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Definition 1. LetM be a (2n+1)-dimensional Riemannian manifold. A contact
structure on M is a hyperplane field ξ2n ⊂ TM which can be written locally as
the kernel of a 1-form α such that α ∧ (dα)n is a positive volume form.

In this course we will focus on co-orientable contact structures, those for
which the normal bundle ξ⊥ is trivial. This is equivalent to the existence of a
global choice of α: if v is a section of ξ⊥, we can take αp(x) = 〈vp, x〉. We will
also restrict our attention to 3-manifolds after today.

Example 2. On R2n+1 we have the standard contact structure ξst = ker(dz −∑
yidxi).

Example 3. The overtwisted structure (R3, ξot), ξot = ker(cos(r)dz+r sin(r)dθ).
Remark 4. The disk D = {r = π, z = 0} is overtwisted : ξ|∂D = TD|∂D.
Bennequin proved that no such disk exists in (R3, ξst), so these two contact
structures are distinct.

Example 5. (S3, ξst) with α =
∑2
i=1 xidyi−yidxi, where S3 is the unit sphere

in R4 = C2.

Exercise 6. (S3, ξst) minus a point is contactomorphic to (R3, ξst).
The standard contact structure on S3 is an example of a phenomenon that

suggests one reason why we might study contact structures. Recall that a com-
plex manifold (X, J) is a Stein manifold if it admits a strictly plurisubharmonic
exhausting function, i.e. a function φ : X → R for which ω = −d(dφ◦J) defines
a metric g(v, w) = ω(v, Jw) and for which the sets φ−1((−∞, c]) are compact.

Proposition 7. Suppose c is a regular value of φ and let M = φ−1(c). Then
the hyperplane field TM ∩ J(TM) defines a contact structure on M .

Proof. We can check that J(TM) = ker(dφ ◦ J): if v = Jx with x ∈ TpM , then
dφ(Jv) = dφ(−x) = −dφ(x) = 0. Thus if α = −dφ ◦ J defines a 1-form on M
by restriction and ξ = ker(α) then we have ξ = TM ∩ J(TM). Given x ∈ ξ, we
have

dαp(x, Jx) = d(−dφ ◦ J)(x, Jx) = ω(x, Jx) > 0

and so dα is positive on ξ. It follows that α ∧ dα is a volume form on M , i.e.
that ξ is contact.
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Example 8. (T 3, ξn) where ξn = ker(cos(2πnz)dx− sin(2πnz)dy)). Only ξ1 is
Stein fillable.

Just as in symplectic geometry, we have a theorem which says that locally
ξst is the only possible contact structure; in general contact structures provide
only global information.

Theorem 9 (Darboux’s Theorem). Let ξ be a contact structure on M , and take
a point p ∈M . Then p has a neighborhood with local coordinates (x1, y1, . . . , xn, yn, z)
such that ξ = ker(α0), where α0 = dz −

∑
yidxi.

Proof. Assume without loss of generality that p = (0, 0, . . . , 0) ∈ R2n+1 and that
ξ = ker(α1), where ξp has the desired form. Rescale α1 so that α0|p = α1|p.
The family of 1-forms

αt = (1− t)α0 + tα1

satisfy αt ∧ (dαt)
n = α0 ∧ (dα0)n > 0 at p, hence αt is a contact form on

a neighborhood U of p. We now wish to find an isotopy ψt of U such that
ψ∗t αt = α0. For this we use Moser’s trick.

Suppose that ψt exists and is the flow of a vector field vt such that vt ∈ ξt.
By differentiating ψ∗t αt = λtα0, we get

ψ∗t (α̇t + Lvtαt) = λ̇tα0 =
λ̇t
λt
ψ∗t αt

and Cartan’s formula gives us Lvtαt = ιvtdαt + d(ιvtαt) = ιvtdαt, so after
applying the diffeomorphism (ψ∗t )−1 we wish to solve the equation

α̇t + ιvtdαt = µtαt

where µt = (ψ∗t )−1 d
dt (log λt). On the Reeb vector field Rt of αt, which is defined

by the equations αt(Rt) = 1 and ιRt
dαt = 0, this equation becomes µt = α̇t(Rt),

so we may solve for λt. Now that this equation is automatically satisfied on the
line through Rt, it remains to find vt ∈ ξt so that

dαt(vt, ·)|ξt = (µtαt − α̇t) |ξt .

