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Our goal today is to begin to prove the following theorem of Eliashberg [1],
following a recent proof by Huang [2] which relies heavily on convex surface
theory and bypasses.

Theorem 1. Let Y be a closed, oriented 3-manifold. If overtwisted contact
structures ξ and ξ′ on Y are homotopic as plane fields, then they are isotopic.

In this lecture, we will work to classify overtwisted contact structures on
S2 × I which have convex boundary and a tight neighborhood of S2 × ∂I, i.e.
one dividing curve on each component S2 × {0, 1}.

The following generalization of the Right-to-Life Principle shows that we
have much more freedom to find bypasses in an overtwisted contact structure.

Lemma 2. Let Σ ⊂ (M, ξ) be a surface whose complement is overtwisted. If
α ⊂ Σ is an admissible Legendrian arc for a bypass attachment, then there is a
bypass in M\Σ attached to Σ along α.

Proof. Let D ⊂M\Σ be an overtwisted disk. Take a parallel copy α′ of α with
the same endpoints and with interior off of Σ; then α∪α′ bounds a Legendrian
disk and tb(α∪α′) = −2, so if we replace α′ with the connected sum β = α′+∂D
then tb(α ∪ β) = −1 and α ∪ β bounds a disk which is the desired bypass.

Consider the effect of attaching bypass triples, which are triples of bypasses
attached to some surface Σ in a neighborhood of an admissible arc, one after
the other, as follows:

a
a'

a''

We will let σa, σa′ , and σa′′ denote the three bypasses and ∆a = σa ◦ σa′ ◦ σa′′

the union of all three. Note that ∆a does not change ΓΣ except by an isotopy
supported near a.

Definition 3. A minimal overtwisted ball is an overtwisted (B3, ξ) obtained
from attaching a bypass triple to the standard (B3, ξst).
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We claim that this is well-defined. Since (B3, ξst) is tight, its boundary S2

has a single dividing curve, and up to isotopy there are only two choices a and
b of attaching arcs for the bypass triple; one (say a) is a trivial bypass arc and
the other is a forbidden arc. Then in ∆a = σa ◦σa′ ◦σa′′ , attaching σa does not
change the contact structure, and a′ and a′′ are isotopic to b and b′ respectively,
so ∆a = σb ◦ σb′ . At this point b′′ is a trivial arc, so ∆a = σb ◦ σb′ ◦ σb′′ = ∆b

as desired. We also see that these are overtwisted by Giroux’s criterion, since
after attaching σb the boundary S2 has three dividing curves.

Proposition 4. Let (Y, ξ) be a contact manifold with boundary, and let α and
β be admissible arcs for bypasses on ∂Y . If ξa and ξb are the contact struc-
tures obtained by attaching bypass triangles ∆a and ∆b, respectively, then ξa is
isotopic to ξb rel boundary.

Proof. It suffices to assume that a and b are disjoint, since otherwise we can take
an arc c disjoint from either one and apply the proposition to the pairs (a, c)
and (c, b). We also describe the bypass triangles differently as follows: identify
an I-invariant collar neighborhood ∂Y × [−1, 0], with a = a × {0}, and if Da

is a small neighborhood of a ⊂ ∂Y then we let Na be the ball D × [− 2
3 ,−

1
3 ]

after rounding corners, and note by Giroux’s criterion that Na is tight. If we
cut out Na and glue in a minimal overtwisted ball, then the result is isotopic to
the result of attaching ∆a instead.

Let γ be a Legendrian arc connecting the balls Na and Nb with ∂γ ⊂ Γ∂Na
∪

Γ∂Nb
. If we let N = Na ∪ N(γ) ∪ Nb and round corners, the result is a tight

B3, and so replacing exactly one of Na and Nb with a minimal overtwisted ball
turns N into a minimal overtwisted ball. Since this contact structure on B3 is
unique rel boundary, it follows that ξa|N and ξb|N are isotopic rel ∂N , and we
can extend this isotopy trivially to the rest of Y .

We can therefore write ∆ to denote a bypass triangle attachment along any
admissible arc, since the result does not depend on the choice of arc.

Corollary 5. Bypass attachment σa commutes with bypass triangle attachment
∆ for any a.

Proof. Attach ∆ along some admissible arc disjoint from a, where it is clear
that they commute.

