
Math 273 Lectures 13 and 14

Steven Sivek

March 7–9, 2012

Last time we used Legendrian surgery to construct all
∏

(−ri − 1) tight
contact structures on the lens space L(p, q), where −pq = [r0, . . . , rk]. Our goal
in this lecture is to study Legendrian surgery in more detail. First, we review
the definition of contact surgery.

Definition 1. LetK ⊂ (Y, ξ) be a Legendrian knot with meridian µ and contact
framing λ on ∂N(K) where λ lies in a Seifert surface for K. We perform contact
p
q -surgery on K by constructing a 3-manifold

Y ′ = (S1 ×D2) ∪f Y \N(K),

where the gluing map f : S1 × ∂D2 → ∂N(K) sends {∗} × ∂D2 to the curve
aµ+ bλ, and extending the contact structure ξ|

Y \N(K)
to all of Y ′ by choosing

a tight contact structure on S1 ×D2 which agrees with ξ along the boundary.

Recall that this is not defined if pq = 0, and it is uniquely defined if pq = 1
n for

any n ∈ Z; otherwise we know from the classification of tight contact structures
on S1×D2 that we have a choice of contact structure. The case p

q = −1 is known
as Legendrian surgery, and has a special interpretation in terms of symplectic
manifolds originally due to Weinstein [5] which we will now examine.

Definition 2. A vector field v on a symplectic manifold (X,ω) is said to be
Liouville if Lvω = ω. A hypersurface Y ⊂ X of codimension 1 is of contact type
if there is a Liouville vector field transverse to Y on a neighborhood of Y .

An arbitrary hypersurface Y ⊂ (X,ω) determines a bundle

LY = TY ⊥ = {v ∈ TX|Y | ω(v, x) = 0 for all x ∈ TY }

which is a subbundle of TY , and since ω is nondegenerate LY is a line bundle.
If Y is a level set φ−1(c), where c is a regular value of φ : X → R, and vφ is the
vector field satisfying ιvφω = dφ, then

ω(vφ, x) = dφ(x) = 0

for all x ∈ TY and so LY is generated by vφ.
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Proposition 3. The submanifold Y ⊂ X is of contact type if and only if there
is a 1-form α on Y such that dα = ω|Y and α|LY 6= 0. Furthermore, if α exists
then it is a contact form.

Proof. Suppose that Y = φ−1(c) as above. If Y is of contact type with Liouville
vector field v, then let α = ιvω|Y . Then ω = Lvω = d(ιvω), and so ω|Y = dα.
Furthermore, let vφ satisfy ιvφω = dφ; then

α(vφ) = ω(v, vφ) = −ω(vφ, v) = −dφ(v)

which is nonzero since v is transverse to the level set Y = φ−1(c), hence α|LY 6=
0.

Conversely, suppose that α ∈ Ω1(Y ) satisfies ω|Y = dα and α|LY 6= 0.
Extend α to a 1-form α′ on a neighborhood N(Y ) ⊂ X satisfying ω = dα′, and
let v be a vector field satisfying ιvω = α′. Then

Lvω = dιvω = dα′ = ω

and furthermore

dφ(v) = ω(vφ, v) = −ω(v, vφ) = −α′(vφ) = −α(vφ)

which is nonzero since α|LY 6= 0, so v is transverse to Y and therefore Y is of
contact type.

We now claim that such α is a contact form on Y if it exists. Indeed, we
can compute

α ∧ dα = (ιvω) ∧ ω|Y =
1

2
ιv(ω ∧ ω)

and since ω ∧ ω is a volume form on X and Y is transverse to v, this must be
nonzero on Y .

Finally, in general we cannot assume that Y = φ−1(c) because Y may be
nonseparating. However, we can always assume that there is a function φ : X →
R for which Y is a connected component of the inverse image of a regular value,
and then the above proof still works as expected.

It turns out that the symplectic structure is uniquely determined near the
boundary by the Liouville vector field v and the contact structure ξ = ker(α)
on Y . Indeed, there is a small collar neighborhood of Y along which the flow
Φt of v determines a diffeomorphism ϕ : Y × (−ε, ε) → N(Y ) by the formula
ϕ(x, t) = Φt(x). But the symplectic structure ω′ = d(etα) on Y ×R, also known
as the symplectization of (Y, ξ), has Liouville vector field ∂t and Y = Y ×{0} is
of contact type with ω′|Y = dα, so it is easy to check that ω′ = ϕ∗ω. In other
words, a contact type hypersurface (Y, ξ) ⊂ (X,ω) always has a neighborhood
symplectomorphic to the symplectization of (Y, ξ).

