Math 273 Lecture 18

Steven Sivek

March 30, 2012

We have already seen that contact (± 1) -surgery suffices to describe any closed contact 3-manifold. In this lecture we will first prove an interesting consequence related to symplectic filling and then study how more general $\frac{p}{q}$ -surgeries relate to ± 1 -surgeries.

Proposition 1. Let (Y,ξ) be a contact structure with weak symplectic filling (X,ω) . Then (X,ω) embeds symplectically into a closed symplectic manifold.

Proof. We saw last time that there is a Legendrian link $L \subset (Y,\xi)$ such that Legendrian surgery on L results in a Stein fillable (Y',ξ') . Recall the construction of (Y',ξ') : we first express (Y,ξ) as contact (± 1) -surgery on a link $\mathbb{L}_- \cup \mathbb{L}_+$ in (S^3,ξ_{st}) and then identify L as a push-off of \mathbb{L}_+ , so that (Y',ξ') is obtained from (S^3,ξ_{st}) as Legendrian surgery on \mathbb{L}_- .

We now add to $\mathbb{L}_{-} = L_1 \cup \ldots \cup L_n \subset (S^3, \xi_{st})$ a set of Legendrian right-handed trefoils $\mathbb{T} = T_1 \cup \ldots \cup T_n$, each with tb = 1, so that each T_i is linked once with L_i and not at all with any L_j , $i \neq j$. If we also do Legendrian surgery on \mathbb{T} , the result (Y'', ξ'') is still Stein fillable, but attaching the corresponding Weinstein handles to (X, ω) only gives a weak filling (X'', ω'') of (Y'', ξ'') . We can improve our situation, however, by showing that (Y'', ξ'') is also an integral homology sphere. In that case, an argument of Eliashberg discussed earlier lets us deform ω'' near $\partial X''$ by gluing on a symplectic piece of the form $\partial X'' \times [1, C]$ so that it becomes a strong filling of (Y'', ξ'') . In particular, we will have embedded (X, ω) into a strong symplectic filling of a Stein fillable contact structure.

Topologically, the group $H_1(Y'';\mathbb{Z})$ is generated by meridians of each component of $\mathbb{L}_- \cup \mathbb{T}$. However, the meridian μ_{L_i} of any L_i is homologous to the longitude λ_{T_i} of T_i , and Legendrian surgery on T_i is topologically a zero-surgery, so λ_{T_i} bounds a disk in the surgered manifold and thus $[\mu_{L_i}] = 0$. Furthermore, if we take a generic Seifert surface Σ_i for L_i and remove a small disk around each point where either T_i or some L_j intersects $\operatorname{int}(\Sigma_i)$ transversely, then the result is a surface with boundary of the form $[\lambda_{L_i}] - [\mu_{T_i}] + \sum a_j[\mu_{L_j}]$ for some $a_j \in \mathbb{Z}$, so this sum is zero in homology and by the above argument we have $[\mu_{T_i}] = [\lambda_{L_i}]$ in $H_1(Y'';\mathbb{Z})$. On the other hand, the Legendrian surgery on L_i is a topological k-surgery for some integer k, so $[k\mu_{L_i} + \lambda_{L_i}] = 0$ and thus $[\mu_{T_i}] = -k[\mu_{L_i}] = 0$. We have now shown that every generator of $H_1(Y'';\mathbb{Z})$ vanishes, as desired. Next, we note the theorem (originally due to Lisca and Matić [3] in a slightly stronger form) that any Stein domain embeds into a closed symplectic manifold. In particular, we apply this to the Stein domain $V = B^4 \cup \mathbb{H}$, where \mathbb{H} is a set of handles corresponding to the Legendrian surgery on $\mathbb{L}_- \cup \mathbb{T}$, with contact type boundary (Y'', ξ'') . This embeds into a closed symplectic manifold (X_0, ω_0) , in which (Y'', ξ'') is now a separating hypersurface of contact type, so we can use a symplectic cut-and-paste operation along Y'' to form the closed manifold $(X'', \omega'') \cup (X_0 \setminus V, \omega_0|_{X_0 \setminus V})$. Since (X, ω) embeds symplectically into (X'', ω'') , it embeds into this closed manifold as well.

Proposition 2. Let $K \subset (Y,\xi)$ be a Legendrian knot. Any contact $\frac{p}{q}$ -surgery on K, $\frac{p}{q} < 0$, can be expressed as a sequence of Legendrian surgeries.

Proof. We can assume that (Y,ξ) is actually a standard neighborhood $N = (S^1 \times D^2, \ker(\sin(\theta)dx + \cos(\theta)dy))$ of $K = S^1 \times \{0\}$. We note that any Legendrian surgeries performed inside N will preserve the tightness of ξ , because we can embed $N \subset (S^3, \xi_{st})$ where Legendrian surgeries preserve fillability. Let μ_0 be a meridian $\{*\} \times \partial D^2$ and let λ_0 be a meridian $S^1 \times \{*\}$, so that the contact framing λ_{tb} is actually given by $-\mu_0 + \lambda_0$.

