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Definition 1. Let M be a (2n+1)-dimensional Riemannian manifold. A contact
structure on M is a hyperplane field £2® C TM which can be written locally as
the kernel of a 1-form « such that a A (da)™ is a positive volume form.

In this course we will focus on co-orientable contact structures, those for
which the normal bundle ¢+ is trivial. This is equivalent to the existence of a
global choice of a: if v is a section of £4, we can take a,(z) = (vp, ). We will
also restrict our attention to 3-manifolds after today.

Example 2. On R?"*! we have the standard contact structure &y = ker(dz —
> yidw;).
Example 3. The overtwisted structure (R3, &), &0t = ker(cos(r)dz+r sin(r)d6).

Remark 4. The disk D = {r = m,z = 0} is overtwisted: &|losp = TD|op.
Bennequin proved that no such disk exists in (R3, &), so these two contact
structures are distinct.

Example 5. (53 &) with a = Z?Zl x;dy; — yide;, where S3 is the unit sphere
in R* = C2.

Exercise 6. (S3,&) minus a point is contactomorphic to (R3, &).

The standard contact structure on S is an example of a phenomenon that
suggests one reason why we might study contact structures. Recall that a com-
plex manifold (X, J) is a Stein manifold if it admits a strictly plurisubharmonic
exhausting function, i.e. a function ¢ : X — R for which w = —d(d¢ o J) defines
a metric g(v, w) = w(v, Jw) and for which the sets ¢~ ((—o0, c]) are compact.

Proposition 7. Suppose c is a reqular value of ¢ and let M = ¢~1(c). Then
the hyperplane field TM N J(T M) defines a contact structure on M.

Proof. We can check that J(T'M) = ker(d¢ o J): if v = Jz with € T, M, then
do(Jv) = dp(—z) = —d¢p(x) = 0. Thus if & = —d¢ o J defines a 1-form on M
by restriction and ¢ = ker(a) then we have £ = TM N J(TM). Given z € £, we
have

doy(z, Jz) = d(—dp o J)(z, Jx) = w(z, Jx) >0

and so da is positive on £. It follows that o A da is a volume form on M, i.e.
that £ is contact. O



Example 8. (T3, &,) where &, = ker(cos(2mnz)dx — sin(27nz)dy)). Only & is
Stein fillable.

Just as in symplectic geometry, we have a theorem which says that locally
&t is the only possible contact structure; in general contact structures provide
only global information.

Theorem 9 (Darboux’s Theorem). Let £ be a contact structure on M, and take
a pointp € M. Then p has a neighborhood with local coordinates (X1,Y1, ..., Tn,Yn, Z)
such that & = ker(ay), where ag = dz — > y;dz;.

Proof. Assume without loss of generality that p = (0,0, ...,0) € R>"*! and that
& = ker(ay), where &, has the desired form. Rescale oy so that apl, = ailp.
The family of 1-forms

ap = (1 —t)ag + tay

satisfy ay A (day)™ = ap A (dap)™ > 0 at p, hence oy is a contact form on
a neighborhood U of p. We now wish to find an isotopy v; of U such that
Yy = . For this we use Moser’s trick.

Suppose that 1, exists and is the flow of a vector field v; such that v; € &.
By differentiating 1} o: = A\ra, we get

* [ - \ )\ *
Yi (G + Ly, ar) = Mg = A—twt oy
t

and Cartan’s formula gives us L,,a; = ty,day + d(ty,0) = ty,doy, so after
applying the diffeomorphism (1/7)~! we wish to solve the equation

O + Ly, doy = oy

where 1 = (17) 7' 4 (log A¢). On the Reeb vector field R, of oy, which is defined
by the equations a;(R;) = 1 and ¢, doy = 0, this equation becomes py = &t (Ry),
so we may solve for \;. Now that this equation is automatically satisfied on the
line through Ry, it remains to find v; € & so that

da(ve,-)]e, = (pear — du) g, -

But day is a symplectic form on &, and in particular it is nondegenerate, so the
desired v; exists. O

Exercise 10 (Contact neighborhood theorem). Generalize this proof to show
the following: if L1 C (M;,&1) and Ls C (M2, &) are closed submanifolds and
there is a diffeomorphism ¢ : Ly — Lo such that ¢*(&|n,) = &ilr,, then ¢
extends to a contactomorphism on open neighborhoods of the L;.

Moser’s trick can also be used to show that deformations of a contact struc-
ture can be realized by isotopies of the ambient manifold.

Theorem 11 (Gray’s Theorem). Let {&;}ie0,1] be a family of contact structures
on the closed manifold M. There is a family v of diffeomorphisms with ¥y =
idas such that VY& = &o.



Proof. Write & = ker(ay) for oy a smooth family of 1-forms, so we want to solve
the equation ¥}y = Arag for some Ay : M — Ryo. Again we suppose that
is the flow of a vector field v; € &, and the equation becomes

Gt + Ly, day = pgor

where p; = %(log At) o, ! Plugging in R, determines p; uniquely, and then
vy is determined just as before. O

So contact structures all look the same locally — namely, they look like
(R?H+1 ¢4) — and the moduli space of contact structures on a manifold M is
discrete. The fact that it is also nonempty for closed, oriented 3-manifolds is
due to Lutz and Martinet, and there are many proofs of this fact. We will
give a proof due to Thurston and Winkelnkemper which hints at the Giroux
correspondence, a classification of contact structures which we will discuss later
in the course.

Theorem 12. FEwvery closed, oriented 3-manifold admits a contact structure.

