on a ball supporting them.

Now if αi intersects γ+ and some other dividing curve ci, we let c−i be a
curve in Σ− which is parallel to ci and then ∆αi

is isotopic to ξΦ(γ+,D+,c
−
i ). In

particular we have an isotopy

∆2
α1
◦ . . . ◦∆2

αp−1
= ξΦ(γ+,D+,c

−
1 ) ◦ . . . ◦ ξΦ(γ+,D+,c

−
p−1) = ξΦ(γ+,D+,c−)

where c− ⊂ Σ− is a curve homologous to γ1 ∪ . . . ∪ γg+1, and so

∆2
α1
◦ . . . ◦∆2

αp−1
= ξΦ(γ+,D+,γ

−
1 ) ◦ . . . ◦ ξΦ(γ+,D+,γ

−
g+1)

for parallel copies γ−i of γi in Σ−. Similarly, if we take parallel copies γ+
i ⊂ Σ+

then we have a stable isotopy

∆−2
β1
◦ . . . ◦∆−2

βq−1
∼ ξΦ(γ−,D−,γ

+
1 ) ◦ . . . ◦ ξΦ(γ−,D−,γ

+
g+1).

In particular, the composition ∆l = ∆2
α1
◦ . . .◦∆2

αp−1
◦∆−2

β1
◦ . . .◦∆−2

βq−1
is stably

isotopic to the composition

ξΦ(γ+,D+,γ
−
i ) ◦ ξΦ(γ−,D−,γ

+
i )

over i = 1, . . . , g+1; we are allowed to commute structures induced by isotopies
Φ(γ+, D+, γ

−
i ) and Φ(γ−, D−γ

+
j ) because the isotopies are supported on disjoint

annuli.
It remains to be shown that ξΦ(γ+,D+,γ

−
i ) ◦ ξΦ(γ−,D−,γ

+
i ) is stably isotopic to

an I-invariant contact structure. Fix an annular neighborhood of γi containing
both D+ and D−, and let δ be a bypass arc which intersects Γ+ once and Γ−
twice. Then if Φ denotes the composition of the isotopies, we have

ξΦ ◦∆δ = σΦ−1(δ) ◦ ξΦ ◦ σδ′ ◦ σδ′′

with Φ−1(δ) isotopic to δ. But in this latter sequence ξΦ is isotopic to an I-
invariant contact structure, so ξΦ ◦∆δ = σΦ−1(δ) ◦ σδ′ ◦ σδ′′ = ∆Φ−1(δ) and we
are done.
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