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Last time we used Legendrian surgery to construct all [[(—r; — 1) tight
contact structures on the lens space L(p, q), where -t = [ro,...,7E]. Our goal
in this lecture is to study Legendrian surgery in more detail. First, we review
the definition of contact surgery.

Definition 1. Let K C (Y, ¢) be a Legendrian knot with meridian p and contact

framing A on ON (K) where A lies in a Seifert surface for K. We perform contact

g-surgery on K by constructing a 3-manifold

Y' = (S' x D*) Uy Y\N(K),

where the gluing map f : S x D? — ON(K) sends {*} x dD? to the curve
a4+ bA, and extending the contact structure & |m to all of Y’ by choosing

a tight contact structure on S* x D? which agrees with ¢ along the boundary.

Recall that this is not defined if % = 0, and it is uniquely defined if % = % for
any n € Z; otherwise we know from the classification of tight contact structures
on S' x D? that we have a choice of contact structure. The case £ = —1 is known
as Legendrian surgery, and has a special interpretation in terms of symplectic
manifolds originally due to Weinstein [5] which we will now examine.

Definition 2. A vector field v on a symplectic manifold (X,w) is said to be
Liowville if L,w = w. A hypersurface Y C X of codimension 1 is of contact type
if there is a Liouville vector field transverse to Y on a neighborhood of Y.

An arbitrary hypersurface Y C (X, w) determines a bundle
Ly =TY* ={v e TX|y |w(v,z) =0 for all 2 € TY'}

which is a subbundle of 7Y, and since w is nondegenerate Ly is a line bundle.
If Y is a level set ¢~!(c), where c is a regular value of ¢ : X — R, and Vg is the
vector field satisfying ¢, w = d¢, then

w(vg, x) =do(z) =0

for all z € TY and so Ly is generated by vg.



Proposition 3. The submanifold Y C X is of contact type if and only if there
is a 1-form o on'Y such that do = wly and «|r, # 0. Furthermore, if a exists
then it is a contact form.

Proof. Suppose that Y = ¢~1(c) as above. If Y is of contact type with Liouville
vector field v, then let @ = t,w|y. Then w = L,w = d(1,w), and so w|y = da.
Furthermore, let vy satisfy ¢,,w = d¢; then

a(vg) = w(v,vy) = —w(vg,v) = —dd(v)

which is nonzero since v is transverse to the level set Y = ¢~!(c), hence o, #
0.

Conversely, suppose that o € QYY) satisfies w|y = da and a|g, # 0.
Extend « to a 1-form o’ on a neighborhood N(Y) C X satisfying w = do/, and
let v be a vector field satisfying t,w = o’. Then

Low =diyw =do' =w
and furthermore

dp(v) = w(vg,v) = —w(v,vy) = —a'(vy) = —a(vy)

which is nonzero since a|r, # 0, so v is transverse to Y and therefore Y is of
contact type.

We now claim that such « is a contact form on Y if it exists. Indeed, we
can compute

1
aNda = (L,w) Awly = §LU(OJ/\LU)

and since w A w is a volume form on X and Y is transverse to v, this must be
nonzero on Y.

Finally, in general we cannot assume that Y = ¢~ !(c) because Y may be
nonseparating. However, we can always assume that there is a function ¢ : X —
R for which Y is a connected component of the inverse image of a regular value,
and then the above proof still works as expected. O

It turns out that the symplectic structure is uniquely determined near the
boundary by the Liouville vector field v and the contact structure £ = ker(«)
on Y. Indeed, there is a small collar neighborhood of Y along which the flow
®; of v determines a diffeomorphism ¢ : Y X (—¢,¢) — N(Y) by the formula
o(x,t) = ®;(z). But the symplectic structure w’ = d(e'a) on Y x R, also known
as the symplectization of (Y, &), has Liouville vector field 9; and Y =Y x {0} is
of contact type with w'|y = da, so it is easy to check that w’ = ¢*w. In other
words, a contact type hypersurface (Y,¢) C (X,w) always has a neighborhood
symplectomorphic to the symplectization of (Y ¢).

