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Last time we claimed that the models of a basic slice, namely the submani-
folds Ty = T?% x [0, 4] and T> = T2 x [3, 2] of
(T? x R, & = ker(sin(272)dz + cos(2m2)dy))

with boundary tori perturbed in each case to be convex with boundary slopes
0 and —1, really are basic slices. We still need one fact to complete this claim:

Proposition 1. T} and T3 are minimally twisting.

Proof. Suppose that T) contains a convex torus T of slope s ¢ [—1,0] (the
proof will be the same for Ty). Observe that each torus T2 x {29} C 7T} has
characteristic foliation directed by

cos(2mz)0, — sin(2mz)0,

up to sign, so that T2 x {z} is foliated by lines of slope — tan(27z), which
decreases from 0 at zg = 0 to —oo at zg = i. Suppose that there is a convex
torus T'C M = T} whose dividing curves have slope s ¢ (—1,0), and let s’ be a
slope satisfying s < s’ < —1 < 0 on the boundary of the Farey tessellation such
that s and s’ are connected by a geodesic. Pick an element of SLs(Z) sending
s to % and s’ to %, so that the boundary slopes —1 and 0 of T7 both become
negative. The corresponding diffeomorphism of 77 sends it to some T2 x [a, b]
with [a,b] C (0, 1).

Now consider the standard tight contact structure (R?, &) with contact form

a =dz +r2de,

and pass to the quotient under z — z + 1. The complement of the z-axis is
foliated by tori X,, = {r = ro}, each of which is convex because it is transverse
to the contact vector field 0,,. On each torus 3,,, the contact planes are spanned
by 0, and —r2d, + 0y, so I, has a characteristic foliation consisting of lines of
slope —r. In particular, there is a contact embedding
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which sends each T? x {z} with slope — tan(27z) to & (@) preserving the

directed characteristic foliation of each such torus, and thus ¢ is a contactomor-
phism by a standard argument involving Moser’s trick. (We will need to rotate
T2 by 7 for one of Ty or T to fix the direction of the foliation, but otherwise
the argument is the same in either case.)

The image ¢(T") has dividing curves of slope 0, and since ¢(7T') is parallel to
#(T? x {a}) it bounds a solid torus for which the lines of slope 0 are meridians,
so we can find a Legendrian curve « in ¢(T) parallel to the dividing curves which
bounds a disk in that solid torus. In particular, v is an unknot with tb(y) = 0,
and this violates the Thurston-Bennequin inequality since & is tight, so it
cannot exist. O

Corollary 2. There are exactly two basic slices with sy =0 and sy = —1.

Corollary 3. Given any basic slice (T? x [0,1],&) with boundary slopes so and
s1, and a rational number s between s; and sg, we can find a convexr torus
parallel to T? x {0} with slope s.

Proof. Reduce to the case (sg,s1) = (0,—1) and find the torus in either of the
two model contact structures by perturbing an appropriate 72 x {z}. O

Finally, we claim that these basic slices correspond to bypass attachments.

Proposition 4. Let T be a convexr torus with two dividing curves of slope 0,

and let D be a bypass attached to T along a curve of slope —g i some contact

manifold, with p > q > 0. Then some neighborhood (T? x [0,1],&p) of TU D s
a basic slice.

Proof. We already showed that in such a neighborhood 72 x {1} has two dividing
curves of slope —1, so we only need to see that {p is minimally twisting, which
we will do by embedding it inside a minimally twisting contact structure. Take
the contact structure

(T? x R, & = ker(sin(272)dx + cos(2m2)dy))

and perturb Ty = T? x {0} and Ty/s = T2 x {4} to be convex with dividing
curves of slope 0 and —1 and characteristic foliations consisting of ruling curves
of slope —2. Let A be an annulus with one boundary component a ruling curve
of Ty and one a ruling curve of T},5. Then A intersects I'y;, in 2p points and
I'r, , in 2(p — ¢) points, and g > 0, so by the Imbalance Principle A contains a
bypass Dy along Ty. Now by Giroux flexibility we can arrange the characteristic
foliation on Ty U Dy to match the one on T'U D, so they have a contactomorphic
neighborhood with contact structure £p. Then &p embeds in T2 x [—e,% — €
for an arbitrarily small € > 0, and this is minimally twisting by the same proof
as when ¢ = 0. O

Let p > ¢ > 1, and let Tight(S* x DQ,—g) be the set of tight contact
structures on S! x D? with convex boundary having dividing set T', where T is



a pair of curves of slope —%. (This means that each component of T' is in the

homology class —q[0D?] + p[S'] € Hy(S' x dD?).) Similarly, let Tight™" (T2 x
1, —%, —1) be the set of minimally twisting tight contact structures with a pair
of dividing curves of slope —1 on T2 x {0} and —£ on T? x {1}. We wish to
describe the latter set by breaking its members into basic slices, so first we need
to see how the boundary slope —g changes upon removing a basic slice.

For any rational —% < —1, consider the continued fraction expansion
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with all 7; < —2; we will abbreviate this as —g = [ro,...,7k]. Let —Z—: be

the fraction obtained by taking Z—: to be the first point connected to % when
0

/
traveling counterclockwise from 7. Since % and % are connected, the vectors

(p,q) and (p’,¢') are an integral basis of Z2, and since f;—: < g we conclude that
pq' — qp’ = 1. The three properties

pd —qp' =10 <p,qd <q

uniquely characterize p’ and ¢’ in terms of p and q.
Now let —% = [ro,...,rx—1,7% + 1]; if 7+ = —2 then this is equivalent to
[ro,...,Tk—1 + 1]. We claim that a = p’ and b = ¢'.

