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Last time we proved that every closed, oriented 3-manifold admits a (co-
orientable) contact structure, using open book decompositions and an argument
of Thurston and Winkelnkemper. Today we will prove that in fact there are
lots of contact structures on any such 3-manifold: we can find an overtwisted
contact structure in any homotopy class of co-orientable plane field. Recall what
it means to be overtwisted:

Definition 1. A contact 3-manifold (M, ξ) is overtwisted if it contains an em-
bedded disk D such that ξ|∂D = TD|∂D. If (M, ξ) does not contain an over-
twisted disk, then it is said to be tight.

Example 2. The overtwisted structure (R3, ξot) with contact form αot =
cos(r)dz + r sin(r)dθ has overtwisted disk D = {r = π, z = 0} since ξ|r=π =
ker(−dz) = span{∂x, ∂y}.

Let K ⊂ (M, ξ) be a positive transverse knot. Then K has a model neigh-
borhood of the form

S1 × {0} ⊂ S1
θ ×D2

δ

for some δ > 0, where D2 has polar coordinates (r, φ) and rectangular coordi-
nates (x, y) and the contact form on S1 ×D2 is

α = dθ + r2dφ = dθ + xdy − ydx.

As we saw in Thurston-Winkelnkemper’s proof, another contact structure on
S1 ×D2 can be specified by

α′ = f(r)dθ + g(r)dφ

as long as (f(r), g(r)) = (1, r2) near r = δ and fg′ − gf ′ > 0 for all r. We
will take functions f, g which satisfy (f(r), g(r)) = (−1,−r2) near r = 0; a
parametric graph of (f, g) would start by moving downward from (−1, 0) and
traveling counterclockwise around the origin, avoiding the positive y-axis, until
it reaches (1, δ2) moving upward at r = δ.

Definition 3. Replacing ξ = ker(α) with ξ′ = ker(α′) on a neighborhood of K
is called performing a Lutz twist along K.
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Lemma 4. Performing a Lutz twist results in an overtwisted contact structure.

Proof. Let r0 ∈ (0, δ) be a point where g(r0) = 0. At a point p = (θ0, (r0, φ0)) ∈
S1 ×D2, we have

ξ′p = span(∂r, ∂φ)

which is the tangent plane to the disk D0 = {(θ0, (r, φ)) | r ≤ r0, φ ∈ S1}. Thus
D0 is an overtwisted disk.

A co-orientable contact structure ξ onM has trivial normal bundle, so TM =
ξ⊕R, and sinceM is parallelizable we have w2(ξ) = w2(ξ)⊕w2(R) = w2(TM) =
0. Thus the Euler class of any contact structure is even.

Lemma 5. A Lutz twist along the positively transverse knot K ⊂ (M, ξ) changes
the Euler class of ξ according to the formula

e(ξ′)− e(ξ) = −2PD(K).

Proof. Take a generic section s of ξ which equal to r∂r = x∂x+y∂y in the model
neighborhood of S1 ×D2, where

ξ = ker(dθ + r2dφ).

Let ψ : [0, 1] → R≥0 be a smooth, nondecreasing function which equals 0 for
r < 1

3 and 1 for r > 2
3 . Then

s′ = ψ(r) · r∂r + (1− ψ(r)) · r(g(r)∂θ − f(r)∂φ)

is a section of ξ′ = ker(f(r)dθ + g(r)dφ) which is equal to r∂r = s near r = 1,
nonzero for r ≥ 1

3 , and

g(r)∂θ − f(r)∂φ = −r3∂θ + r∂φ = −r3∂θ + (−y∂x + x∂y)

for r < 1
3 . In particular, s and s′ vanish to first order along the positive knots

K in ξ and −K in ξ′, respectively, and they are equal away from S1×D2. Since
the Euler class is Poincaré dual to the zero set of a generic section, we have
e(ξ)− PD(K) = e(ξ′) + PD(K), as desired.

Corollary 6. Every even element e ∈ H2(M ;Z) is the Euler class of a contact
structure on M .

Proof. We know that M admits some contact structure ξ, and e(ξ) is even, so
let c be a cohomology class satisfying e(ξ)− e = 2c. We can find an embedded
link L ⊂ M which is Poincaré dual to c – let L be the zero set of a generic
section of the complex line bundle over M with first Chern class c – and then
perform Lutz twists along each component of L to get a new contact structure
ξ′ with e(ξ′) = e(ξ)− 2c = e.
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If we perform a Lutz twist along K, the new contact form on S1 × D2 at
r = 0 is given by

α′|r=0 = −dθ − r2dφ = −α|r=0

and so K switches from positively transverse to negatively transverse (or vice
versa). If we perform another Lutz twist along −K, then the result ξ′′ is still
overtwisted; we claim that it is homotopic to ξ as a plane field. We can describe
the composition of these, a full Lutz twist, as replacing the contact form

α = dθ + r2dφ

on S1 ×D2 with
α′′ = f(r)dθ + g(r)dφ,

where (f, g) = (1, r2) for r ∈ [0, ε] and r ∈ [1 − ε, 1] and the graph of (f, g)
travels once around the origin. Let χ(r) : [0, 1] → R≥0 be positive on [ε, 1 − ε]
and supported on [ ε2 , 1−

ε
2 ]. Then we define the family of 1-forms

αt = χ(r)dr + (1− t)α+ tα′′.