We will be concerned with symplectic 4-manifolds whose boundaries are
of contact type; we say that the induced contact structure is w-convez if the
Liouville vector field points out of Y = X along Y. In general we can cut and
paste along such manifolds as follows.



Proposition 4. Let U; C (X;,w;) be codimension-0, w;-convex submanifolds
with contact type boundaries (Y;,&) = OU;. If there is a contactomorphism
f:(Y1,&) = (Ya,&), then the manifold

(Xl \Ul ) Uy Us
admits a symplectic structure.

Proof. We need to patch together the symplectic forms w; along neighborhoods
of ;. Let a; = 1y, w; be the contact forms on Y;, and suppose that f*as = goy
where g : Y1 — R is nonzero; by rescaling ws we can ensure that 0 < g < 1. In
the symplectization of (Y1,&;1), we have Y1 =2 Y; x {1} and Y2 2= graph(ln(g)).
Each of these is of contact type and has a neighborhood N; symplectomorphic
to a neighborhood of QU;. If these neighborhoods cobound a region V' C Y7 xR
which is diffeomorphic to Y7 X R, then using these symplectomorphisms gives us
a symplectic manifold (X;\U;)UV UUs, which is diffeomorphic to (X;\U;)UUs,
as desired. O

One of the most interesting special cases of this procedure is gluing a We-
instein 2-handle to a symplectic manifold with contact type boundary. Given
the standard symplectic structure w = > dz; A dy; on R*, consider the region
H defined by the inequalities

f=@i+23) - (Wi+us) > -1

g=(@i+25)——(vi+u3) < 5.

[N R

The gradient of f is v = 2210, — 110y, + 2220, — Y20,,, and
tyw = 2z1dy1 + y1dry + 222dys + Yodxo

satisfies L,w = di,w = w, so v = Vf is a Liouville vector field. It is transverse
to the hypersurface f=1(—1) since df (v) = (Vf,v) = |v|? > 0 away from the
origin. Furthermore, v is transverse to g~ (§) since we can compute

€ €
(Wi +y3) =49+ -(¥7 +v3)

dg(v) = (Vg,v) = 4(2] + 23) — 3 3

and so along g~ (%) we have dg(v) = 2¢ + $(yf + y3) > 0. Therefore Y = 0H

is of contact type, with contact form o = t,w|y, and the Liouville vector field
€

v points out of H along ¢~*(§) and into H along f~*(—1).
We now claim that the attaching circle

K={z;=22=0,y7+y5 =2} C f(-1)NoH

is Legendrian. Indeed, at a point (0, 0, y1, y2) it has tangent vector w = —y29,, +
y10y2, and we evaluate

a(w) = ty(2x1dy1 + y1dxy + 2x0dys + yodzs) = 0.



Similarly, the circle

€ €
K'={a}+a} = 3 =y2=0}C 9_1(§> NoH
is Legendrian since a(w’) = 0 where w’ is the tangent vector —x20,, + 210, at

(xla I, Oa O)

Theorem 5. Let (Y, &) be the w-convex boundary of (X,w), and let L CY be
a Legendrian knot. Then we can attach a 2-handle H to X along L so that the
resulting X' = X U H is symplectic with w'-convex boundary Y.

Proof. Give H the model symplectic structure discussed above. Since L C Y
and K C OH are both Legendrian, they have contactomorphic neighborhoods
N(L) and N(K), and by choosing e sufficiently small we can make f~(1)NoH
lie inside N(K). The above gluing proposition now says that we can form
a symplectic manifold (X U H,w’) by using the contactomorphism N(L) =
N(K), and since the Liouville vector field on H points out along g~'(%) the
new boundary Y’ will be w’-convex. O

This gluing operation replaces a neighborhood N(L) C Y with the neigh-
borhood g~ !(§) of K’ C OH; this is a solid torus, so evidently Y is the result
of surgery along L. Furthermore, the contactomorphism N (L) = N(K) is de-
termined up to isotopy rel boundary by the contact framings of L and K, so
the surgery coefficient is uniquely determined as well.

