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Let P = −Σ(2, 3, 5) be the Poincaré homology sphere with reversed orien-
tation. In this lecture we will see that P does not admit any tight contact
structures, following a proof by Etnyre and Honda [1] and its generalization by
Lisca and Stipsicz [4, Section 2]. We will use the description of P as a Seifert
fibered space over S2 with three singular fibers and Seifert invariants (− 1

2 ,
1
3 ,

1
5 ),

but in general we recommend the paper [3] for an introduction to many different
constructions of the Poincaré sphere.

Definition 1. A Seifert fibered space M over S2 with invariants ( β1

α1
, . . . , βn

αn
)

is a 3-manifold containing solid tori V1, . . . , Vn whose complement is M\ ∪ Vi =
S1 ×Σ, where Σ is a sphere with n punctures. Each Vi is glued to S1 ×Σ by a
map Ai : ∂Vi → −∂(M\Vi) of the form

Ai =

(
αi γi
−βi δi

)
,

where γi, δi ∈ Z and Ai ∈ SL2(Z). Here the coordinates on Vi are (1, 0) in the
meridional direction and (0, 1) in the longitudinal direction, and the coordinates
on −∂(M\Vi) are (0, 1) in the S1-direction and (1, 0) along the Σ -direction. The
cores Fi of each torus Vi are called the singular fibers of M .

It is straightforward to check from the definition that P can be described by
the following surgery diagram:

0

2

-3

-5

In fact, by the series of Kirby moves shown below we see that P can also be
described as the result of +1-surgery on the right handed trefoil, although we
will not need this fact.
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For P we can choose the three singular fibers to have gluing maps

A1 =

(
2 −1
1 0

)
, A2 =

(
3 1
−1 0

)
, A3 =

(
5 1
−1 0

)
.

Let ξ be a tight contact structure on P . If we take disjoint Legendrian repre-
sentatives Fi of the singular fibers with twisting number mi < 0 and let Vi be a
standard tubular neighborhood of Fi, then each ∂Vi is a convex torus with two
parallel dividing curves of slope 1

mi
, and so as seen on −∂(P\Vi) the dividing

slopes Ai · (mi, 1)T are m1

2m1−1 , −
m2

3m2+1 , and −
m3

5m3+1 . Our first goal is to find
a standard form for each Fi and Vi.

Lemma 2. We can find representatives Fi of the singular fibers F2 and F3 so
that m2 = m3 = −1.

Proof. Assume that m2 and m3 are both negative. Use Giroux flexibility to
give both ∂(P\V2) and ∂(P\V3) vertical ruling curves, and let A be a properly
embedded annulus in S1 × Σ whose boundary consists of a single Legendrian
ruling curve S1×{∗} on each of these tori. Then ∂A intersects the dividing sets
of ∂(P\V2) and ∂(P\V3) in 2 · |3m2 + 1| and 2 · |5m3 + 1| points, respectively,
so if these are not equal then by the Imbalance Principle we can find a bypass
attached along a vertical ruling curve of one of these tori.

If m2 < −1 and there is a bypass along ∂(P\V2), then on V2 its ruling curve
is in the homology class A−1

2 (0, 1)T = (−1, 3)T, so it has slope −3. We now recall
how the dividing slope changes on a torus after a bypass attachment: we move
counterclockwise along the Farey tessellation from −3 to 1

m2
, and the new slope

is the first point we reach which is connected to 1
m2

by an edge, namely 1
m2+1 .

