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Having completed the study of tight contact structures on S2 × I, we now
begin to investigate T 2 × I. Our goal is to achieve enough of a classification
for T 2 × I and solid tori so that we can describe all tight contact structures on
lens spaces; we will do this by looking for bypasses to simplify a given contact
structure.

Lemma 1. Let T be a convex torus with two parallel dividing curves of slope
0, and attach a bypass D along a linear arc D of slope r, −∞ < r ≤ −1. Then
there is a neighborhood T 2 × I of T ∪D, with T = T 2 × {0}, so that T 2 × {1}
is convex of slope −1.

Proof. We have the following picture of the dividing set after isotoping T 2 across
D:

The case r = −1 is degenerate, since the endpoints of the attaching arc coincide,
but one can check that the end result is the same.

In order to consider the effect of attaching bypasses to such tori in general,
we must study the Farey tessellation of the hyperbolic plane H2. In the Poincaré
disk model D of H2, this is achieved by placing numbers 0

1 and 1
0 at the points

1 and −1 in ∂D and joining them by a diameter, and then every time we see
two points p

q and r
s connected by a geodesic in the upper half of ∂D we label

the midpoint of the arc between them with p+r
q+s and connect it to both p

q and
r
s by geodesics. We then reflect this across the x–axis to label the bottom half
of ∂D with the corresponding negative fractions:
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Lemma 2. The vectors
(
p
q

)
and

(
r
s

)
, with all coordinates positive, are

an integral basis of Z2 if and only if p
q and r

s are connected by an edge in the
Farey tessellation.

Proof. We will induct on max(q, s); note that it is true for max(q, s) = 1 by
inspection, so assume that q < s and s ≥ 2. There is an edge connecting p

q

to r
s iff there is one connecting p

q to r−p
s−q , which by hypothesis happens iff and(

p
q

)
,

(
r − p
s− q

)
is a basis, which is true iff

(
p
q

)
,

(
r
s

)
is.

We remark that SL2(Z) acts on the Farey tessellation by fractional linear trans-
formations; these preserve the ordering and whether or not two given points are
connected by a geodesic.

Theorem 3 (Honda). Let T be a convex torus with two dividing curves of slope
s, and attach a bypass D along an arc of slope r 6= s. Let s′ be the first point
we reach by traveling counterclockwise from r along ∂D which is connected to s
by a geodesic. If T ∪D has a neighborhood T 2 × [0, 1] with convex boundary as
before, then T 2 × {1} has two dividing curves of slope s′.

Example 4. If r = 1
3 and s = 2

1 then s′ = 1
1 .

Proof. We have already shown this for s = 0
1 and r ≤ −1: then r lies in the

lower left quadrant of the Farey tessellation, and since 0
1 is only connected to

points of the form ± 1
n , the first such point we will hit is s′ = − 1

1 .
In the general case, let s′′ be defined the same way as s′ but by traveling

clockwise from r. Then s, s′ specify vectors vs, vs′ which form an integral basis
of Z2, so there is a matrix A ∈ SL2(Z) which sends s to 0

1 and s′ to 1
0 , and r

and s′′ to something in the upper half plane. Since As′′ is connected to As = 0
1 ,

As′′ must have the form 1
n for some n > 0. Similarly, since As′ = 1

0 is the first
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point we reach of the form 1
m traveling counterclockwise from Ar, we must have

Ar > 1; but then this implies that As′′ = 1
1 . Now s′ and s′′ are connected by

an edge, since As′ = 1
0 and As′′ = 1

1 are.
Since s, s′, s′′ are all connected by edges, we can find an element B ∈ SL2(Z)

which takes s to 0
1 , s

′′ to 1
0 , and s′ to − 1

1 . Then Br lies on the arc traveling
clockwise from Bs′′ = 1

0 to Bs′ = − 1
1 , so Br ≤ −1. From the first case we know

that if the dividing curves on T have slope Bs and we attach a bypass along
an arc of slope Br, then the result will have dividing curves of slope Bs′ = −1.
Applying B−1 to each of these slopes yields the desired result.

Definition 5. Let ξ be a tight contact structure on T 2 × [0, 1] with convex
boundary, and let si be the slopes of the dividing curves Γi on T 2 × {i} for
i = 0, 1. Then ξ is called minimally twisting if for any convex torus parallel to
the boundary, the slopes of the dividing curves are between s0 and s1. (This
means that the slopes all lie on the arc which travels clockwise around the unit
circle from s0 to s1.)

Our goal will be to factor tight contact structures on T 2 × I into a union
of minimally twisting contact structures, and then to understand the minimally
twisting ones completely. We will eventually see that the simplest minimally
twisting structures correspond to bypass attachments.

Definition 6. Let (T 2 × [0, 1], ξ) be a tight contact structure for which each
T 2×{i} (i = 0, 1) is convex with two dividing curves of slope si. We say that ξ
is a basic slice if it is minimally twisting and s0 is connected to s1 by a geodesic
in the Farey tesselation.

Lemma 7. There are at most two basic slices for a given s0 and s1.

Proof. Assume by a change of basis that s0 = 0 and s1 = −1, and by Giroux
flexibility we take each T 2 × {i} (i = 0, 1) to have a characteristic foliation
consisting of lines of infinite slope. (When we have such a foliation, these lines
are called ruling curves, and by definition they are Legendrian.) Take an annulus
A with boundary consisting of one ruling curve ci in each T 2×{i}, and perturb
A to be convex; then each ci intersects ΓA in |ci ∩ Γi| = 2 points, and so
tw(ci, A) = −1.

