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Last time we proved that every closed, oriented 3-manifold admits a (co-
orientable) contact structure, using open book decompositions and an argument
of Thurston and Winkelnkemper. Today we will prove that in fact there are
lots of contact structures on any such 3-manifold: we can find an overtwisted
contact structure in any homotopy class of co-orientable plane field. Recall what
it means to be overtwisted:

Definition 1. A contact 3-manifold (M, &) is overtwisted if it contains an em-
bedded disk D such that £|sp = TDl|sp. If (M,£) does not contain an over-
twisted disk, then it is said to be tight.

Example 2. The overtwisted structure (R3, &) with contact form o =
cos(r)dz + rsin(r)df has overtwisted disk D = {r = 7,z = 0} since {|,—x
ker(—dz) = span{0,, 0, }.

Let K C (M, &) be a positive transverse knot. Then K has a model neigh-
borhood of the form
S x {0} c S§ x D3

for some & > 0, where D? has polar coordinates (r,¢) and rectangular coordi-
nates (z,y) and the contact form on S* x D? is

a =df +r?dp = df + xdy — ydx.

As we saw in Thurston-Winkelnkemper’s proof, another contact structure on
S1 x D? can be specified by

of = f(r)do + g(r)d¢

as long as (f(r),g(r)) = (1,7%) near r = 6 and fg' — gf’ > 0 for all r. We
will take functions f,g which satisfy (f(r),g(r)) = (—=1,—r?) near r = 0; a
parametric graph of (f,g) would start by moving downward from (—1,0) and
traveling counterclockwise around the origin, avoiding the positive y-axis, until
it reaches (1,62) moving upward at r = 4.

Definition 3. Replacing & = ker(a) with £’ = ker(«’) on a neighborhood of K
is called performing a Lutz twist along K.



Lemma 4. Performing a Lutz twist results in an overtwisted contact structure.

Proof. Let rog € (0,8) be a point where g(rg) = 0. At a point p = (g, (ro, ¢0)) €
S x D2, we have
&, = span(d,, dy)

which is the tangent plane to the disk Dy = {(6q, (v, ¢)) | r < ro, ¢ € S'}. Thus
Dy is an overtwisted disk. O

A co-orientable contact structure £ on M has trivial normal bundle, so TM =
EBR, and since M is parallelizable we have wy(§) = w2 (€) Bwe(R) = we(TM) =
0. Thus the Euler class of any contact structure is even.

Lemma 5. A Lutz twist along the positively transverse knot K C (M, ) changes
the Euler class of €& according to the formula

e(¢') — e(§) = —2PD(K).

Proof. Take a generic section s of £ which equal to 70, = 29, +y0, in the model
neighborhood of S! x D2, where

¢ = ker(df + r’de).

Let ¢ : [0,1] — R>¢ be a smooth, nondecreasing function which equals 0 for
T<%and1f0rr>%. Then

s'=1p(r) - r0r + (L= 1(r)) - 7(g(r) 0 — f(r)0s)

is a section of & = ker(f(r)df + g(r)d¢) which is equal to 79, = s near r = 1,
nongzero for r > %, and

g(?")ae - f(r)6¢ = —7“380 + r8¢, = —r3(’)9 + (_yaw + xay)

for r < % In particular, s and s’ vanish to first order along the positive knots
K in € and —K in €, respectively, and they are equal away from S* x D?. Since
the Euler class is Poincaré dual to the zero set of a generic section, we have
e(§) — PD(K) =e(¢') + PD(K), as desired. O

Corollary 6. Every even element e € H*(M;7Z) is the Euler class of a contact
structure on M.

Proof. We know that M admits some contact structure &, and e(£) is even, so
let ¢ be a cohomology class satisfying e(£) — e = 2c. We can find an embedded
link . € M which is Poincaré dual to ¢ — let L be the zero set of a generic
section of the complex line bundle over M with first Chern class ¢ — and then
perform Lutz twists along each component of L to get a new contact structure
& with e(&') = e(€) —2c=e. O



If we perform a Lutz twist along K, the new contact form on S' x D? at
r =0 is given by
o|y=o = —df — r*d¢ = —a,—o

and so K switches from positively transverse to negatively transverse (or vice
versa). If we perform another Lutz twist along —K, then the result £” is still
overtwisted; we claim that it is homotopic to £ as a plane field. We can describe
the composition of these, a full Lutz twist, as replacing the contact form

o =df +r2dg

on S! x D? with

o = f(r)d0 + g(r)dg,
where (f,g) = (1,7%) for r € [0,¢] and r € [1 — ¢, 1] and the graph of (f,g)
travels once around the origin. Let x(r) : [0,1] = R>( be positive on [¢,1 — €]
and supported on [§,1 — §]. Then we define the family of 1-forms

ay = x(r)dr + (1 —t)a + ta”.