But dαt is a symplectic form on ξt, and in particular it is nondegenerate, so the
desired vt exists.

Exercise 10 (Contact neighborhood theorem). Generalize this proof to show
the following: if L1 ⊂ (M1, ξ1) and L2 ⊂ (M2, ξ2) are closed submanifolds and
there is a diffeomorphism φ : L1 → L2 such that φ∗(ξ2|L2) = ξ1|L1 , then φ
extends to a contactomorphism on open neighborhoods of the Li.

Moser’s trick can also be used to show that deformations of a contact struc-
ture can be realized by isotopies of the ambient manifold.

Theorem 11 (Gray’s Theorem). Let {ξt}t∈[0,1] be a family of contact structures
on the closed manifold M . There is a family ψt of diffeomorphisms with ψ0 =
idM such that ψ∗t ξt = ξ0.
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Proof. Write ξt = ker(αt) for αt a smooth family of 1-forms, so we want to solve
the equation ψ∗t αt = λtα0 for some λt : M → R>0. Again we suppose that ψt
is the flow of a vector field vt ∈ ξt, and the equation becomes

α̇t + ιvtdαt = µtαt

where µt = d
dt (log λt) ◦ ψ−1

t . Plugging in Rt determines µt uniquely, and then
vt is determined just as before.

So contact structures all look the same locally – namely, they look like
(R2n+1, ξst) – and the moduli space of contact structures on a manifold M is
discrete. The fact that it is also nonempty for closed, oriented 3-manifolds is
due to Lutz and Martinet, and there are many proofs of this fact. We will
give a proof due to Thurston and Winkelnkemper which hints at the Giroux
correspondence, a classification of contact structures which we will discuss later
in the course.

Theorem 12. Every closed, oriented 3-manifold admits a contact structure.

Proof. LetM be such a manifold. Alexander showed in the 1920s thatM has an
open book decomposition: there is an oriented link L ⊂M called the “binding”
and a fibration π : M\L→ S1 for which the “pages”, i.e. the fibers Σθ = π−1(θ),
are surfaces with ∂Σθ = L. We will construct a contact form on M\ν(L) and
then extend it to each component of the binding.

Write M\ν(L) as the mapping torus of h : Σ→ Σ, i.e. as

Mh =
Σ× [0, 1]

(x, 1) ∼ (h(x), 0)
,

where Σ is compact and h is the identity on a neighborhood of ∂Σ. Let ω be
an area form on Σ with total area 2π|∂Σ| and ω = dt ∧ dθ on a neighborhood
[−1, 0]t × S1

θ of each component of ∂Σ. If α is a 1-form on Σ which equals
(1 + t)dθ near ∂Σ,then ω − dα vanishes near ∂Σ and∫

Σ

ω − dα = 2π|∂Σ| −
∫
∂Σ

α = 0.

Thus ω−dα = dβ for some 1-form β supported away from ∂Σ, and so λ = α+β
is a 1-form with dλ an area form and λ = (1 + t)dθ near ∂Σ. The set of all such
λ is convex, and if λ is in this set then so is h∗λ. Define a 1-form on Mh by
λφ = φλ+ (1− φ)h∗λ, and then set

αh = λφ +Kdφ.

Then αh∧dαh = λφ∧dλφ+Kdλφ∧dφ, and since λφ is an area form on each page
Σφ this is a volume form for largeK. Furthermore, we have αh = (1+t)dθ+Kdφ
near each component of ∂Σ× S1 = ∂Mh.
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To finish the construction, we need to find a contact structure on the solid
torusD2

(r,φ)×S
1
θ which is equal to −rdθ+Kdφ near its boundary (here r = 1+t).

Near the center of D2 we take the contact form

α = dθ + r2dφ

and in between we interpolate by taking

α = f(r)dθ + g(r)dφ.

The condition α∧dα > 0 becomes fg′−gf ′ > 0, with (f, g) = (1, r2) near r = 0
and (f, g) = (−r,K) near r = 1. It is an easy exercise to show that such f, g
exist.