Let $K_1 \subset N$ be a Legendrian knot which is topologically isotopic to Kwith $tw(K_1) = r_1 + 1 \leq -1$; we have $-(r_1 + 1)$ ways to choose K_1 by picking different stabilizations of K. Then K_1 has a standard neighborhood $N_1 \subset N$ with contact framing $(r_1 + 1)\mu_0 + \lambda_0$ and meridian μ_0 . We perform contact surgery by removing N_1 and gluing in a solid torus N'_1 , sending its meridian μ_1 to

$$\mu_0 - ((r_1 + 1)\mu_0 + \lambda_0) = -r_1\mu_0 - \lambda_0$$

and its longitude λ_1 (again, chosen so that $-\mu_1 + \lambda_1$ is the contact framing on N'_1) to μ_0 . In particular, the curve $-\mu_1 + \lambda_1$ is sent to $(r_1 + 1)\mu_0 + \lambda_0$, and there is a unique tight contact structure on N'_1 with this contact framing, so this lets us define contact surgery on K_1 . In matrix form, we have an identification

$$\left(\begin{array}{c}\mu_1\\\lambda_1\end{array}\right) = \left(\begin{array}{cc}-r_1&-1\\1&0\end{array}\right) \left(\begin{array}{c}\mu_0\\\lambda_0\end{array}\right).$$

Now we can replace N with N'_1 and repeat, using some knot K_2 with $tw(K_2) = r_2 + 1 \leq -1$, and so on; after n such surgeries we have

$$\left(\begin{array}{c}\mu_n\\\lambda_n\end{array}\right) = \left(\begin{array}{cc}-r_n & -1\\1 & 0\end{array}\right) \cdots \left(\begin{array}{cc}-r_2 & -1\\1 & 0\end{array}\right) \left(\begin{array}{c}-r_1 & -1\\1 & 0\end{array}\right) \left(\begin{array}{c}\mu_0\\\lambda_0\end{array}\right).$$

In particular, if we let $(p_{-1}, q_{-1}) = (0, 1)$ and $(p_0, q_0) = (1, 0)$ then a quick induction shows that

$$\left(\begin{array}{c}\mu_i\\\lambda_i\end{array}\right) = \left(\begin{array}{cc}p_i & q_i\\p_{i-1} & q_{i-1}\end{array}\right) \left(\begin{array}{c}\mu_0\\\lambda_0\end{array}\right)$$

where $p_i = -(p_{i-1}r_i + p_{i-2})$ and $q_i = -(q_{i-1}r_i + q_{i-2})$ for all $i \ge 1$. But then it is known that

$$\frac{p_n}{q_n} = r_1 - \frac{1}{r_2 - \frac{1}{\ddots - \frac{1}{r_n}}}$$

and this is the topological surgery coefficient, so if instead we take $\frac{p}{q} = [r_1 + 1, \ldots, r_n]$ then this procedure will perform a contact $\frac{p}{q}$ -surgery. It is not hard to check that this allows us to perform all possible contact $\frac{p}{q}$ -surgeries, since each choice of stabilizations along the way gives us a different contact structure and the total number of possibilities is exactly the number of tight contact structures on a solid torus.

We can make this procedure explicit: write $\frac{p}{q} = [r_1 + 1, \ldots, r_n]$ and let $K_0 = K$. For $i = 1, 2, \ldots, n$, then, we let K'_i be a Legendrian push-off of K_{i-1} , and let K_i be a stabilization of K'_i with $tw(K_i) = r_i + 1$. The contact $\frac{p}{q}$ -surgery is then equivalent to Legendrian surgery on the link $K_1 \cup \ldots \cup K_n$. Furthermore, if $\frac{p}{q}$ is an integer n < 0 then we see that the surgery is equivalent to a single Legendrian surgery on a (-n-1)-fold stabilization of K.

Proposition 3. Any contact $\frac{p}{q}$ -surgery on a Legendrian knot K, $\frac{p}{q} > 0$, is equivalent to a contact $\frac{1}{k}$ -surgery for some positive integer k followed by a contact r-surgery for some r < 0.