Clearly αt = α = α′′ for r ∈ [0, ε2 ] ∪ [ ε2 , 1], so ker(αt) is fixed near ∂(S1 ×D2)
and αt is nonzero everywhere. Thus ker(αt) gives a homotopy of plane fields
from ξ to ξ′′. Since ξ′′ is overtwisted just as in the case of a simple Lutz twist,
we have proven:

Proposition 7. Every contact structure is homotopic as a 2-plane field to an
overtwisted contact structure.

There is a natural inclusion

{overtwisted contact structures} → {2−plane fields}

which, according to a celebrated theorem of Eliashberg, is a homotopy equiva-
lence. We will eventually prove that it gives a bijection on π0 of each space, i.e.
that there is a unique overtwisted contact structure up to isotopy in each ho-
motopy class of plane fields. The surjectivity part is due to Lutz; the injectivity
is much harder and will be proven later. In order to prove surjectivity, we must
first understand how to classify 2-plane fields on a closed 3-manifold M .

Since a co-oriented plane field can be uniquely determined by its normal
vector at each point and TM ∼= M × R3, there is a natural one-to-one corre-
spondence of homotopy classes

{2−plane fields} ↔ [M,S2].

The Pontryagin-Thom construction puts [M,S2] in one-to-one correspondence
with framed cobordism classes of framed links as follows: given a smooth map
f : M → S2, we pick a regular value c of f and a fixed basis b of TcS2 and
associate to f the link Lf = f−1(c) ⊂M with basis f∗b for the normal bundle
of Lf . Conversely, given a framed link L ⊂M , we define the map fL : M → S2

by projecting an open neighborhood L × int(D2) onto int(D2) = S2\{p} and
then sending the complement of this neighborhood to p.
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Lemma 8. Let ξ1 and ξ2 be plane fields on M with associated framed links Lξ1
and Lξ2 , and define

d2(ξ1, ξ2) = PD(Lξ1)− PD(Lξ2) ∈ H2(M ;Z).

Then ξ1 and ξ2 are homotopic on the complement of a 3-ball if and only if
d2(ξ1, ξ2) = 0.

Proof. If d2(ξ1, ξ2) = 0 then Lξ1 and Lξ2 are homologous, so there is an un-
framed cobordism W ⊂M × I from Lξ1 to Lξ2 . If we remove a small disk from
W then we can extend the framing of each Lξi to a trivialization of N(W\D2),
so W gives a framed cobordism from Lξ1 to Lξ2 t Un, where Un is the unknot
with framing n. Since each Lξi is a homotopy invariant, it follows that ξ1 can
be homotoped to agree with ξ2 away from Un, so the ξi are homotopic on the
complement of a ball containing a neighborhood of Un.

Conversely, if ξ1|M\B3 ' ξ2|M\B3 then after a homotopy we may assume
that ξ1 = ξ2 except on B3, and so Lξ1 t L′1 is cobordant to Lξ2 t L′2 for some
links L′i ⊂ B3. We may fill in Seifert surfaces for L′1 and L′2 to get a cobordism
from Lξ1 to Lξ2 , so [Lξ1 ] = [Lξ2 ] and d2(ξ1, ξ2) = 0.

If d2(ξ1, ξ2) = 0, then we may assume after a homotopy that ξ1 and ξ2
coincide except on some ball B3. We then construct a map

f : S3 → S2

as follows: identify the upper hemisphere of S3 with B3 and let f be the normal
vector to ξ1|B3 there; then identify the lower hemisphere with −B3 and let f
be the normal vector to ξ2|B3 there.

Definition 9. The obstruction class d3(ξ1, ξ2) is the Hopf invariant of the map
f : S3 → S2. It can be computed as the linking number of the preimages of two
regular values of f , or via the isomorphism π3(S2) ∼= Z.

Note that both d2 and d3 are additive invariants, in the sense that

di(ξ1, ξ3) = di(ξ1, ξ2) + di(ξ2, ξ3).

It is also clear that ξ1 ' ξ2 if and only if d2(ξ1, ξ2) = 0 and d3(ξ1, ξ2) = 0.

Proposition 10. If ξ′ is obtained from ξ by a Lutz twist along K, then d2(ξ, ξ′) =
PD(K).

Proof. Let us consider a contact structure ξ0 such that e(ξ0) = 0, in which
case we can trivialize TM by oriented basis vectors x1, x2 ∈ ξ0 and x3 ∈ ξ⊥0 .
Construct ξ1 by a Lutz twist along a transverse knot K ⊂ (M, ξ0); we claim
that d2(ξ0, ξ1) = PD(K) as well, from which the proposition will follow using
the additivity of d2.

