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In this lecture we will begin a more in-depth look at contact surgery, starting
with the case of (+1)-surgery. In order to do so, we will first examine the tight
contact structure on S1 × S2.

Lemma 1. The unique tight contact structure ξ0 on S1 × S2 is strongly sym-
plectically fillable.

Proof. Give S1 × R3 the symplectic form ω = dθ ∧ dx+ dy ∧ dz. It is not hard
to check that the vector field

v = x∂x +
y

2
∂y +

z

2
∂z

is Liouville, i.e. that Lvω = dιvω = ω, and that it points outward along

Y = {(θ, x, y, z) | x2 + y2 + z2 = 1}

so Y ∼= S1 × S2 is a hypersurface of contact type. In particular, (Y, ker(ιvω|Y ))
is strongly fillable, and since it is then tight it must be isotopic to ξ0.

Remark 2. In fact, ξ0 is Stein fillable, though we will not need to know this.

Proposition 3 ([2]). Contact (+1)-surgery on a tb = −1 Legendrian unknot in
(S3, ξst) results in (S1 × S2, ξ0).

Proof. Topologically this is a 0-surgery on the unknot, which does produce
S1×S2, so we need to check that the resulting contact structure ξ is tight. We
will find an embedded convex torus T ⊂ (S1 × S2, ξ0) which splits S1 × S2 into
a pair of solid tori, each of which has a unique contact structure: to define T ,
we let f(φ) = ε sin(φ) for ε small and use the map

(θ, φ) 7→ (θ, f(φ),
√

1− f(φ)2 cos(φ),
√

1− f(φ)2 sin(φ)).

The vectors ∂θ and

v = −f ′(φ)∂x+

(
−ff ′√
1− f2

cos(φ)−
√

1− f2 sin(φ)

)
∂y+

(
−ff ′√
1− f2

sin(φ) +
√

1− f2 cos(φ)

)
∂z

span the tangent space of T , and if α = −xdθ+ 1
2 (ydz − zdy) is a contact form

for ξ0 then we have α(∂θ) = −f and α(v) = 1
2 (1 − f2). The characteristic
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foliation Tξ is thus spanned by ∂θ + 2f
1−f2 v, with closed orbits at φ ∈ {0, π},

and we can see that T has dividing set φ ∈ {π2 ,
3π
2 }. Since the curves φ = c

all take the form S1 × {∗}, the dividing curves on T are a pair of longitudes
ΓT = S1 × (±1, 0, 0).

Now let K ⊂ (S3, ξst) be the tb = −1 Legendrian unknot, and let N be a
standard neighborhood of K with meridian µ and Seifert-framed longitude λ.
The complement of N is a solid torus with meridian µN = λ and λN = µ, and
the contact framing determines a longitude λtb = λ−µ = µN+λN . In particular,
we can identify (S3\N, ξ|S3\N ) with one of the two components of (S1 ×S2)\T
up to contact isotopy rel boundary. When we perform contact (+1)-surgery
on K, we glue a solid torus N ′ to S3\N sending µN ′ to −(λtb + µ) = −µN
and λN ′ to µ = λN . In particular we glue −µN ′ − λN ′ to µN − λN = −λtb,
so the contact structure on N ′ has two dividing curves parallel to λtb. This
tight contact structure is unique up to isotopy and agrees with ξ0 on the other
component of (S1×S2)\T , so we conclude that the (+1)-surgery onK is isotopic
to ξ0, as desired.

We can now prove that certain contact surgeries are “inverse” to each other.

Proposition 4. Let K ⊂ (Y, ξ) be a Legendrian knot with push-off K ′, and
form (Y ′, ξ′) by a contact (−1)-surgery along K and a contact (+1)-surgery
along K ′. Then (Y, ξ) is contact isotopic to (Y ′, ξ′).