This gives us a standard neighborhood of a curve F ′2 with tw(F ′2) = m2 + 1.
Similarly, if m3 < −1 and the bypass is along ∂(P\V3) then we can find a curve
F ′3 isotopic to F3 with tw(F ′3) = m3 + 1.
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Now suppose that instead 3m2 + 1 = 5m3 + 1 and there are no bypasses
along A, so that its dividing set consists entirely of horizontal curves. If we
cut P\(V2 ∪ V3) open along A and round edges, the result contains a torus (the
boundary of V2 ∪ V3 ∪ A) whose dividing curves intersect an S1 longitude in
#ΓA = |3m2 + 1| = |5m2 + 1| points and a meridian (i.e. a closed curve in Σ)
in |m2 +m3 + 1| points. In other words, the boundary slope on this torus is

−m2 +m3 + 1

3m2 + 1
= −

8
5m2 + 1

3m2 + 1
= −

(
1

2
+

m2 + 5

30m2 + 10

)
.

Note that P\(V2 ∪ V3 ∪ A) is topologically an S1 ×D2 which retracts onto V1,
and if −pq is the boundary slope then the slope as seen from V1 is determined
by A−1

1 (q, p) = (p, 2p− q), meaning it is 2p−q
p = 2 + 1

−p/q . If m2 = −5 then the
boundary slope is − 1

2 , meaning it is 0 with respect to S1×D2; but then there is
an overtwisted disk in S1×D2, which cannot happen. If instead m2 < −5 then
this slope (say, r) is strictly less than − 1

2 , which is positive (say, r′ > 0) with
respect to S1 × D2. But then (S1 × D2)\V1 is a tight T 2 × I with boundary
slopes r′ > 0 and r < 0, so we can find a convex torus inside it parallel to
S1×∂D2 with boundary slope∞. This gives rise to a vertical Legendrian curve
on that torus which misses the dividing set completely and cobounds an annulus
with one of the vertical dividing curves on V2, and so the Imbalance Principle
guarantees a bypass along V2 and we can proceed as before.

Proposition 3. Suppose we have m2 = m3 = −1 as in the previous lemma.
We can also find a Legendrian representative of F1 with m1 = 0 and a (not
necessarily standard) neighborhood V ′i ⊃ Vi (1 ≤ i ≤ 3) for which each ∂(P\Vi)
has infinite slope.

Proof. Since ∂(P\V2) and ∂(P\V3) now have slopes − 1
2 and − 1

4 , we can again
find vertical Legendrian ruling curves and an annulus A whose boundary consists
of one ruling curve from each torus. Then ∂V2 intersects the dividing set ΓA in
four points, so there are at most two bypasses in A along ∂V2. Cutting P\(V1 ∪
V2) open along A as before, we compute the boundary slope on V2 ∪ V3 ∪ A:
if the number of bypasses is zero then it is − 2

4 = − 1
2 , and if the number is

one then it is − 2
2 = −1. Just as before, these cases lead to an overtwisted

disk, which is impossible, and a convex torus S1 ×D2 with boundary slope ∞.
Similarly, if the number of bypasses is two then ∂(V2 ∪ V3 ∪ A) has boundary
slope ∞. Thus in either of the allowable cases we find a torus parallel to ∂V1

with dividing curves A−1
1 · (0, 1)T = (1, 2)T with respect to V1, i.e. with slope

2. This torus bounds V ′1 ⊃ V1 such that ∂(P\V ′1) has slope ∞, and the same
argument as before (sometimes known as the “Twist Number Lemma”) now lets
us find a curve isotopic to F1 with strictly larger twisting number as long as
m1 ≤ −1. Thus we can find a representative of F1 with m1 = 0.

Take a vertical ruling curve on ∂(P\V ′1) and find an annulus A whose bound-
ary consists of this curve and a vertical Legendrian curve on ∂(P\V2). Since
ΓA ∩ ∂V ′1 is empty, A contains two bypasses along ∂V2; if we enlarge V2 to V ′2
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by pushing its boundary across these bypasses, then ∂V ′2 has vertical dividing
curves. We repeat the same procedure with V3, pushing it across four such
bypasses to get the desired ∂V ′3 .

