
Math 273 Lecture 11

Steven Sivek

February 29, 2012

Last time we claimed that the models of a basic slice, namely the submani-
folds T1 = T 2 × [0, 18 ] and T2 = T 2 × [ 12 ,

5
8 ] of

(T 2 × R, ξ = ker(sin(2πz)dx+ cos(2πz)dy))

with boundary tori perturbed in each case to be convex with boundary slopes
0 and −1, really are basic slices. We still need one fact to complete this claim:

Proposition 1. T1 and T2 are minimally twisting.

Proof. Suppose that T1 contains a convex torus T of slope s 6∈ [−1, 0] (the
proof will be the same for T2). Observe that each torus T 2 × {z0} ⊂ T1 has
characteristic foliation directed by

cos(2πz)∂x − sin(2πz)∂y

up to sign, so that T 2 × {z0} is foliated by lines of slope − tan(2πz), which
decreases from 0 at z0 = 0 to −∞ at z0 = 1

4 . Suppose that there is a convex
torus T ⊂M ∼= T1 whose dividing curves have slope s 6∈ (−1, 0), and let s′ be a
slope satisfying s < s′ < −1 < 0 on the boundary of the Farey tessellation such
that s and s′ are connected by a geodesic. Pick an element of SL2(Z) sending
s to 0

1 and s′ to 1
0 , so that the boundary slopes −1 and 0 of T1 both become

negative. The corresponding diffeomorphism of T1 sends it to some T 2 × [a, b]
with [a, b] ⊂ (0, 14 ).

Now consider the standard tight contact structure (R3, ξst) with contact form

α = dz + r2dθ,

and pass to the quotient under z 7→ z + 1. The complement of the z-axis is
foliated by tori Σr0 = {r = r0}, each of which is convex because it is transverse
to the contact vector field ∂r. On each torus Σr0 , the contact planes are spanned
by ∂r and −r20∂z + ∂θ, so Σr0 has a characteristic foliation consisting of lines of
slope −r20. In particular, there is a contact embedding

φ : T 2 × (0,
1

4
) ↪→M =

⋃
0<r<∞

Σr
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which sends each T 2×{z} with slope − tan(2πz) to Σ√
tan(2πz)

, preserving the
directed characteristic foliation of each such torus, and thus φ is a contactomor-
phism by a standard argument involving Moser’s trick. (We will need to rotate
T 2 by π for one of T1 or T2 to fix the direction of the foliation, but otherwise
the argument is the same in either case.)

The image φ(T ) has dividing curves of slope 0, and since φ(T ) is parallel to
φ(T 2×{a}) it bounds a solid torus for which the lines of slope 0 are meridians,
so we can find a Legendrian curve γ in φ(T ) parallel to the dividing curves which
bounds a disk in that solid torus. In particular, γ is an unknot with tb(γ) = 0,
and this violates the Thurston-Bennequin inequality since ξst is tight, so it
cannot exist.

Corollary 2. There are exactly two basic slices with s0 = 0 and s1 = −1.

Corollary 3. Given any basic slice (T 2 × [0, 1], ξ) with boundary slopes s0 and
s1, and a rational number s between s1 and s0, we can find a convex torus
parallel to T 2 × {0} with slope s.

Proof. Reduce to the case (s0, s1) = (0,−1) and find the torus in either of the
two model contact structures by perturbing an appropriate T 2 × {z}.

Finally, we claim that these basic slices correspond to bypass attachments.

Proposition 4. Let T be a convex torus with two dividing curves of slope 0,
and let D be a bypass attached to T along a curve of slope −pq in some contact
manifold, with p > q > 0. Then some neighborhood (T 2 × [0, 1], ξD) of T ∪D is
a basic slice.