By Giroux’s criterion, ΓA has no closed components, so it must consist of a
pair of arcs. If each arc connects two points on the same component of ∂A, then
at least one of them is boundary-parallel and so gives rise to a bypass along ci;
pushing ci along this bypass yields a Legendrian curve γ ⊂ A with tw(γ,A) = 0.
But then we can find a convex torus T parallel to T 2 × {i} and containing γ,
and since tw(γ, T ) = 0, ΓT does not intersect γ.This means that the dividing
curves on ΓT have slope ∞, contradicting the fact that ξ is minimally twisting.
Therefore each arc of ΓA connects the two components of ∂A.

Given an arc α of ΓA, we can now define the holonomy h(A) ∈ Z to be the
number of times α wraps around A = S1× I in the S1-direction, where we take
a vertical arc {p}× I to have zero holonomy. In an I-invariant neighborhood of
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A, we can take a parallel copy A′ of A and construct a new convex annulus by
gluing pieces of A and A′ to pieces of parallel copies of T 2 × {i} as follows:

(In this picture, each horizontal slice is a T 2 in which the inner circle and outer
circle are identified, and A is drawn vertically.) After edge rounding, the new
annulus A′′ has holonomy h(A′′) = h(A)±1 depending on the direction in which
we pushed A′ off of A. But clearly A′′ is isotopic to A rel boundary, so we can
choose A to have any holonomy we want. Thus any basic slice has a convex
annulus A of this form with holonomy 0, and we can choose it to have a standard
characteristic foliation.

Next, we cut T 2× I open along A. The result is a tight contact structure on
a solid torus D2×S1 whose boundary has two dividing curves in the homology
class [∂D2] + 2[S1]. This contact structure is not unique up to isotopy, but it
is close: we can Legendrian realize a meridian γ, isotopic to ∂D2 × {∗}, which
intersects the dividing set in four points, and find a convex disk ∆ with boundary
γ. Then Γ∆ consists of two arcs, but there are two possible choices for Γ∆; for
either one we fix a characteristic foliation and cut along ∆ to get a tight B3,
which must be unique up to isotopy. Gluing back together along whichever ∆
we had and then along the uniquely determined A, we see that there are at most
two possibilities for ξ up to isotopy.

We claim that there are exactly two basic slices with s0 = 0 and s1 = −1,
and hence for any other pair of slopes connected by a geodesic in the Farey
tessellation. We get these by examining the contact structure

(T 2 × R, ξ = ker(sin(2πz)dx+ cos(2πz)dy)),

which is tight: if there were an overtwisted disk contained in some T 2× [−n, n],
then it would exist in the quotient under the map z 7→ z+2n, which is the tight
contact structure ξ2n on T 3. Each level T 2 × {z} has characteristic foliation
directed by cos(2πz)∂x− sin(2πz)∂y, which has slope − tan(2πz). In particular,
we can take

T1 = T 2 × [0,
1

8
]

and perturb the boundary so that the dividing curves have slopes 0 on z = 0
and −1 on z = 1

8 . Similarly, we take

T2 = T 2 × [
1

2
,

5

8
].
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First, we need to distinguish between the contact structures (Ti, ξi), where ξi =
ξ|Ti . To do this we introduce an invariant of contact structures on manifolds
with boundary.

Definition 8. Let (M, ξ) have convex boundary, assume that ξ|∂M is triv-
ializable, and let s be a nonzero section of ξ|∂M . The relative Euler class
e(ξ, s) ∈ H2(M,∂M) is defined as the Poincaré dual of the zero section of
any generic extension of s to a global section of ξ.

Lemma 9. If Σ ⊂ (M, ξ) is a properly embedded, oriented convex surface with
boundary, and s is a nonzero section of ξ∂M which is tangent to ∂Σ with the
correct orientation, then

〈e(ξ, s),Σ〉 = χ(Σ+)− χ(Σ−).

Proof. Perturb Σ so that Σξ is Morse-Smale, and then describe each side as a
count of singularities of Σξ just as in the closed case.

Lemma 10. The contact structures (T1, ξ1) and (T2, ξ2) are not isotopic rel
boundary.

Proof. We compute their relative Euler classes inH2(T 2×I, T 2×∂I) ∼= H1(T 2×
I). Fix the characteristic foliation of each T 2 ×{i} to consist of lines of infinite
slope; then we can find a convex annulus A with boundary consisting of one such
curve in each T 2 × {i}. We have already argued that A has two dividing arcs,
each of which connects one component of ∂A to the other, and so 〈e(ξ1, s), A〉 =
χ(A+)− χ(A−) = 0 and likewise for ξ2.

On the other hand, we can arrange the characterisic foliation so that there are
Legendrian curves of slope 0 in each T 2×{i}, and let A′ be a convex annulus each
of whose boundary components is one such curve. Then ∂A′ doesn’t intersect
the dividing set of T 2×{0}, but it intersects the dividing set of T 2×{1} twice,
so ΓA′ consists of a single boundary-parallel arc. This means that A′+ and A′−
are a disk and an annulus in some order, so 〈e(ξi, s), [A′]〉 = ±1.

Now we observe that we can obtain T2 from T1 by the map (x, y, z) 7→
(−x,−y, z), and this map changes the sign of 〈e(ξi, s), [A′]〉. In particular, the
relative Euler classes of ξ1 and ξ2 have opposite signs, and so these contact
structures are not isotopic.

If we can show that (T1, ξ1) and (T2, ξ2) are basic slices, then, this will
complete the proof that there are exactly two basic slices with boundary slopes
s0 = 0 and s1 = −1. It remains to be seen that they are minimally twisting; we
will postpone the proof of this fact until next time.

Proposition 11. T1 and T2 are minimally twisting.

Corollary 12. There are exactly two basic slices with s0 = 0 and s1 = −1.
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