We will be concerned with symplectic 4-manifolds whose boundaries are
of contact type; we say that the induced contact structure is ω-convex if the
Liouville vector field points out of Y = ∂X along Y . In general we can cut and
paste along such manifolds as follows.

2



Proposition 4. Let Ui ⊂ (Xi, ωi) be codimension-0, ωi-convex submanifolds
with contact type boundaries (Yi, ξi) = ∂Ui. If there is a contactomorphism
f : (Y1, ξ1)→ (Y2, ξ2), then the manifold

(X1\U1) ∪f U2

admits a symplectic structure.

Proof. We need to patch together the symplectic forms ωi along neighborhoods
of Yi. Let αi = ιviωi be the contact forms on Yi, and suppose that f∗α2 = gα1

where g : Y1 → R is nonzero; by rescaling ω2 we can ensure that 0 < g < 1. In
the symplectization of (Y1, ξ1), we have Y1 ∼= Y1 × {1} and Y2 ∼= graph(ln(g)).
Each of these is of contact type and has a neighborhood Ni symplectomorphic
to a neighborhood of ∂Ui. If these neighborhoods cobound a region V ⊂ Y1×R
which is diffeomorphic to Y1×R, then using these symplectomorphisms gives us
a symplectic manifold (X1\U1)∪V ∪U2, which is diffeomorphic to (X1\U1)∪U2,
as desired.

One of the most interesting special cases of this procedure is gluing a We-
instein 2-handle to a symplectic manifold with contact type boundary. Given
the standard symplectic structure ω =

∑
dxi ∧ dyi on R4, consider the region

H defined by the inequalities

f = (x21 + x22)− 1

2

(
y21 + y22

)
≥ −1

g = (x21 + x22)− ε

6

(
y21 + y22

)
≤ ε

2
.

The gradient of f is v = 2x1∂x1
− y1∂y1 + 2x2∂x2

− y2∂y2 , and

ιvω = 2x1dy1 + y1dx1 + 2x2dy2 + y2dx2

satisfies Lvω = dιvω = ω, so v = ∇f is a Liouville vector field. It is transverse
to the hypersurface f−1(−1) since df(v) = 〈∇f, v〉 = |v|2 > 0 away from the
origin. Furthermore, v is transverse to g−1( ε2 ) since we can compute

dg(v) = 〈∇g, v〉 = 4(x21 + x22)− ε

3
(y21 + y22) = 4g +

ε

3
(y21 + y22)

and so along g−1( ε2 ) we have dg(v) = 2ε + ε
3 (y21 + y22) > 0. Therefore Y = ∂H

is of contact type, with contact form α = ιvω|Y , and the Liouville vector field
v points out of H along g−1( ε2 ) and into H along f−1(−1).

We now claim that the attaching circle

K = {x1 = x2 = 0, y21 + y22 = 2} ⊂ f−1(−1) ∩ ∂H

is Legendrian. Indeed, at a point (0, 0, y1, y2) it has tangent vector w = −y2∂y1+
y1∂y2, and we evaluate

α(w) = ιw(2x1dy1 + y1dx1 + 2x2dy2 + y2dx2) = 0.
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Similarly, the circle

K ′ = {x21 + x22 =
ε

2
, y1 = y2 = 0} ⊂ g−1(

ε

2
) ∩ ∂H

is Legendrian since α(w′) = 0 where w′ is the tangent vector −x2∂x1
+x1∂x2

at
(x1, x2, 0, 0).

Theorem 5. Let (Y, ξ) be the ω-convex boundary of (X,ω), and let L ⊂ Y be
a Legendrian knot. Then we can attach a 2-handle H to X along L so that the
resulting X ′ = X ∪H is symplectic with ω′-convex boundary Y ′.

Proof. Give H the model symplectic structure discussed above. Since L ⊂ Y
and K ⊂ ∂H are both Legendrian, they have contactomorphic neighborhoods
N(L) and N(K), and by choosing ε sufficiently small we can make f−1(1)∩∂H
lie inside N(K). The above gluing proposition now says that we can form
a symplectic manifold (X ∪ H,ω′) by using the contactomorphism N(L)

∼→
N(K), and since the Liouville vector field on H points out along g−1( ε2 ) the
new boundary Y ′ will be ω′-convex.