We remark that V ′1\V1 is minimally twisting since ξ|V ′
1
is tight, and its

boundary slopes as seen from P\V1 are 0 and ∞, so it is a basic slice. Similarly
V ′2\V2 is a union of 2 basic slices which commute with each other (i.e. the order
in which they are attached does not matter), and V ′3\V3 is a union of 4 such
basic slices. Each contact structure ξ|V ′

i \Vi
is thus uniquely determined by the

number qi of positive basic slices, and these satisfy

0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 2, 0 ≤ q3 ≤ 4.

Let Σ′ × S1 = P\ ∪ V ′i , where Σ′ is a sphere with three punctures (or
equivalently a pair of pants). Then ∂(Σ′ × S1) consists of three tori which each
have two vertical dividing curves.

Proposition 4. Fix a convex surface Σ′ = Σ′×{∗} with Legendrian boundary.
The dividing set ΓΣ′ consists of three arcs, each of which connects a different
pair of components of ∂Σ′, and furthermore the contact structure ξ|Σ′×S1 is
uniquely determined by the dividing set ΓΣ′ up to isotopy rel boundary.

Proof. Given a convex Σ′ = Σ′ × {∗}, its dividing set must intersect ∂Σ′ in six
points, i.e. ΓΣ′ contains three arcs. If one such arc is boundary-parallel, then
there is a bypass along V ′i which we may use to thicken it to V ′′i with slope
0 as viewed from ∂(P\V ′′i ). But then we can take vertical Legendrian curves
on ∂(P\V ′′i ) and ∂(P\V ′j ) for some j 6= i, and by the Imbalance Principle we
find another bypass along ∂V ′′i , so we attach it to get an even bigger V ′′′i with
slope ∞. In particular, we can now find a convex torus parallel to ∂V ′i in
V ′′′i \V ′i whose slope, viewed with respect to V ′i , is zero, and this gives rise to
an overtwisted disk. We conclude that no dividing arc on Σ′ can be boundary-
parallel, and therefore (using Giroux’s criterion to eliminate the possibility of
closed dividing curves) ΓΣ′ consists of three arcs which each connect a different
pair of components of ∂Σ′.

We now claim that ξ|Σ′×S1 is unique up to an isotopy rel boundary. To see
this, cut open along Σ′ and then take a pair of convex disks γ× I ⊂ Σ′× I such
that after edge rounding, each ∂(γ × I) intersects the dividing set of ∂(Σ′ × I)
twice. The result is a tight 3-ball, which is unique up to isotopy rel boundary,
and since each γ× I had a single dividing arc, there is a unique way to glue the
ball back together along these disks up to isotopy. In particular, the contact
structure on Σ′×S1 depends only on ΓΣ′ as desired: for example, we can apply
an isotopy away from Σ′ so that it is invariant in the S1-direction.

At this point we understand ξ completely once we know the integers qi and
the dividing set ΓΣ′ . Our goal now is to show that any choice of q1, q2, q3 must
actually result in an overtwisted contact structure. The key observation is that
if a neighborhood of Fi has a torus boundary with slope 0 as seen from Vi, then
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this neighborhood has an overtwisted disk. As seen from P\∪V ′i , these “critical
slopes” are

c1 = 1
2 , c2 = − 1

3 , c3 = − 1
5

and so any time we can find a convex torus parallel to ∂(P\V ′i ) with slope ci we
know that ξ must be overtwisted. We will find these tori by repeating a strategy
we have already used several times: we look for vertical annuli connecting pairs
of neighborhoods V ′′i and V ′′j and cut P along these annuli to get boundary tori
which achieve the critical slopes.

Proposition 5. Let Σ be a pair of pants and (Σ×S1, ξ) a tight contact manifold
with three boundary tori T0, T1, T2 each having two dividing curves of slopes p0

q ,
∞, and p2

q . Let (T0× I)∪ (T2× I) be minimally twisting collar neighborhoods of
T0∪T2 with complement (Σ′×S1, ξ|Σ′×S1) as above. If either p0 = p2 = −1 and
ξ|T0×I is isotopic to ξ|T2×I , or

p2
q < 0 and both ξ|T0×I and ξ|T2×I decompose

into basic slices of the same sign, then there is a convex annulus A ⊂ Σ × S1

whose boundary consists of vertical ruling curves of T0 and T2, and which does
not have any boundary-parallel dividing curves.