Proof. This is actually true if we replace contact ±1-surgery with contact ± 1
k -

surgery; we will not prove this in full generality, but we will at least show that
topologically a pair of contact ± 1

k surgeries cancel each other out.
It suffices to restrict our attention to a standard neighborhood N of K,

with K ′ ⊂ N , and prove that (N ′, ξ′) is isotopic rel boundary to (N, ξ). Let
µK and λK be a meridian and a curve representing the contact framing of K,
respectively. Perform a contact 1

k -surgery on K, by gluing in a contact torus
N1 = D2×S1 with Legendrian core L having meridian µL and contact framing
λL so that µL is sent to µK + kλK and λL is sent to λK . If L is the Legendrian
core of this torus, then a pushoff of L will be isotopic to λL in N1, hence to λK
in the surgered (N\N(K)) ∪ N1. In other words, L is Legendrian isotopic to
K ′, so it suffices to do a contact − 1

k -surgery on L instead.
We perform contact − 1

k -surgery on L by removing a neighborhood N(L) ⊂
N1, whose complement is diffeomorphic toN\N(K), and gluing in another torus
N2, so that the result N ′ of the surgery on K and then on L is topologically
identical to performing a single surgery on K. We take N2 to be a standard
neighborhood of a knot L′ with meridian µL′ and contact framing λL′ , and
the gluing map to send µL′ 7→ µL − kλL and λL′ 7→ λL′ . In N ′ we have
µL′ 7→ (µK + kλK) − k(λK) = µK and λL′ 7→ λK , so this single surgery is a
1
0 -surgery, i.e. N

′ is diffeomorphic to N . Since there is a unique tight contact
structure on N with the specified boundary conditions, we just need to see that
(N ′, ξ′) is tight as well.

In order to prove tightness in the case k = 1, we will embed (N ′, ξ′) into a
tight contact manifold. Let K be a Legendrian unknot in (S3, ξst) with tb = −1,
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identify N with a standard neighborhood of K, and let K ′ ⊂ N be its pushoff.
Then the contact (+1)-surgery on K ′ produces the tight S1×S2, which we have
shown to be strongly fillable, and since Legendrian surgery on K (now viewed
in S1 × S2) preserves fillability we see that the result of both contact surgeries
is a strongly fillable contact structure on S3 (in particular, it is ξst). It follows
that N ′ is tight, hence isotopic rel boundary to N .

Contact (+1)-surgery is in some sense not as nice as (−1)-surgery, however,
because it often results in overtwisted contact structures even when performed
on knots in the standard S3. For example, there is a Legendrian right-handed
trefoil with tb = 1, and contact (+1)-surgery on a stabilization of this trefoil
gives the Poincaré homology sphere with reversed orientation, but we already
know that there are no tight contact structures on this manifold. More generally:

Proposition 5. Performing contact (+1)-surgery on any stabilized Legendrian
knot in a contact manifold results in an overtwisted contact structure.

Proof. Let K be a Legendrian knot and K ′ a pushoff, and suppose we are
performing the surgery on a stabilization K ′′ of K ′. Topologically, this surgery
has framing tb(K ′′)+1 = tb(K ′), which is also the linking number of K and K ′′,
so the obvious annulus cobounded by K and K ′′ can be capped off inside the
surgery torus by a disk. In other words, K bounds a disk inside the surgered
manifold, and the surface framing of this disk agrees with the contact framing
since the disk contains a pushoff of K, so K is the boundary of an overtwisted
disk.

Recall the definition of a Lutz twist along a transverse knot K, which has
a tight model neighborhood S1

θ ×D2
(r,φ) with contact form α = dθ + r2dφ and

D2 a disk of radius δ. (By rescaling in the r direction we can assume that
δ > 1.) We take functions (f(r), g(r)) which are equal to (−1,−r2) near r = 0
and (1, r2) for r > 1 − ε, such that when graphed parametrically (f, g) travels
counterclockwise around the origin and avoids the positive y-axis. Then we
replace ξ = ker(α) with ξ′ = ker(α′), where

α′ = f(r)dθ + g(r)dφ,

on S1 ×D2. We showed that by repeatedly Lutz twisting along knots, we can
construct a contact structure in any homotopy class of plane field on a manifold.

Proposition 6 ([1]). A Lutz twist can be performed by two contact (+1)-
surgeries.