The contact framing along L can be thought of as a nonzero section of £|,
transverse to T'L. In the attaching circle K C 0H, which is defined by x; =
zy =0 and y? + y3 = 2, the tangent bundle T'L is spanned by —y20y,, + y10y,.
Since a = y1dz1 + y2dzo along K, the framing is specified by the section

_yQaml + ylaxg .

On the other hand, the framing we use to perform surgery is specified by a vector
field along K which lies in T(0H); for this we can use the constant vector field
O0z,. As we travel along K, the contact framing —y20,, + y10,, makes a full
positive twist with respect to J;,, and so the framing we get by pushing K off
of itself inside H is one less than the contact framing. But this is the framing
which we use to fill N (L), so we conclude:

Theorem 6. Attaching a Weinstein 2-handle to (X,w) along a Legendrian
knot L in its w-convex boundary Y gives a symplectic manifold (X', w'") whose
w’-convex boundary Y' is the result of a Legendrian surgery on L C Y.

If (Y, €) is the w-convex boundary of (X,w), then we know that Y is strongly
symplectically fillable (which was defined using the criterion do = wly) and
hence tight. This verifies that we are actually performing Legendrian surgery,
rather than filling in S! x D? with an overtwisted contact structure. It also shows
that Legendrian surgery preserves symplectic fillability. In fact, Eliashberg [2]
showed that the same is true for Stein fillability:



Theorem 7. If (X,w) is a Stein domain with boundary Y, then the plurisub-
harmonic exhaustion function ¢ : X — R can be extended across the handle H
so that Y = 0(X U H) is the level set of a reqular value. Therefore Legendrian
surgery preserves Stein fillability.

In fact, Etnyre and Honda [3] showed that Legendrian surgery preserves weak
symplectic fillability, which is defined as being the boundary of a symplectic
manifold (X,w) for which w|¢ > 0 and which also implies tightness. The proof
is similar to the proof that it preserves strong fillability: we note that we only
need the condition w|y = da on a small standard neighborhood of L, and so
the claim follows from:

Lemma 8. Let (X,w) be a symplectic manifold with boundary Y, and let & be
a contact structure on 'Y such that w|le > 0. Let L CY be a Legendrian knot.
Then & admits an arbitrarily small perturbation in a neighborhood N of L so
that & = ker(t,w|y) for some Liouville vector field v defined in X near N.

Proof. Let (X’,w’) be a strong filling of some other (Y’,£’) and let L' C Y’ be
Legendrian with standard neighborhood N’. We can then find a diffeomorphism
f: N — N’ which carries L to L' and satisfies f*(¢'|r/) = &|r and f*(w'|n7) =
w|n. Then f can be extended to a symplectomorphism on neighborhoods U and
U of N C X and N’ C X’. Now & can be perturbed close to L so that f*(¢')
and £ actually agree on a small neighborhood of L, and if the perturbation is
small enough then the result is still contact isotopic to & by Gray stability. But
then if w’ has Liouville vector field v’, we see that v = f*(v') is a Liouville
vector field in that small neighborhood of L on which £ = f*(£’) is the kernel
of Lyw = tf-(y f*(w'), as desired. O

In conclusion, if (Y,¢) is Stein fillable, strongly fillable, or weakly fillable,
then so is the result of any Legendrian surgery along Y. There are tight contact
structures which are not weakly fillable [3], however, and so one can ask whether
Legendrian surgery preserves tightness. The answer turns out to be no for 3-
manifolds with boundary [4], but for closed 3-manifolds this is still an open
question.

We will now make a few remarks about these different types of filling. Al-
though the classes of weakly and strongly symplectically fillable contact struc-
tures are different in general, Eliashberg [1] proved that this is not always the
case:

Theorem 9. Let (Y,€) be a weakly fillable contact structure on a rational ho-
mology sphere. Then £ is strongly fillable.