Proof. We already showed that in such a neighborhood T 2×{1} has two dividing
curves of slope −1, so we only need to see that ξD is minimally twisting, which
we will do by embedding it inside a minimally twisting contact structure. Take
the contact structure

(T 2 × R, ξ = ker(sin(2πz)dx+ cos(2πz)dy))

and perturb T0 = T 2 × {0} and T1/8 = T 2 × { 18} to be convex with dividing
curves of slope 0 and −1 and characteristic foliations consisting of ruling curves
of slope −pq . Let A be an annulus with one boundary component a ruling curve
of T0 and one a ruling curve of T1/8. Then A intersects ΓT0

in 2p points and
ΓT1/8

in 2(p− q) points, and q > 0, so by the Imbalance Principle A contains a
bypass D0 along T0. Now by Giroux flexibility we can arrange the characteristic
foliation on T0∪D0 to match the one on T ∪D, so they have a contactomorphic
neighborhood with contact structure ξD. Then ξD embeds in T 2 × [−ε, 18 − ε]
for an arbitrarily small ε > 0, and this is minimally twisting by the same proof
as when ε = 0.

Let p > q > 1, and let Tight(S1 × D2,−pq ) be the set of tight contact
structures on S1 ×D2 with convex boundary having dividing set Γ, where Γ is
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a pair of curves of slope −pq . (This means that each component of Γ is in the
homology class −q[∂D2] + p[S1] ∈ H1(S1× ∂D2).) Similarly, let Tightmin(T 2×
I,−pq ,−1) be the set of minimally twisting tight contact structures with a pair
of dividing curves of slope −1 on T 2 × {0} and −pq on T 2 × {1}. We wish to
describe the latter set by breaking its members into basic slices, so first we need
to see how the boundary slope −pq changes upon removing a basic slice.

For any rational −pq < −1, consider the continued fraction expansion

−p
q

= r0 −
1

r1 − 1
r2− 1

...− 1
rk

with all ri ≤ −2; we will abbreviate this as −pq = [r0, . . . , rk]. Let −p
′

q′ be

the fraction obtained by taking p′

q′ to be the first point connected to p
q when

traveling counterclockwise from 0
1 . Since p

q and p′

q′ are connected, the vectors

(p, q) and (p′, q′) are an integral basis of Z2, and since p′

q′ <
p
q we conclude that

pq′ − qp′ = 1. The three properties

pq′ − qp′ = 1, p′ < p, q′ ≤ q

uniquely characterize p′ and q′ in terms of p and q.
Now let −ab = [r0, . . . , rk−1, rk + 1]; if rk = −2 then this is equivalent to

[r0, . . . , rk−1 + 1]. We claim that a = p′ and b = q′.

Lemma 5. Suppose that −pq and −p
′

q′ , both less than or equal to −1, satisfy
pq′− qp′ = 1, 0 < p′ < p, and 0 < q′ < q. Then for any integer r < 1

−p/q , so do

the rational numbers −ab = r − 1
−p/q and −a

′

b′ = r − 1
−p′/q′ .

Proof. We have −ab = rp+q
p and −a

′

b′ = rp′+q′

p′ , so

ab′ − ba′ = −(rp+ q)p′ + p(rp′ + q′) = pq′ − qp′ = 1.

Furthermore, b′ < b is equivalent to p′ < p, which is true by assumption, and
a′ < a is equivalent to −rp′ − q′ < −rp − q, or −r(p − p′) > q − q′. But then(
p
q

)
and

(
p′

q′

)
are an integral basis of Z2, hence

(
p− p′
q − q′

)
and either(

p
q

)
or
(
p′

q′

)
are as well, so the points p

q ,
p′

q′ , and
p−p′
q−q′ form a triangle in

the Farey tessellation. This means that p
q = p′+(p−p′)

q′+(q−q′) lies in between the other

two points, hence p
q <

p−p′
q−q′ and in particular −r

(
p−p′
q−q′

)
> 1

p/q

(
p
q

)
≥ 1. We

conclude that −r(p− p′) > q − q′ as desired.

Now suppose rk ≤ −2. If −pq = rk = [rk] and −p
′

q′ = − rk+1
1 = [rk + 1],

so that p = −rk, p′ = −rk − 1, and q = q′ = 1, then we have pq′ − qp′ = 1,
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0 < p′ < p, and 0 < q′ ≤ q. By repeated use of the lemma, it follows that if

−p
q

= [r0, . . . , rk−1, rk]

−p
′

q′
= [r0, . . . , rk−1, rk + 1]

then pq′ − qp′ = 1, 0 < p′, p, and 0 < q′ ≤ q.