We are also interested in the study of various knots in contact 3-manifolds.

Definition 13. A smoothly embedded knot K ⊂ (M, ξ) is called Legendrian if
TxK ⊂ ξx for all x ∈ K, i.e. if it is tangent to the contact planes. A knot for
which TxK t ξx instead is called transverse; if K is oriented and parametrized
by γ : S1 → M , and ξ = ker(α), then K is positively or negatively transverse
depending on the sign of α(γ′(t)).

For example, a Legendrian knot K ⊂ (R3, ξst) satisfies the condition y = dz
dx .

Thus we can recover the knot completely from its projection to the xz-plane,
known as the front projection.

Any Legendrian knot K has a standard neighborhood. Indeed, since we can
split ξ|K = TK ⊕ ν where ν is the dα-orthogonal complement of TK, a section
of ν canonically determines the Thurston-Bennequin framing of K. Given two
Legendrian knots, we can find a diffeomorphism carrying one knot with this
framing to the other and thus apply the contact neighborhood theorem.

As a model of this neighborhood, we can consider S1×R2 with contact form

α = cos θdx− sin θdy

and Legendrian knot K = S1 × {(0, 0)}.
Remark 14. If K is null-homologous, one can consider its Thurston-Bennequin
framing with respect to the framing induced by a Seifert surface. For Legendrian
knots in S3, for example, this Seifert framing is unique, and so we have a
Legendrian isotopy invariant

tb(K) ∈ Z

measuring the twisting of the Thurston-Bennequin framing with respect to the
Seifert framing.

Proposition 15. Any smooth knot in a contact manifold can be C0-approximated
by a Legendrian knot.
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Proof. First, assume we are considering a smooth knot or arc in (R3, ξst). We
can approximate it arbitrarily well by a Legendrian knot or arc by drawing
lots of zigzags along its front projection, connected by cusps, so that the slope
of each segment approximates the y-coordinate of the smooth curve. If we are
approximating an arc, we require the segments on either end to have slope equal
to the y-coordinate of the corresponding endpoint.

Now assume we have a knot K in an arbitrary contact manifold, and cover
it with finitely many Darboux balls B1, . . . , Br, Br+1 = B1. We pick points
pi ∈ Bi ∩ Bi+1 to divide the knot into segments, each of which lies in a single
Darboux ball, and thus reduce to the case of arcs in (R3, ξst).

Proposition 16. Any smooth knot in a contact manifold can be C0-approximated
by a transverse knot.

Proof. Given K ⊂ (M, ξ), we first choose a Legendrian approximation. Once
K is Legendrian, we take a slight push-off in the normal direction along ξ|K ;
the result is called the positive or negative push-off depending on which normal
direction we take (recall that ξ is oriented by dα).

In order to check that the push-off is transverse, we use the model neighbor-
hood S1 ×{(0, 0)} ⊂ (S1 ×R2, ker(cos θdx− sin θdy)): there the contact planes
at p = (θ, 0, 0) are spanned by dz and

sin θ
∂

∂x
+ cos θ

∂

∂y

and so the push-off is parametrized by

γ(θ) = (θ,±ε sin θ,±ε cos θ)

with tangent vector γ′(θ) = (1,±ε cos θ,∓ε sin θ) satisfying α(γ′(θ)) = ±ε 6=
0.

Theorem 17. A car of length L can be parallel parked in any space of length
L+ ε, ε > 0.

Proof. Let us assume that the car is on the plane R2. Its position can be
described by a single coordinate (x, y) and the angle θ ∈ S1 its tires are facing,
or equivalently a point in the configuration space R2 × S1, which has contact
form

α = sin θdx− cos θdy.

(Note that α∧dα = −dx∧dy∧dθ, so we will reverse the usual orientation of S1.)
The car’s path γ(t) = (x(t), y(t), θ(t)) will satisfy dy

dx = tan θ, or equivalently
dx
dt sin θ − dy

dt cos θ = 0: thus γ(t) must be Legendrian. We now take a path
through configuration space which pulls the car up parallel to the parking spot
and then slides it horizontally into place without turning the wheel; this is
physically impossible, but an arbitrarily close Legendrian approximation will
successfully park the car.
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