Proof. Let (X, w) be a weak filling of (Y, €), so that 0X =Y and w|e > 0, and let
& = ker(a). Since both w and da are symplectic forms on &, we have w|e = fdae
for some positive function f : Y — R, and then d(fa)|e = fdale +df A ale =
fdale implies w|e = d(fa)|e. Replace a with fa so that w|¢ = dae¢; then in
general we have w|y = da + a A S for some 3 € Q1(Y).



Fix a constant C' > 0 and a function h : Y x [0,1] — R such that h(z,0) = 0,
h(z,t) = Ct for 1 —e <t <1, and %}Z > 0, and consider the closed 2-form
Q=w+d(ha) onY x [0,1]. We compute

Q:(1+h)da+a/\ﬁ+dyh/\a+%dt/\a

and so

h
Q/\Q:2(1+h)%dt/\a/\da>0.

Thus Q is symplectic, Q[y 103 = w, and Q|y x[1—¢,1] = w+Cd(ta). In particular,
by gluing (Y x [0,1],9) to (X,w) along Y x {0}, we can replace the symplectic
form w in a neighborhood of Y with w + C'd(t«), where « is a contact form such
that w|e = dae.

Now if Y is a rational homology sphere then any closed 2-form on it is exact,
so in a neighborhood Y x [1 —¢, 1] of Y = 0X we may assume that w = d\A. Let
v :[1—¢€1] — [0,1] be a cutoff function which is 1 near ¢t = 1 — € and 0 near
t = 1, and consider the symplectic form

W' =d(pA) + Cd(ta)

on Y x[1—¢,1]. Certainly w’ is closed, w’ = w near Y x {1 —¢}, and o’ = Cd(ta)
near Y x {1}, so if w’ is symplectic then we may replace wly x[1—¢,1) with ' to
get a strong filling of (V,&). But w’ is symplectic in a fixed neighborhood of
Y X {1 — €} since it equals w there, and in general we compute

W AW =C?2dt Ao Ada+ O(C)

so that w’ can be made symplectic outside that neighborhood as well simply by
taking C large enough. O

For the standard tight (53, &), we can actually write down a complete list
of fillings. In the Stein case, it is a theorem of Gompf that every Stein domain
can be built out of 4-dimensional 0, 1, and 2-handles; turning this upside down,
we can build a Stein filling (X, J) of & by attaching 2, 3, and 4-handles to a
piece S3 x [0, 1] of the symplectization of & along the S x {0} side. This means
that the map 71 (S®) — 71 (X) is surjective, i.e. that X is simply connected.

Now take a Darboux ball B around a point z € CP?, where B has contact
type boundary (S, &). We can glue CP?\ B to X along their contactomorphic
53 boundaries to get a new symplectic manifold Z = X Ugs (CP?\B). Now if we
construct another closed 4-manifold X by filling in X = $3 with a ball, then
we have Z = X#CP?. It is known via Seiberg-Witten theory that a connected
sum of two manifolds M; and Ms cannot have a symplectic structure unless
bi (M;) = 0 for some 4, and since by (CP?) = 1 we conclude that by (X) =
b;r(X ) = 0. Donaldson’s theorem tells us that X is homeomorphic to a blow-up
of B* at some finite number of points, but since X is Stein this number must be
zero. In particular, by (Z) = 0 and so Z is homeomorphic to CP?. A theorem
of McDuff tells us that Z must be the standard CP? with its unique symplectic



structure, and X is the complement of a neighborhood of a symplectic CP!;
since such CP! are all isotopic to each other, X is uniquely determined. In
particular, we have shown the following theorem of Eliashberg:

Theorem 10. The standard 4-ball B* C (C2,4) is the unique Stein filling of
(S3,&4) up to diffeomorphism.

The same is almost true for strong symplectic fillings X of (B*,&;): Eliash-
berg showed that they are all diffeomorphic to B4#"CP? for some n > 0.
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