Proof. There is a unique r0 ∈ (0, δ) where f(r0) = −g(r0) > 0; let N be the solid
torus S1×D2

r0 . On a torus Tr ⊂ N of radius r ≤ r0, where α′ = g(r)∂θ−f(r)∂φ,
the characteristic foliation is linear of slope − g(r)

f(r) , so as r increases from 0 to
r0 the slope decreases from 0 to −∞ and then from ∞ down to 1. On the other
hand, the characteristic foliation of a torus of radius r in (S1 × R2, ker(α)) is
linear of slope −r2, so if we apply several Dehn twists along a meridian of N
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then its slopes are all negative and thus we can embed (N, ξ′) in (S1 × R2, α).
This implies that (N, ξ′) is tight, and we can perturb ∂N to be convex with two
parallel dividing curves of slope 1.

After the perturbation, (N, ξ′) is now the unique tight contact structure
determined by Γ∂N , and in particular it is a standard neighborhood of a Legen-
drian knotK with contact framing µ+λ where µ = {∗}×∂D2

r0 and λ = S1×{∗}.
We perform a contact (−1)-surgery alongK, removing a smaller standard neigh-
borhood N(K) ⊂ N and gluing in a solid torus N ′ = S1×D2 by a map sending
µN ′ 7→ µ− (µ+ λ) = −λ and λN ′ 7→ µ. Let M denote the surgered manifold.

The torus T1 of radius 1 in N has slope −1, so if we perturb it to be convex
then it bounds a unique tight contact structure in N which we can identify as a
standard neighborhood of a Legendrian knot. Then T1 and the perturbation ∂N
of Tr0 cobound a minimally twisting T 2 × I with boundary slopes decreasing
from 1 to −1. These dividing curves are parallel to µ + λ and µ − λ, which
from N ′ are identified with −µN ′ + λN ′ and µN ′ + λN ′ respectively. Thus
N ′ ∪ (T 2× [r0, 1]) is obtained by taking a tight solid torus with boundary slope
−1 and gluing on a minimally twisting T 2 × I with boundary slopes −1 and 1,
so that the result is the unique tight solid torus with boundary slope 1.

In summary, the Lutz twist and Legendrian surgery correspond to removing
the neighborhood (S1 × D2

1, ξ) of a Legendrian knot K0 with contact framing
µ − λ and gluing in a tight solid torus N ′′ by a map sending µN ′′ to −λ =
µ− (µ+ λ). This is precisely a contact (+1)-surgery along K0, and if we undo
the Legendrian surgery along K by performing another (+1)-surgery on a push-
off of K then we are left with the Lutz twist, so we conclude that the Lutz twist
is equivalent to these two (+1)-surgeries.

Using contact surgeries, it is easy to see that every closed 3-manifold Y
admits a contact structure: we express Y in terms of integral surgeries on some
link L ⊂ S3, and then take a Legendrian representative of L in ξst. After
stabilizing each component Li ⊂ L so that tb(Li) is less than the corresponding
surgery coefficient ci, we perform contact (ci− tb(Li))-surgery on each Li to get
a contact structure on Y . In general the contact surgery may not be uniquely
defined, and the result will often be overtwisted, but it does provide a contact
structure. We can refine this result as follows:

Theorem 7. For any contact structure (Y, ξ), we can find a Legendrian link
L = L− ∪ L+ in (S3, ξst) such that ξ is the result of contact (−1)-surgery on
each component of L− and contact (+1)-surgery on each component of L+.

Proof. Let U be a Legendrian unknot in (S3, ξst) with tb(U) = −2, and let U ′
be a push-off of U . Let (S3, ξot) be the result of a contact (+1)-surgery on U ′,
which is overtwisted by Proposition 5.