Proof. Again, we restrict to a standard neighborhood N of K; let μ be a meridian of K and λ a longitude determined by the contact framing. For any p', q' with det $\begin{pmatrix} p & p' \\ q & q' \end{pmatrix} = 1$, we can define a $\frac{p}{q}$ -surgery topologically by replacing a neighborhood $N(K) \subset N$ with another solid torus N' having meridian μ' and longitude λ' by the map $\mu' \mapsto p\mu + q\lambda$ and $\lambda' \mapsto p'\mu + q'\lambda$. The inverse of this map is $\begin{pmatrix} q' & -p' \\ -q & p \end{pmatrix}$, so it identifies $-p'\mu' + p\lambda'$ with λ and thus every tight solid torus with two dividing curves on its boundary of slope $-\frac{p}{p'}$ determines a contact $\frac{p}{q}$ -surgery.

Now take k > 0 such that $\frac{p}{q} > \frac{1}{k}$. We begin by performing the uniquely defined $\frac{1}{k}$ -contact surgery on K, replacing N(K) with a standard neighborhood N_1 of a Legendrian knot K_1 with meridian μ_1 and contact framing λ_1 by the map

$$\begin{array}{rccc} \mu_1 & \mapsto & \mu + k\lambda \\ \lambda_1 & \mapsto & \lambda. \end{array}$$

Next, we let $r = \frac{p}{q-kp} < 0$ and perform a contact *r*-surgery along K_1 . We remove a neighborhood $N(K_1) \subset N_1$ and glue in a torus N_2 with meridian μ_2 and longitude λ_2 , using the map

$$\mu_2 \mapsto p\mu_1 + (q - kp)\lambda_1$$

$$\lambda_2 \mapsto p'\mu_1 + (q' - kp')\lambda_1$$

This also identifies μ_2 with $p(\mu + k\lambda) + (q - kp)\lambda = p\mu + q\lambda$, so the end result is a topological $\frac{p}{q}$ -surgery with respect to the contact framing.

We need to check two things: first, that this procedure always results in a tight contact structure, and second, that every possible $\frac{p}{q}$ -surgery can be performed by this procedure. We know that it is tight because we can embed the $\frac{1}{k}$ -surgery on $K \subset N$ in the standard S^3 , and then the *r*-surgery is equivalent to a series of Legendrian surgeries in S^3 , so the result is tight. Furthermore, the curve $-p'\mu_2 + p\lambda_2$ is glued to λ_1 , so again there is one *r*-surgery for every tight contact structure on a solid torus with boundary slope $-\frac{p}{p'}$; this is exactly the number of contact $\frac{p}{q}$ -surgeries.

We remark that the case of integral contact *n*-surgery on *K* has a simple description once again. If n > 1, we can perform a contact (+1)-surgery followed by a $\frac{n}{1-n}$ -surgery, and $\frac{n}{1-n} < 0$, so the *n*-surgery is equivalent to a (+1)-surgery on *K* followed by a series of Legendrian surgeries. (Since $\frac{n}{1-n} = -1 - \frac{1}{n-1}$, this actually only requires two Legendrian surgeries.)

We have now described almost completely how to turn an arbitrary contact $\frac{p}{q}$ -surgery into a series of (±1)-surgeries; the only remaining detail is the case $\frac{p}{q} = \frac{1}{k} > 0$.

Lemma 4. Let $n \ge 1$. The contact $\frac{1}{n}$ -surgery on a Legendrian knot K is equivalent to contact (+1)-surgeries on each of n parallel push-offs of K.

Proof. Again we restrict to a standard neighborhood N of K. By the argument of the previous lemma, contact $\frac{1}{n}$ -surgery on K is topologically equivalent to a $\frac{1}{1}$ -surgery and a $\frac{1}{n-1}$ -surgery on parallel copies of K, so if we repeat this n-1 times then we can replace the original surgery with n contact (+1)-surgeries as desired. Now it remains to be seen that after all n surgeries we are left with something tight.

Suppose we start with the knot K, with standard neighborhood N embedded in (S^3, ξ_{st}) , and take n push-offs K'_1, \ldots, K'_n . If we take N to be small enough that it is disjoint from all the other K'_i , and then locate n push-offs K_1, \ldots, K_n of K inside N, then we can perform (+1)-surgery on each of the K_i and (-1)surgery on each of the K'_i . The result is still contact isotopic to (S^3, ξ_{st}) , since the (± 1) -surgeries cancel in pairs, so we have performed a $\frac{1}{k}$ -surgery inside Nand embedded the result in the tight (S^3, ξ_{st}) as desired.

Corollary 5. Contact $\frac{1}{k}$ -surgery is inverse to contact $-\frac{1}{k}$ -surgery for all $k \ge 1$.

References

- Fan Ding and Hansjörg Geiges, A Legendrian surgery presentation of contact 3-manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 583–598.
- [2] Fan Ding, Hansjörg Geiges, and András I. Stipsicz, Surgery diagrams for contact 3-manifolds, Turkish J. Math. 28 (2004), no. 1, 41–74.

[3] P. Lisca and G. Matić, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997), no. 3, 509–525.