Proof. Take a tight contact structure on T 2 × I isotopic to ξ|T0×I , and along
a torus T 2 × {ε} inside an invariant neighborhood of T 2 × {0} we can remove
a standard neighborhood U ′ of a vertical Legendrian ruling. We know that
this ruling intersects ΓT 2×{ε} in 2q points, so it has twisting number −q and
thus ∂U ′ has boundary slope − 1

q . Using an annulus whose boundary consists
of vertical ruling curves on ∂U ′′ and T 2×{1}, the Imbalance Principle provides
a series of bypasses along ∂U ′ and we can enlarge U ′ until the resulting U ′′

has boundary slope ∞. But then ∂U ′′ and ∂U ′ cobound a tight T 2 × I with
boundary slopes − 1

q and ∞, and since p2
q lies in between them we can find a

convex torus in between them with slope p2
q . Let U be the solid torus we have

found with boundary slope p2
q , and let ξ′ be the contact structure on (T 2×I)\U .

Similarly, we can take a vertical annulus between vertical ruling curves on
T 2 × {0} and ∂U ′′ to find bypasses along T 2 × {0}, and if we push T 2 × {0}
across them we will get a parallel torus T with boundary slope∞. Let C be the
collar neighborhood of T 2 × {0} with boundary T , and note that C is disjoint
from U ′′. Now (T 2 × I)\U is diffeomorphic to Σ × S1, and we can take this
diffeomorphism to send T 2×{0} to T0, T 2×{1} to −T1, and ∂U to T2. We can
also arrange for it to send the collar C to T0 × I and the neighborhood U ′′\U
to T2× I; then (T 2× I)\(U ′′ ∪C) is identified with Σ′×S1, both of which have
dividing curves of infinite slope on each boundary torus.

Now we can find an annulus A of the desired form inside ((T 2 × I)\U, ξ′),
where it should connect vertical ruling curves of T 2 × {0} and ∂U : since U is
a neighborhood of a ruling curve γ × {ε} ⊂ T 2 × {ε}, where T 2 × {ε} lies in
an invariant neighborhood of T 2 × {0}, we can take A to be intersection of the
invariant annulus (γ× [0, ε]) with (T 2×I)\U . Thus it only remains to be shown
that ξ is isotopic to ξ′.

Consider a convex surface Σ′ inside Y = (T 2 × I)\(U ′′ ∪C) ∼= Σ′ × S1. The
dividing set ΓΣ′ intersects each component of ∂Σ′ in two points, so it contains
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three arcs. If one of these arcs is boundary-parallel, it would create a bypass
along a component of ∂Y , so if we push the boundary along that bypass we get
a torus of slope 0. If this torus is parallel to ∂U ′′, then since (Y, ξ′|Y ) embeds
into T0×I and the image of Σ′∩∂U ′′ bounds a disk there, this torus would give
rise to an overtwisted disk in T0 × I ⊂ Σ× S1. Otherwise this torus is parallel
to a component of T 2× ∂I. In that case we can repeat the construction of C to
find a torus parallel to and arbitrarily close to T0 with slope ∞, and the slope
0 torus we have found lies in between that one and T0 × {1}, which also has
slope∞. But this contradicts the assumption that ξ|T0×I is minimally twisting,
so ΓΣ′ has no boundary-parallel arcs. In particular Proposition 4 tells us that
(Y, ξ′) is isotopic to (Σ′ × S1, ξ).