Proof. Let M be such a manifold. Alexander showed in the 1920s that M has an
open book decomposition: there is an oriented link L C M called the “binding”
and a fibration 7 : M\ L — S* for which the “pages”, i.e. the fibers Xy = 771(0),
are surfaces with 0%g = L. We will construct a contact form on M\v(L) and
then extend it to each component of the binding.

Write M\v(L) as the mapping torus of h: ¥ — ¥, i.e. as

¥ x [0,1]

M= G ~ ((x),0)

where ¥ is compact and h is the identity on a neighborhood of 9%. Let w be
an area form on ¥ with total area 27|0X| and w = dt A df on a neighborhood
[—1,0]; x S5 of each component of 9¥. If v is a 1-form on ¥ which equals
(14 t)df near 0¥ then w — da vanishes near 0¥ and

/w—da:27r|82|—/ a=0.
b %

Thus w—da = dp for some 1-form S supported away from 0%, and so A = a+
is a 1-form with dA an area form and A = (1 +¢)df near 9%. The set of all such
A is convex, and if A is in this set then so is A*A. Define a 1-form on M} by
Ap = oA+ (1 — ¢)h* A, and then set

ap = /\¢ +Kd¢.

Then ap Aday, = AgAdAg+Kd g Adp, and since A4 is an area form on each page
Y, this is a volume form for large K. Furthermore, we have o, = (1+¢)d0+Kd¢p
near each component of 9¥ x St = OMj,.



To finish the construction, we need to find a contact structure on the solid
torus D%T ) % S} which is equal to —rdf+ K d¢ near its boundary (here r = 1+4-t).

Near the center of D? we take the contact form
a=df+rido
and in between we interpolate by taking
a = f(r)d0 + g(r)de.

The condition a Ada > 0 becomes fg' —gf’ > 0, with (f,g) = (1,7%) near r = 0
and (f,g) = (—r,K) near r = 1. It is an easy exercise to show that such f, g
exist. O

We are also interested in the study of various knots in contact 3-manifolds.

Definition 13. A smoothly embedded knot K C (M, &) is called Legendrian if
T,K C &, for all z € K, i.e. if it is tangent to the contact planes. A knot for
which T, K th &, instead is called transverse; if K is oriented and parametrized
by v : 8! — M, and ¢ = ker(a), then K is positively or negatively transverse
depending on the sign of a(v/(t)).

For example, a Legendrian knot K C (IR3, &) satisfies the condition y = %.
Thus we can recover the knot completely from its projection to the zz-plane,
known as the front projection.

Any Legendrian knot K has a standard neighborhood. Indeed, since we can
split &|x = TK @ v where v is the da-orthogonal complement of TK, a section
of v canonically determines the Thurston-Bennequin framing of K. Given two
Legendrian knots, we can find a diffeomorphism carrying one knot with this
framing to the other and thus apply the contact neighborhood theorem.

As a model of this neighborhood, we can consider S' x R? with contact form
a = cos fdx — sin 0dy

and Legendrian knot K = S* x {(0,0)}.

Remark 14. If K is null-homologous, one can consider its Thurston-Bennequin
framing with respect to the framing induced by a Seifert surface. For Legendrian
knots in S3, for example, this Seifert framing is unique, and so we have a
Legendrian isotopy invariant

th(K)eZ

measuring the twisting of the Thurston-Bennequin framing with respect to the
Seifert framing.

Proposition 15. Any smooth knot in a contact manifold can be CO-approximated
by a Legendrian knot.



Proof. First, assume we are considering a smooth knot or arc in (R?,&s). We
can approximate it arbitrarily well by a Legendrian knot or arc by drawing
lots of zigzags along its front projection, connected by cusps, so that the slope
of each segment approximates the y-coordinate of the smooth curve. If we are
approximating an arc, we require the segments on either end to have slope equal
to the y-coordinate of the corresponding endpoint.

Now assume we have a knot K in an arbitrary contact manifold, and cover
it with finitely many Darboux balls By,...,B,, B,4+1 = B;. We pick points
pi € B; N B;11 to divide the knot into segments, each of which lies in a single
Darboux ball, and thus reduce to the case of arcs in (R?,&). O

Proposition 16. Any smooth knot in a contact manifold can be CO-approzimated
by a transverse knot.

Proof. Given K C (M,§), we first choose a Legendrian approximation. Once
K is Legendrian, we take a slight push-off in the normal direction along ¢|k;
the result is called the positive or negative push-off depending on which normal
direction we take (recall that £ is oriented by da).

In order to check that the push-off is transverse, we use the model neighbor-
hood St x {(0,0)} C (S* x R?, ker(cos dz — sin dy)): there the contact planes
at p = (0,0,0) are spanned by dz and

sin GQ + cos GQ
ox

dy
and so the push-off is parametrized by
~v(0) = (0, Lesin b, tecos )

with tangent vector +/(6) = (1, +ecosf, Fesinf) satisfying a(y/(0)) = te #
0. O

Theorem 17. A car of length L can be parallel parked in any space of length
L+e€ €e>0.

Proof. Let us assume that the car is on the plane R2. Its position can be
described by a single coordinate (x,y) and the angle § € S! its tires are facing,
or equivalently a point in the configuration space R? x S!, which has contact
form

« = sin Odx — cos 0dy.

(Note that aAda = —dx AdyAdf, so we will reverse the usual orientation of S'.)
The car’s path v(t) = (x(¢),y(t),0(t)) will satisfy Z—z = tan#, or equivalently
‘Zl—f sinf — %’ cosf = 0: thus 7(t) must be Legendrian. We now take a path
through configuration space which pulls the car up parallel to the parking spot
and then slides it horizontally into place without turning the wheel; this is
physically impossible, but an arbitrarily close Legendrian approximation will

successfully park the car. O