Now let (Y, ξ′) = (Y, ξ)#(S3, ξot). There is a link L ⊂ Y for which some
integral surgery on each component Li ⊂ L produces S3. We can Legendrian
realize L with respect to ξ′ so that the contact framing on Li is one less than
the surgery framing: given an initial Legendrian realization, we can decrease the
framing on any component by stabilizing it or increase the framing by taking
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the connected sum with the tb = 0 boundary of an overtwisted disk. This
means that we have a Legendrian link L ⊂ (Y, ξ′) for which contact (+1)-
surgery on every component gives some (possibly overtwisted) contact structure
(S3, ξ1). Since we can get from (Y, ξ) to (Y, ξ′) by a contact (+1)-surgery on
U ⊂ (S3, ξst) ⊂ (Y, ξ), then, we can do contact (+1)-surgery on the link L ∪ U
to get from (Y, ξ) to (S3, ξ1), hence Legendrian surgery on a push-off of L ∪ U
inside (S3, ξ1) will produce (Y, ξ). If ξ1 is actually ξst then we are done, and
otherwise ξ1 is overtwisted.

We have reduced the problem to the case of an overtwisted contact structure
ξ1 on S3. We can perform a series of Lutz twists to turn ξ1 into an overtwisted
contact structure homotopic to ξot, and by Eliashberg’s classification of over-
twisted contact structures (which we have not proved yet) this contact structure
must actually be isotopic to ξot. Now Proposition 6 gives us a Legendrian link
L ⊂ (S3, ξ1) for which contact (+1)-surgery on L results in ξot, so equivalently
we can do Legendrian surgery on a link L′ ⊂ (S3, ξot) to construct (S3, ξ1).
Letting L− = L′ and L+ = U ′ finishes the proof.

We have actually shown something stronger: we can assume that L+ has at
most one component. (In fact, if L+ is empty, we can take some knot K and a
push-off K ′ and then add K to L− and K ′ to L+ so that L+ has exactly one
component.)

Thus any contact structure on a closed 3-manifold can be described by a
contact (+1)-surgery on some Legendrian knot in a Stein fillable contact mani-
fold. Using the fact that Legendrian surgeries correspond to Weinstein 2-handle
cobordisms, we immediately conclude as in [3]:

Corollary 8. Given any contact manifold (Y, ξ), there is a symplectic cobordism
from (Y, ξ) to a Stein fillable manifold.

By a symplectic cobordism from (Y0, ξ0) to (Y1, ξ1) we mean a symplectic
manifold (X,ω) with contact type boundary, where ∂X = −Y0 tY1 and Y0 and
Y1 are ω-concave and ω-convex respectively.

Proposition 9. If (Y, ξ) is overtwisted and (Y ′, ξ′) is arbitrary, there is a sym-
plectic cobordism from (Y, ξ) to (Y ′, ξ′).

Proof. If (Y, ξ) is overtwisted then we can find a link L ⊂ Y on which some
integral surgeries produce Y ′, and then as before we can find Legendrian rep-
resentatives of L for which the surgery framings are one less than the contact
framings, so we can get a contact structure (Y ′, ξ′′) by a Legendrian surgery in
Y . We can also take L to avoid any overtwisted disks in Y , so that ξ′′ is over-
twisted as well. Then we can get from ξ′ to ξ′′ by a series of Lutz twists (again,
this assumes the theorem that there is a unique overtwisted contact structure
in each homotopy class of plane field), hence by contact (+1)-surgeries on some
Legendrian link in (Y ′, ξ′), so equivalently some Legendrian surgeries on a link
in (Y ′, ξ′′) produce (Y ′, ξ′) as desired. Thus we have a Legendrian link in (Y, ξ)
for which Legendrian surgery results in (Y ′, ξ′).

5



In both cases the symplectic cobordisms can actually be taken to be Stein
cobordisms, since they are composed of Weinstein handles.

If (Y, ξ) is overtwisted, then we can find a symplectic (or Stein) cobordism
W from it to (S3, ξst). In particular, we can then identify a Darboux ball
(B4, ω) with contact-type boundary in any closed symplectic 4-manifold (X,ω)
and glue W to X\B4. This gives us a symplectic manifold with ω-concave
boundary (Y, ξ). On the other hand, we know that finding such a manifold with
ω-convex boundary (Y, ξ) would be impossible because that would make (Y, ξ)
strongly symplectically fillable, hence tight.
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