To see this, observe that the map fξ0 : M → S2 is constant with image
x3. Performing a homotopy to change the trivialization of TM on the S1 ×D2

neighborhood of K, which had contact form

dθ + r2dφ = dθ + xdy − ydx
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on ξ0, so that x1 = ∂θ, x2 = ∂x, and x3 = ∂y, it is still clear that fξ0(p) 6=
−∂θ everywhere. Since fξ0 misses the point (−1, 0, 0), we have Lξ0 = ∅ and
PD(Lξ0) = 0. On the other hand, the Lutz twist replacing the contact form on
S1 ×D2 with

f(r)dθ + g(r)dφ

turns K into a negatively transverse knot with f−1
ξ1

(−1, 0, 0) = −K (recall that
the new contact form is −dθ at r = 0, i.e. along K), and so Lξ1 = −K. Thus
d2(ξ0, ξ1) = 0− PD(Lξ1) = PD(K), as desired.

In order to prove our main theorem, we first need a fact about transverse
knots.

Definition 11. Let T ⊂ (R3, ξst) be a positively transverse knot with Seifert
surface Σ. Since ξst is trivial over Σ, we may choose a nonzero section s of ξst|Σ
and let T ′ be a push-off of T in that direction. Then the self-linking number of
T is defined as

sl(T ) = lk(T, T ′).

Proposition 12. The self-linking number of T may be calculated as the writhe
of its front (xz−) projection.

Proof. Since ξst = ker(dz − ydx), we may take ∂y to be a section of ξst. Since
T is positive, a smooth parametrization γ(θ) = (x(θ), y(θ), z(θ)) satisfies z′ >
y · x′, and so the knot must be oriented upward at any vertical tangencies;
furthermore, at a positive crossing we cannot have both strands pointing down,
because the top strand has x′, z′ < 0 and hence z′ − yx′ > 0 becomes y >
z′

x′ = dz
dx > 0 while the bottom strand satisfies z′ < 0 < x′ and hence y < z′

x′ =
dz
dx < 0, contradiction. One can check that any smooth diagram satisfying these
conditions is the front projection of a transverse knot.

Now push T off in the ∂y direction, achieved by lifting it slightly off the
page on which its front projection is drawn. It is not hard to see that each
crossing contributes its sign to lk(T, T ′), and so sl(T ) is the writhe of the front
projection.

It is not hard to see that there are transverse knots with sl(T ) = ±1: for
sl = −1 we can take an unknot diagram with a single negative crossing, and for
sl = +1 we can use a right-handed trefoil. In fact, for any odd n ∈ Z there is a
transverse knot with sl(T ) = n.

Theorem 13. Let η be a 2-plane field on M . Then there is an overtwisted
contact structure which is homotopic to η as a 2-plane field.

Proof. We can find a positively transverse knot K with PD(K) = d2(ξ0, η), and
then Lutz twisting ξ0 along K gives a contact structure ξ1 with

d2(ξ0, ξ1) = PD(K) = d2(ξ0, η).
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But then d2(ξ1, η) = 0, so after a homotopy we may assume that ξ1 and η
coincide outside of a ball B3. By making B3 arbitrarily small, we can even
assume that it is a Darboux ball.

Now let T ⊂ (B3, ξ1) be a transverse knot with self-linking number n, and
let ξ2 be obtained from ξ1 by Lutz twisting along T ; since T is nullhomologous,
we have

d2(ξ2, η) = d2(ξ2, ξ1) + d2(ξ1, η) = 0.

We wish to compute d3(ξ2, ξ1) using the trivialization of TB3 inherited from
ξ0|B3 = ξ1|B3 , where (x1, x2) is a basis of ξ0 and x3 is the oriented normal.
The map f : S3 → S2 which determines d3(ξ2, ξ1) is then equal to −x3 along
the whole lower hemisphere, and in particular it avoids a neighborhood U ⊂ S2

of (−1, 0, 0). Now d3(ξ2, ξ1) is the linking number of −T = f−1(−1, 0, 0) with
f−1(u) for any regular value u ∈ U , and f−1(u) is a transverse push-off of −T ,
so

d3(ξ2, ξ1) = sl(T ).

In particular, given transverse knots T± ⊂ (B3, ξ1) with sl(T±) = ±1 we can
perform Lutz twists along k unlinked copies of T± to get ξ2 with

d3(ξ2, η) = d3(ξ2, ξ1) + d3(ξ1, η) = ±k + d3(ξ1, η).

Choosing the appropriate sign and value of k, we get a contact structure ξ2 with
the same d2 and d3 invariants as η, so ξ2 ' η.

Next time we will begin to study embedded surfaces in contact manifolds.
Among other things, this will show us that tightness is a much more restrictive
condition: for example, only finitely many elements of H2(M ;Z) can be the
Euler class of a tight contact structure, whereas we have seen that any even
element is the Euler class of an overtwisted one.
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