Definition 6. Two contact structures ξ and ξ′ on S2× [0, 1] are stably isotopic
if ξ ◦∆n is isotopic to ξ′ ◦∆n for some n ≥ 0.

Definition 7. A contact structure ξ on S2 × [0, 1] is induced by an isotopy if
each S2 × {t} is convex, t ∈ [0, 1].

We make sense of this definition as follows: let φt : S2 → S2 be an iso-
topy for which φ0 = id and (φt)∗ΓS2×{0} = ΓS2×{t}. If ξ0 is the I-invariant
contact structure on S2 × I with dividing set ΓS2×{0} on each sphere, then the
diffeomorphism Φ(x, t) = (φt(x), t) of S2 × I gives a contact structure Φ∗(ξ0)
for which each S2×{t} is convex and has the same dividing set with respect to
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both Φ∗(ξ0) and ξ. It now follows that these contact structures are isotopic rel
S2 × {0, 1}.

Lemma 8. Let (S2 × [0, 1
2 ], ξΦ) be induced by an isotopy φt, and let (S2 ×

[ 1
2 , 1], σa) be the contact structure obtained by attaching a bypass along an ad-
missible arc a ⊂ S2× [ 1

2 , 1]. Then a′ = φ−1
1/2(a) is an admissible arc on S2×{0},

and the contact structures ξΦ◦σa and σa′◦ξΦ on S2×I are isotopic rel boundary.

Proof. Let D ⊂ S2 × [ 1
2 , 1] be the bypass attached along a, and extend D to

a disk D′ = D ∪ Φ(a′ × [0, 1
2 ]). Then tb(∂D′) = tb(∂D) = −1, so D′ is still a

bypass. Now if we remove a neighborhood of (S2×{0})∪D′ from S2× I, then
the rest can still be foliated by convex surfaces so that the contact structure is
induced by Φ, so the resulting contact structure is indeed σa′ ◦ ξΦ.

Proposition 9. Let ξ be an overtwisted contact structure on S2 × [0, 1] for
which the spheres S2×{0, 1} are convex with a single dividing curve. Then ξ is
stably isotopic to some ∆n.

Proof. We know that up to isotopy, S2 × {0, 1} have tight neighborhoods and
that there are only finitely many times ti at which S2 × {t} fails to be convex.
At each of those times we can describe ξ as a bypass attachment along some arc
ai, so that ξ = σa1 ◦σa2 ◦ . . .◦σak

. Define the complexity of this sequence as the
maximum number of dividing curves on any convex S2 ×{t}. Note also that in
between each of the ti, the contact structure is induced by an isotopy, so we can
use the previous lemma to pull up all of the attaching arcs until they are in a
neighborhood of S2 × {1} and the rest of the contact structure on S2 × [0, 1] is
induced by an isotopy. We classify each arc ai into one of four types depending
on how it intersects the dividing set:

Ia II IIIIb

We claim that up to isotopy, we can assume that there are no arcs of type
Ib. If we have a type Ib arc a which is not a trivial bypass arc, then the small
half-disk cut off inside the dividing arc shown above must contain some dividing
curves, and we can use one of them to find an admissible arc b as shown below.

a

b b

a
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The arc b becomes trivial after we attach the bypass along a as shown in the
middle figure, so by the Right-to-Life Principle there was already a bypass along
b of type II at the beginning, and we have σa = σa ◦ σb = σb ◦ σa. After we
attach the bypass along b, we have the figure at right in which the arc a is of
type II. Thus we can replace each nontrivial type Ib arc with a pair of type II
arcs, and each trivial arc can be replaced by a contact structure induced by an
isotopy and thus removed from the sequence.

Similarly, we can also assume there are no arcs of type II. Indeed, the upper
half of the disk which is separated by a nontrivial type II arc a must contain
some other dividing curves. We can use one of these other dividing curves to
find an admissible arc b of type III as shown below on the left:

a

b

a

b

The middle picture shows the result of isotoping across the bypass along a.
Now b becomes a trivial arc, so by the Right-to-Life Principle there is a bypass
along b, and since b is disjoint from a this bypass was there all along. We have
σa = σa ◦ σb = σb ◦ σa, and if we attach the bypass along b first then a becomes
an arc of type Ia. Thus we have replaced the type II arc with a type III arc
followed by a type Ia arc.