Proposition 6. Let ξ ∈ Tightmin(T 2× I,−pq ,−1) with p > q > 0, and suppose

that −pq has continued fraction [r0, . . . , rk]. Let −p
′

q′ = [r0, . . . , rk−1, rk + 1].
Then ξ may be factored into a union (T 2 × [0, 12 ], ξ′) ∪ (T 2 × [ 12 , 1], ξ′′), where
ξ′′ is a basic slice and

ξ′ ∈ Tightmin(T 2 × I,−p
′

q′
,−1).

Proof. Fix the characteristic foliation of T 2 × ∂I to be ruled by Legendrian
curves of slope 0; then as before we can take a convex annulus with one boundary
component on each T 2×{i}, i = 0, 1, and find a bypass along T 2×{1} on that
annulus by the Imbalance Principle. Some neighborhood of T 2 × I and that
bypass is a basic slice, which then has boundary slopes −pq and −ab for some
a, b.

To compute −ab , we flip this picture upside down and thus reverse the signs
of all the slopes: this is the same as attaching a bypass on top of a torus with
slope p

q along an arc of slope 0
1 , so

a
b is the first point we reach by traveling

counterclockwise along the Farey tessellation from 0
1 which is connected to p

q
by a geodesic. But we have already seen that such a

b must satisfy pb− aq = 1,
a < p, and b ≤ q, so a

b is exactly the point p′

q′ described above.

Corollary 7. Let ξ ∈ Tightmin(T 2 × I,−pq ,−1) with p > q > 0. and

−p
q

= [r0, . . . , rk].

Then ξ may be factored into a union of

(−rk − 1) + (−rk−1 − 2) + . . .+ (−r0 − 2)

basic slices with predetermined boundary slopes. In particular, Tightmin(T 2 ×
I,−pq ,−1) is finite.

Proposition 8. Let ξ ∈ Tight(T 2× I,−pq ,−1) be a tight contact structure with
p > q > 0. Then given any slope s with −pq < s < −1, there is a convex torus
parallel to T 2 × {0} with two dividing curves of slope s.
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Proof. If ξ is minimally twisting then we can factor ξ into a union of basic slices
as above; on one of them, the interval between its boundary slopes must contain
s, and then we know that this basic slice must contain the desired torus.

If instead ξ is not minimally twisting, we can find a torus T parallel to
T 2 × {0} with slope r 6∈ [−pq ,−1] and use the above argument to factor out
a sequence of basic slices with boundary slopes between −pq and r; again, the
interval determined by the boundary slopes on one of these slices must contain
s.

Proposition 9. There is an injective map

π0Tight(S1 ×D2,−p
q

)→ π0Tightmin(T 2 × I,−p
q
,−1).

Proof. Given a tight contact structure on S1 ×D2, let K be a Legendrian knot
isotopic to S1 × {0}, stabilized sufficiently many times to ensure tw(K) < −1.
Let N ⊂ int(S1 ×D2) be a standard neighborhood of K, so that ∂N has two
dividing curves of slope 1

tw(K) , and let M = (S1 ×D2)\N . Then ξ|M is a tight
contact structure on T 2 × I, and −pq < −1 < 1

tw(K) , so we can find a convex
torus T ⊂ M parallel to ∂N with two dividing curves of slope −1. Then T
bounds a solid torus N ′ on which ξ is unique up to isotopy rel boundary, so if
M ′ = (S1 × D2)\N ′ then it just remains to be seen that (M ′, ξ) is minimally
twisting.

If (M ′, ξ) is not minimally twisting, then M ′ contains a convex boundary-
parallel torus with dividing slope s not between −pq and −1. This splitsM ′ into
two T 2× I with boundary slopes (−pq , s) and (s,−1); if s > −1 then the second
T 2 × I contains a convex torus with slope 0, and if s < −pq then the first one
does. Either way, M ′ contains such a torus T ′ and we can Legendrian realize a
curve γ ⊂ T ′ of slope 0 with tw(γ, T ′) = 0. But then γ is isotopic to ∂D2, i.e.
it bounds a disk in S1 ×D2, and so γ is a topological unknot with tb(γ) = 0,
contradicting the tightness of ξ. We conclude that (M ′, ξ) is minimally twisting
after all.
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