Pushing ξ′ forward to Σ × I for ease of notation and letting A now denote
the image of A ⊂ (T 2 × I)\U inside Σ× I, we now need to see that ξ′|T0×I and
ξ′|T2×I are isotopic rel boundary to ξ|T0×I and ξ|T2×I , respectively, and we will
use their relative Euler classes to see this. Let A0 and A2 be vertical annuli with
one boundary component on T0 or T2 and the other on T1; we have 〈e(ξ′), A0〉 =
〈e(ξ′), A2〉+ 〈e(ξ′), A〉 = 〈e(ξ′), A2〉 because 〈e(ξ′), A〉 = χ(A+)−χ(A−) = 0. If
Bi = Ai ∩ (Ti × I) for i = 0, 2, then since 〈e(ξ′), Ai\Bi〉 = 0 we have

〈e(ξ′), B0〉 = 〈e(ξ′), B2〉

where in either case we have restricted ξ′ to Ti×I. On the other hand, we know
that

〈e(ξ), B2〉 = 〈e(ξ), B0〉 = 〈e(ξ′), B0〉

because ξ|T0×I is isotopic to ξ|T2×I and ξ and ξ′ agree on B0, so in particular ξ
and ξ′ have the same Euler classes on T0× I and likewise on T2× I. Since they
are minimally twisting contact structures on T 2 × I, we know that they must
therefore be isotopic and we are done.

Lemma 6. If q2 ≤ q3 ≤ q2 + 2, then ξ is overtwisted.

Proof. Let V ′′2 ⊂ V ′2 and V ′′3 ⊂ V ′3 be neighborhoods of F2 and F3 with boundary
slopes − 1

2 as viewed from P\Vi. Now q3 ≥ q2 and 4−q3 ≥ 2−q2 by assumption,
so V3 has at least as many positive basic slices as V2 and likewise for negative
slices. In particular we can assume that ξ|V ′

2\V ′′
2

is isotopic to ξ|V ′
3\V ′′

3
by shuf-

fling the basic slices of each V ′i \Vi to make sure that the V ′i \V ′′i have the same
number of basic slices of each sign.

We now have a convex annulus A connecting two ruling curves of ∂V ′′2 and
∂V ′′3 , and A has no boundary-parallel dividing curves, so if we cut along A then
∂(V ′′2 ∪V ′′3 ∪N(A)) has two dividing curves of slope − 1

2 in P\(V ′′2 ∪V ′′3 ∪N(A)).
After we reverse the orientation of this torus so that it is parallel to ∂(P\V ′1),
it has the critical slope c1 = 1

2 and so ξ is overtwisted.

In particular, it follows immediately that q3 6= 2.

Lemma 7. If q1 = 0 and q3 ≤ 1, or q1 = 1 and q3 ≥ 3, then ξ is overtwisted.
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Proof. Suppose q1 = 0 and q3 ≤ 1. Take a negative stabilization of F1 with
standard neighborhood V ′′1 ⊂ V1; this has slope −1 in V1, so ∂(P\V ′′1 ) has slope
1
3 . Similarly, F3 has a neighborhood V ′′3 ⊂ V3 for which ∂(P\V ′′3 ) has slope − 1

3 ,
and since q3 ≤ 1 we can shuffle the basic slices of V3\V ′′3 so that ξ|V ′

1\V ′′
1

and
ξ|V ′

3\V ′′
3

consist entirely of negative basic slices.
We now get a convex vertical annulus A connecting ruling curves of ∂V ′′1

and ∂V ′′3 such that ΓA has no boundary-parallel components. We cut along A
and round corners, and ∂(V ′′1 ∪ V ′′3 ∪N(A)) has two dividing curves of slope 1

3
so it yields a torus parallel to ∂(M\V ′2) with critical slope c2 = − 1

3 .
The case q1 = 1, q3 ≥ 3 is identical, with all signs of basic slices reversed.

Now if q1 = 0 then the last two lemmas show that q3 ≥ 3; either q3 = 3 and
q2 = 0, or q3 = 4 and q2 ∈ {0, 1}. Similarly, if q1 = 1 then q3 ≤ 1 and we must
have q3 < q2.

Lemma 8. If (q1, q2) is either (0, 0) or (1, 2), then ξ is overtwisted.