This gluing operation replaces a neighborhood N(L) ⊂ Y with the neigh-
borhood g−1( ε2 ) of K ′ ⊂ ∂H; this is a solid torus, so evidently Y ′ is the result
of surgery along L. Furthermore, the contactomorphism N(L)

∼→ N(K) is de-
termined up to isotopy rel boundary by the contact framings of L and K, so
the surgery coefficient is uniquely determined as well.

The contact framing along L can be thought of as a nonzero section of ξ|L
transverse to TL. In the attaching circle K ⊂ ∂H, which is defined by x1 =
x2 = 0 and y21 + y22 = 2, the tangent bundle TL is spanned by −y2∂y1 + y1∂y2 .
Since α = y1dx1 + y2dx2 along K, the framing is specified by the section

−y2∂x1
+ y1∂x2

.

On the other hand, the framing we use to perform surgery is specified by a vector
field along K which lies in T (∂H); for this we can use the constant vector field
∂x1 . As we travel along K, the contact framing −y2∂x1 + y1∂x2 makes a full
positive twist with respect to ∂x1

, and so the framing we get by pushing K off
of itself inside H is one less than the contact framing. But this is the framing
which we use to fill ∂N(L), so we conclude:

Theorem 6. Attaching a Weinstein 2-handle to (X,ω) along a Legendrian
knot L in its ω-convex boundary Y gives a symplectic manifold (X ′, ω′) whose
ω′-convex boundary Y ′ is the result of a Legendrian surgery on L ⊂ Y .

If (Y, ξ) is the ω-convex boundary of (X,ω), then we know that Y is strongly
symplectically fillable (which was defined using the criterion dα = ω|Y ) and
hence tight. This verifies that we are actually performing Legendrian surgery,
rather than filling in S1×D2 with an overtwisted contact structure. It also shows
that Legendrian surgery preserves symplectic fillability. In fact, Eliashberg [2]
showed that the same is true for Stein fillability:
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Theorem 7. If (X,ω) is a Stein domain with boundary Y , then the plurisub-
harmonic exhaustion function φ : X → R can be extended across the handle H
so that Y ′ = ∂(X ∪H) is the level set of a regular value. Therefore Legendrian
surgery preserves Stein fillability.

In fact, Etnyre and Honda [3] showed that Legendrian surgery preserves weak
symplectic fillability, which is defined as being the boundary of a symplectic
manifold (X,ω) for which ω|ξ > 0 and which also implies tightness. The proof
is similar to the proof that it preserves strong fillability: we note that we only
need the condition ω|Y = dα on a small standard neighborhood of L, and so
the claim follows from:

Lemma 8. Let (X,ω) be a symplectic manifold with boundary Y , and let ξ be
a contact structure on Y such that ω|ξ > 0. Let L ⊂ Y be a Legendrian knot.
Then ξ admits an arbitrarily small perturbation in a neighborhood N of L so
that ξ = ker(ιvω|Y ) for some Liouville vector field v defined in X near N .

Proof. Let (X ′, ω′) be a strong filling of some other (Y ′, ξ′) and let L′ ⊂ Y ′ be
Legendrian with standard neighborhood N ′. We can then find a diffeomorphism
f : N → N ′ which carries L to L′ and satisfies f∗(ξ′|L′) = ξ|L and f∗(ω′|N ′) =
ω|N . Then f can be extended to a symplectomorphism on neighborhoods U and
U ′ of N ⊂ X and N ′ ⊂ X ′. Now ξ can be perturbed close to L so that f∗(ξ′)
and ξ actually agree on a small neighborhood of L, and if the perturbation is
small enough then the result is still contact isotopic to ξ by Gray stability. But
then if ω′ has Liouville vector field v′, we see that v = f∗(v′) is a Liouville
vector field in that small neighborhood of L on which ξ = f∗(ξ′) is the kernel
of ιvω = ιf∗(v′)f

∗(ω′), as desired.

In conclusion, if (Y, ξ) is Stein fillable, strongly fillable, or weakly fillable,
then so is the result of any Legendrian surgery along Y . There are tight contact
structures which are not weakly fillable [3], however, and so one can ask whether
Legendrian surgery preserves tightness. The answer turns out to be no for 3-
manifolds with boundary [4], but for closed 3-manifolds this is still an open
question.

We will now make a few remarks about these different types of filling. Al-
though the classes of weakly and strongly symplectically fillable contact struc-
tures are different in general, Eliashberg [1] proved that this is not always the
case:

Theorem 9. Let (Y, ξ) be a weakly fillable contact structure on a rational ho-
mology sphere. Then ξ is strongly fillable.