Lemma 5. Suppose that —% and —5—:, both less than or equal to —1, satisfy
pg —qp' =1,0<p <p, and 0 < ¢ < q. Then for any integer r < %, so do
1

. ’
the rational numbers —¢ =r — —— and —3z =71 —
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Proof. We have —% = ™44 gnd — ¢, = 214 g
b D b p

ab —ba' = —(rp+qQ)p' +p(rp’ +4¢) =pd —qp' = 1.

Furthermore, ' < b is equivalent to p’ < p, which is true by assumption, and
a’ < a is equivalent to —rp’ — ¢ < —rp—g¢q, or —r(p —p’') > ¢ — ¢’. But then

/ o
( 2 > and ( g, ) are an integral basis of Z2, hence ( 2—2’ ) and either

/ ’ !
( P or p/ are as well, so the points 2, & and 2=2 form a triangle in
q q a’q a—q
P +(p—p)

the Farey tessellation. This means that 2 = lies in between the other

q = ¢+(q—7q)
; p _ p=p ; ; _ . (p=p 1 (p
two points, hence p < = and in particular —r (qfq,) > /4 (q) > 1. We
conclude that —r(p — p') > ¢ — ¢’ as desired.

Now suppose 1y, < —2. If 75 =1, = [rx] and 72—: = f% = [rr + 1],

so that p = —rg, p = —rx — 1, and ¢ = ¢’ = 1, then we have p¢’ — qp’ = 1,



0<p' <p,and 0 < ¢’ < q. By repeated use of the lemma, it follows that if

= [’I“O, . 77"]@—1,7%]
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—a = [roy...,"k—1,7k + 1]

then pg’ —gp' =1,0<p',p, and 0 < ¢’ < q.

Proposition 6. Let £ € Tightmi’“(T2 x 1, —%, —1) with p > q > 0, and suppose

that ,% has continued fraction [ro,...,rg]. Let 72—: = [roy...,Tk—1,7x + 1].
Then & may be factored into a union (T? x [0,3],&") U (T? x [4,1],¢"), where
£ is a basic slice and

/
¢ € Tight™" (T2 x I, f%, ~1).

Proof. Fix the characteristic foliation of T2 x OI to be ruled by Legendrian
curves of slope 0; then as before we can take a convex annulus with one boundary
component on each T2 x {i}, i = 0,1, and find a bypass along T2 x {1} on that
annulus by the Imbalance Principle. Some neighborhood of T2 x I and that
bypass is a basic slice, which then has boundary slopes —% and —¢ for some
a,b.

To compute —7, we flip this picture upside down and thus reverse the signs
of all the slopes: this is the same as attaching a bypass on top of a torus with

slope % along an arc of slope %, so ¢ is the first point we reach by traveling

counterclockwise along the Farey tessellation from % which is connected to %

by a geodesic. But we have already seen that such 7 must satisfy pb —aq = 1,

/
a

a <p,and b < g, so ¢ is exactly the point % described above. O

Corollary 7. Let ¢ € Tight™™(T2 x I, 75, —1) with p > q > 0. and

p
— = |T0y---,Tk]|-
. [ ]

Then €& may be factored into a union of
(—T’k — 1) + (—Tk,1 - 2) + ...+ (—7”0 — 2)

basic slices with predetermined boundary slopes. In particular, Tight™™(T? x
I, 75, —1) is finite.

Proposition 8. Let & € Tight(T? x I, ,% —1) be a tight contact structure with
p > q>0. Then given any slope s with —g < 8 < —1, there is a convex torus
parallel to T? x {0} with two dividing curves of slope s.



Proof. If £ is minimally twisting then we can factor ¢ into a union of basic slices
as above; on one of them, the interval between its boundary slopes must contain
s, and then we know that this basic slice must contain the desired torus.

If instead £ is not minimally twisting, we can find a torus T parallel to
T? x {0} with slope r ¢ [,g, —1] and use the above argument to factor out
a sequence of basic slices with boundary slopes between ,g and r; again, the
interval determined by the boundary slopes on one of these slices must contain

s. O

Proposition 9. There is an injective map

moTight(S* x D2, —2) = 7y Tight™™ (12 x I, -2, —1).
q q

Proof. Given a tight contact structure on S* x D?, let K be a Legendrian knot
isotopic to St x {0}, stabilized sufficiently many times to ensure tw(K) < —1.
Let N C int(S! x D?) be a standard neighborhood of K, so that N has two

dividing curves of slope m, and let M = (S' x D?)\N. Then &|j/ is a tight
1

contact structure on 72 x I, and —% < -1« Tw(K)> SO We can find a convex
torus 7' C M parallel to ON with two dividing curves of slope —1. Then T
bounds a solid torus N’ on which £ is unique up to isotopy rel boundary, so if
M’ = (S' x D?)\ N’ then it just remains to be seen that (M’,¢) is minimally
twisting.

If (M’,€) is not minimally twisting, then M’ contains a convex boundary-
parallel torus with dividing slope s not between —% and —1. This splits M’ into
two T? x I with boundary slopes (=£,s) and (s, —1); if s > —1 then the second
T? x I contains a convex torus with slope 0, and if s < ffll then the first one
does. Either way, M’ contains such a torus 7" and we can Legendrian realize a
curve v C 1" of slope 0 with tw(y,T”) = 0. But then 7 is isotopic to dD?, i.e.
it bounds a disk in S' x D?, and so v is a topological unknot with tb(v) = 0,

contradicting the tightness of . We conclude that (M, ¢) is minimally twisting
after all. O