At this point we have described the contact structure by a sequence of arcs,
all of which are either type Ia or type III. Note that type Ia arcs increase the
number of dividing curves by 2, and type III arcs decrease it by 2. If we achieve
the complexity c (i.e. the maximum number of dividing curves) in between times
tr and tr+1 and c ≥ 5, then it follows that tr must be type Ia and tr+1 must
be type III. Suppose for now that ar and ar+1 are disjoint, so that we can view
them both as curves on the sphere S2 × {tr − ε} and σar

◦ σar+1
= σar+1

◦ σar
,

and let γ ⊂ S2 be the dividing curve which intersects ar. (We claim that this
can be achieved by possibly adding in some bypass triangles.)

If γ ∩ ar+1 contains at most one point, then we may interchange σar+1
and

σar
. This preserves the types of both attaching arcs, but now we first decrease

the number of dividing curves and then increase it again, so the number of
dividing curves at each step from time tr− ε to time tr+1 + ε is c− 2

IV→ c− 4
I→

c − 2. If instead |γ ∩ ar+1| = 2, then if we attach σar+1 first it must be a type
II bypass by definition; afterward we can check the arc ar becomes type III as
well. Then σar+1

◦ σar
is a pair of type II bypasses, which can each be turned

into a type III followed by a type Ia, and so the number of dividing curves at
each stage is c − 2

III→ c − 4
Ia→ c − 2

III→ c − 4
Ia→ c − 2. In either case we avoid

having c dividing curves at any level by exchanging the bypasses and performing
an isotopy.

Now suppose instead that |γ ∩ ar+1| = 3. Since each point of γ ∩ ar+1 must
belong to a different dividing curve after attaching σar

, there must be one point
of γ∩ar+1 in each component of γ\ar. If the half-disk outside γ and cobounded
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by parts of γ and ar does not contain any other dividing curves, then we may
find a trivial arc d such that ar, ar+1, d form a bypass triple:

ar

ar+1

d

ar+1

d d

(We have shaded the inside of the disk on the right for clarity.) In particular,
up to isotopy σar

◦σar+1
= σar

◦σar+1
◦d = ∆, and since ∆ commutes with any

bypass we can move it to the end of the sequence. Otherwise we can find a closed
dividing curve inside that half-disk, take an admissible arc b which intersects
that curve once and γ twice, and attach a bypass triangle ∆b = σb ◦ σb′ ◦ σb′′ :

ar

ar+1

b

ar

ar+1

b

b'

b''

Now because the attaching arcs are all disjoint we have σar
◦ σar+1

◦ ∆b =
σb ◦ σar

◦ σar+1
◦ σb′ ◦ σb′′ , and one can show that all five of these bypasses are

type II, so again we can replace them all with type III bypasses followed by
type Ia bypasses and the number of dividing curves will never reach c in this
sequence of moves.

By repeating this argument at any stage where we reach the maximum num-
ber c ≥ 5 of dividing curves, we eventually show that ξ◦∆l = σa′

1
◦ . . .◦σa′

k′
◦∆l′

for some l, l′ ∈ N, where the complexity of σa′
1
◦ . . . ◦ σa′

k′
is at most 3. If it

is 1 then ξ ◦ ∆l = ∆l′ and we are done. Otherwise it is exactly 3, and the
bypasses appear in pairs σa ◦ σb where a and b are disjoint arcs of types Ia and
III respectively. But then since #ΓS2 = 1 right before attaching σa, we must be
in the above situation where there is a trivial arc d completing a bypass triple
a, b, d, and so σa◦σb = σa◦σb◦σd = ∆. It follows that ξ◦∆l is stably equivalent
to some ∆l′′ , completing the proof.

The one claim we did not justify in the proof is that given consecutive
bypasses σar ◦ σar+1 of types Ia and III, we can assume up to stabilization that
they are disjoint:
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Lemma 10. Let a be an attaching arc of type Ia on a convex (S2,Γ) resulting
in a new dividing set Γ′, and let b be an attaching arc of type III on (S2,Γ′).
Then there is an attaching arc b′ on Γ, disjoint from a, such that σa ◦ σb is
stably isotopic to σa ◦ σb′ ◦∆l ◦ ξΦ for some integer l and isotopy Φ.

See [2, Section 6] for the proof.
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