Proof. Let (X,ω) be a weak filling of (Y, ξ), so that ∂X = Y and ω|ξ > 0, and let
ξ = ker(α). Since both ω and dα are symplectic forms on ξ, we have ω|ξ = fdα|ξ
for some positive function f : Y → R, and then d(fα)|ξ = fdα|ξ + df ∧ α|ξ =
fdα|ξ implies ω|ξ = d(fα)|ξ. Replace α with fα so that ω|ξ = dα|ξ; then in
general we have ω|Y = dα+ α ∧ β for some β ∈ Ω1(Y ).
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Fix a constant C > 0 and a function h : Y × [0, 1]→ R such that h(x, 0) = 0,
h(x, t) = Ct for 1 − ε ≤ t ≤ 1, and ∂h

∂t > 0, and consider the closed 2-form
Ω = ω + d(hα) on Y × [0, 1]. We compute

Ω = (1 + h)dα+ α ∧ β + dY h ∧ α+
∂h

∂t
dt ∧ α

and so
Ω ∧ Ω = 2(1 + h)

∂h

∂t
dt ∧ α ∧ dα > 0.

Thus Ω is symplectic, Ω|Y×{0} = ω, and Ω|Y×[1−ε,1] = ω+Cd(tα). In particular,
by gluing (Y × [0, 1],Ω) to (X,ω) along Y × {0}, we can replace the symplectic
form ω in a neighborhood of Y with ω+Cd(tα), where α is a contact form such
that ω|ξ = dα|ξ.

Now if Y is a rational homology sphere then any closed 2-form on it is exact,
so in a neighborhood Y × [1− ε, 1] of Y = ∂X we may assume that ω = dλ. Let
ϕ : [1 − ε, 1] → [0, 1] be a cutoff function which is 1 near t = 1 − ε and 0 near
t = 1, and consider the symplectic form

ω′ = d(ϕλ) + Cd(tα)

on Y ×[1−ε, 1]. Certainly ω′ is closed, ω′ = ω near Y ×{1−ε}, and ω′ = Cd(tα)
near Y × {1}, so if ω′ is symplectic then we may replace ω|Y×[1−ε,1] with ω′ to
get a strong filling of (Y, ξ). But ω′ is symplectic in a fixed neighborhood of
Y × {1− ε} since it equals ω there, and in general we compute

ω′ ∧ ω′ = C2 · 2tdt ∧ α ∧ dα+O(C)

so that ω′ can be made symplectic outside that neighborhood as well simply by
taking C large enough.

For the standard tight (S3, ξst), we can actually write down a complete list
of fillings. In the Stein case, it is a theorem of Gompf that every Stein domain
can be built out of 4-dimensional 0, 1, and 2-handles; turning this upside down,
we can build a Stein filling (X,J) of ξst by attaching 2, 3, and 4-handles to a
piece S3× [0, 1] of the symplectization of ξst along the S3×{0} side. This means
that the map π1(S3)→ π1(X) is surjective, i.e. that X is simply connected.

Now take a Darboux ball B around a point x ∈ CP2, where B has contact
type boundary (S3, ξst). We can glue CP2\B to X along their contactomorphic
S3 boundaries to get a new symplectic manifold Z = X∪S3 (CP2\B). Now if we
construct another closed 4-manifold X̃ by filling in ∂X = S3 with a ball, then
we have Z = X̃#CP2. It is known via Seiberg-Witten theory that a connected
sum of two manifolds M1 and M2 cannot have a symplectic structure unless
b+2 (Mi) = 0 for some i, and since b+2 (CP2) = 1 we conclude that b+2 (X) =
b+2 (X̃) = 0. Donaldson’s theorem tells us that X is homeomorphic to a blow-up
of B4 at some finite number of points, but since X is Stein this number must be
zero. In particular, b−2 (Z) = 0 and so Z is homeomorphic to CP2. A theorem
of McDuff tells us that Z must be the standard CP2 with its unique symplectic
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structure, and X is the complement of a neighborhood of a symplectic CP1;
since such CP1 are all isotopic to each other, X is uniquely determined. In
particular, we have shown the following theorem of Eliashberg:

Theorem 10. The standard 4-ball B4 ⊂ (C2, i) is the unique Stein filling of
(S3, ξst) up to diffeomorphism.

The same is almost true for strong symplectic fillings X of (B4, ξst): Eliash-
berg showed that they are all diffeomorphic to B4#nCP2 for some n ≥ 0.
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