Clearly a; = a = o for r € [0, §] U [5,1], so ker(ay) is fixed near 9(S* x D?)
and «; is nonzero everywhere. Thus ker(ay) gives a homotopy of plane fields
from & to £”. Since £” is overtwisted just as in the case of a simple Lutz twist,
we have proven:

Proposition 7. FEvery contact structure is homotopic as a 2-plane field to an
overtwisted contact structure.

There is a natural inclusion
{overtwisted contact structures} — {2—plane fields}

which, according to a celebrated theorem of Eliashberg, is a homotopy equiva-
lence. We will eventually prove that it gives a bijection on 7y of each space, i.e.
that there is a unique overtwisted contact structure up to isotopy in each ho-
motopy class of plane fields. The surjectivity part is due to Lutz; the injectivity
is much harder and will be proven later. In order to prove surjectivity, we must
first understand how to classify 2-plane fields on a closed 3-manifold M.

Since a co-oriented plane field can be uniquely determined by its normal
vector at each point and TM = M x R3, there is a natural one-to-one corre-
spondence of homotopy classes

{2—plane fields} « [M, S?].

The Pontryagin-Thom construction puts [M, S?] in one-to-one correspondence
with framed cobordism classes of framed links as follows: given a smooth map
f: M — S? we pick a regular value ¢ of f and a fixed basis b of 7,5% and
associate to f the link Ly = f~1(c) C M with basis f*b for the normal bundle
of Ly. Conversely, given a framed link L C M, we define the map fr, : M — S?
by projecting an open neighborhood L x int(D?) onto int(D?) = S?\{p} and
then sending the complement of this neighborhood to p.



Lemma 8. Let & and & be plane fields on M with associated framed links L,
and Le,, and define

d*(&1,&) = PD(Lg,) — PD(Lg,) € H*(M; Z).

Then & and & are homotopic on the complement of a 3-ball if and only if

d2(£17§2) =0.

Proof. If d*(&1,&) = 0 then L¢, and Lg, are homologous, so there is an un-
framed cobordism W C M x I from L¢, to L¢,. If we remove a small disk from
W then we can extend the framing of each L, to a trivialization of N(W\D?),
so W gives a framed cobordism from L¢, to L¢, U U, where U, is the unknot
with framing n. Since each L¢, is a homotopy invariant, it follows that &; can
be homotoped to agree with & away from U, so the £; are homotopic on the
complement of a ball containing a neighborhood of U,,.

Conversely, if {1|anps ~ &l ps then after a homotopy we may assume
that & = & except on B3, and so Lg, U L is cobordant to Lg, U LY, for some
links L, C B%. We may fill in Seifert surfaces for L} and L} to get a cobordism
from L¢, to Le,, so [L¢,] = [Lg,] and d?(&1,&2) = 0. O

If d?(¢1,&) = 0, then we may assume after a homotopy that & and &
coincide except on some ball B3. We then construct a map

f:8%—=5°

as follows: identify the upper hemisphere of S with B3 and let f be the normal
vector to &1|ps there; then identify the lower hemisphere with —B? and let f
be the normal vector to &3|ps there.

Definition 9. The obstruction class d3(&1, &) is the Hopf invariant of the map
f: 8% = S2. It can be computed as the linking number of the preimages of two
regular values of f, or via the isomorphism m3(S5?) = Z.

Note that both d? and d® are additive invariants, in the sense that

d'(&1,&3) = d'(61, &) + d' (&2, 3).
It is also clear that & ~ & if and only if d(£;,&) = 0 and d3(&1,&2) = 0.

Proposition 10. If¢' is obtained from € by a Lutz twist along K, then d*(£,£') =
PD(K).

Proof. Let us consider a contact structure &, such that e(§y) = 0, in which
case we can trivialize T'M by oriented basis vectors x1,x2 € & and x3 € fd‘.
Construct & by a Lutz twist along a transverse knot K C (M, &p); we claim
that d?(&, &) = PD(K) as well, from which the proposition will follow using
the additivity of d2.