Proof. Let V ′′1 ⊂ V1 and V ′′2 ⊂ V2 be standard neighborhoods of F1 and F2

after stabilizing them two times and once, respectively. By assumption all basic
slices in V ′1\V1 and V ′2\V2 have the same sign, so we choose the signs of the
stabilizations to agree with this sign. The boundary slope of each V ′′i in V ′i is− 1

2 ,
so ∂(P\V1) has slope 2

5 and ∂(P\V2) has slope − 2
5 . As in the previous lemma,

we can find a vertical annulus A connecting these for which ∂(V ′′1 ∪V ′′2 ∪N(A))
has slope 1

5 , which gives a torus parallel to ∂(P\V ′3) with slope c3 = − 1
5 .

The only remaining possibilities are (q1, q2, q3) = (0, 1, 4) and (q1, q2, q3) =
(1, 1, 0).

Lemma 9. If (q1, q2, q3) = (0, 1, 4) or (q1, q2, q3) = (1, 1, 0) then ξ is over-
twisted.

Proof. Let V ′′2 ⊂ V ′2 and V ′′3 ⊂ V ′3 be neighborhoods containing V2 and V3

which both have boundary slope −1. Then V ′2\V ′′2 and V ′3\V ′′3 are basic slices,
and since we can shuffle the basic slices in V ′2\V2 (which has one basic slice
of each sign) and V ′3\V3 we can pick the slice V ′2\V ′′2 to match that of V ′3\V ′′3 .
Then ξ|V ′

2\V ′′
2

is isotopic to ξ|V ′
3\V ′′

3
, so we can find a vertical convex annulus A

connecting them with no boundary-parallel dividing curves, and as usual we cut
along A to get a convex torus of slope −1. This gives a convex torus parallel to
∂(M\V ′1) with boundary slope 1.

Let V ′′1 ⊃ V ′1 be the solid torus bounded by the convex torus of slope 1 in
∂(P\V ′1). We can compute that ∂V ′′1 has slope 1 when viewed from V ′1 as well,
so V ′′1 is a standard neighborhood of a Legendrian knot with twisting number
1; in particular we can destabilize F1 so that m1 = 1. Having done so, we can
stabilize F1 again with whichever sign we want to find a basic slice inside V ′′1 of
that sign. We pick the sign to disagree with the sign of V ′1\V1, and then shuffle
the basic slices inside V ′1 so that the new V ′1\V1 has a different sign from the
original V ′1\V1 but ∂(P\V ′1) still has slope ∞.
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We have shown that there is an isotopy sending the contact structure for
the given (q1, q2, q3) to the contact structure corresponding to (1 − q1, q

′
2, q
′
3)

for some possibly different q′2 and q′3. This isotopy fixed V ′′2 and V ′′3 but not
necessarily V ′2 and V ′3 , so we have to construct new neighborhoods V ′2 ⊃ V ′′2 and
V ′3 ⊃ V ′′3 with infinite slope. If q1 = 0 then q′3 is still at least 3, since the new
V ′3 still has the three positive basic slices of V ′′3 \V3, so the contact structure has
the form (1, q′2, q

′
3) with q′3 ≥ 3 and we already know that this is overtwisted.

Similarly, if q1 = 1 then q′3 ≤ 1, so we have a contact structure of the form
(0, q′2, q

′
3) with q′3 ≤ 1 and this is overtwisted as well.

Since every possible choice of the qi led to an overtwisted contact structure,
we conclude that there are no tight contact structures on P .

Remark 10. Lisca and Stipsicz [4] used this argument to show that for any n ≥ 1,
the Seifert fibered space over S3 with invariants (− 1

2 ,
n

2n+1 ,
1

2n+3 ) (equivalently,
the manifold obtained by (2n − 1)-surgery on the (2, 2n + 1) torus knot) does
not have a tight contact structure; the manifold P corresponds to n = 1.
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