To see this, observe that the map fe, : M — S? is constant with image
x3. Performing a homotopy to change the trivialization of TM on the S' x D?
neighborhood of K, which had contact form

df + r’dp = db + xdy — ydx



on &, so that z1 = 0y, 2 = 0., and x3 = 0y, it is still clear that fe (p) #
—0p everywhere. Since f¢, misses the point (—1,0,0), we have L¢, = () and
PD(Lg,) = 0. On the other hand, the Lutz twist replacing the contact form on
S x D? with

F(r)d6 + g(r)ds

turns K into a negatively transverse knot with fg 1(=1,0,0) = —K (recall that
the new contact form is —df at r = 0, i.e. along K), and so Lg, = —K. Thus
d*(&0,&1) =0 — PD(Lg,) = PD(K), as desired. O

In order to prove our main theorem, we first need a fact about transverse
knots.

Definition 11. Let T C (R3,&4) be a positively transverse knot with Seifert
surface ¥. Since & is trivial over X, we may choose a nonzero section s of &g|s
and let 7" be a push-off of T in that direction. Then the self-linking number of
T is defined as

sl(T) = 1k(T,T").

Proposition 12. The self-linking number of T may be calculated as the writhe
of its front (xz—) projection.

Proof. Since & = ker(dz — ydz), we may take 9, to be a section of &. Since
T is positive, a smooth parametrization v(0) = (x(0),y(0), z(6)) satisfies 2’ >
y - x’, and so the knot must be oriented upward at any vertical tangencies;
furthermore, at a positive crossing we cannot have both strands pointing down,
because the top strand has 7',z < 0 and hence 2z’ — yz’ > 0 becomes y >
z

L = 1% > 0 while the bottom strand satisfies z’ < 0 < z’ and hence y < fj: =

X
g—i < 0, contradiction. One can check that any smooth diagram satisfying these

conditions is the front projection of a transverse knot.

Now push T off in the 9, direction, achieved by lifting it slightly off the
page on which its front projection is drawn. It is not hard to see that each
crossing contributes its sign to [k(T,T"), and so sl(T) is the writhe of the front
projection. O

It is not hard to see that there are transverse knots with si(T) = +1: for
sl = —1 we can take an unknot diagram with a single negative crossing, and for
sl = +1 we can use a right-handed trefoil. In fact, for any odd n € Z there is a
transverse knot with sl(T") = n.

Theorem 13. Let 1 be a 2-plane field on M. Then there is an overtwisted
contact structure which is homotopic to n as a 2-plane field.

Proof. We can find a positively transverse knot K with PD(K) = d?(&,7), and
then Lutz twisting &y along K gives a contact structure & with

d*(&0, 1) = PD(K) = d* (&0, n).



But then d?(&,m) = 0, so after a homotopy we may assume that & and 7
coincide outside of a ball B3. By making B? arbitrarily small, we can even
assume that it is a Darboux ball.

Now let T' C (B3,&;) be a transverse knot with self-linking number n, and
let & be obtained from &; by Lutz twisting along T'; since 1" is nullhomologous,
we have

d2<§2a77) = d2(§27§1) + d2(51»77) =0.

We wish to compute d>(&2,&;) using the trivialization of TB? inherited from
éolgs = &1|ps, where (z1,x2) is a basis of £ and x3 is the oriented normal.
The map f : S* — S? which determines d*(¢2,&;) is then equal to —x3 along
the whole lower hemisphere, and in particular it avoids a neighborhood U C S?
of (=1,0,0). Now d3(&,&) is the linking number of =T = f~1(—1,0,0) with
f71(u) for any regular value u € U, and f~1(u) is a transverse push-off of —T,
SO

d3(&5,&1) = sI(T).

In particular, given transverse knots Ty C (B3,&;) with sl(Tx) = +1 we can
perform Lutz twists along k unlinked copies of T to get & with

A3 (&9, ) = d®(€,€1) 4 d®(&1,1) = £k + d>(€1, ).

Choosing the appropriate sign and value of k, we get a contact structure £» with
the same d? and d® invariants as 7, so & ~ 7. O

Next time we will begin to study embedded surfaces in contact manifolds.
Among other things, this will show us that tightness is a much more restrictive
condition: for example, only finitely many elements of H?(M;Z) can be the
Euler class of a tight contact structure, whereas we have seen that any even
element is the Euler class of an overtwisted one.



