
Analysis of a regularized, time-staggered

discretization method and its link to the

semi-implicit method ?

J. Frank, a S. Reich, b,∗ A. Staniforth, c

A. White, c and N. Wood c

aCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
bInstitut für Mathematik, Universität Potsdam, PF 60 15 53, D-14415 Potsdam,

Germany
cMet Office, FitzRoy Road, Exeter, EX1 3PB Devon, UK

Abstract

A key aspect of the recently proposed Hamiltonian Particle-Mesh (HPM) method
is its time-staggered discretization combined with a regularization of the continu-
ous governing equations. In this paper, the time discretization aspect of the HPM
method is analysed for the linearized, rotating, shallow-water equations with orog-
raphy and the combined effect of time-staggering and regularization is compared
analytically to the popular semi-implicit time discretization of the unregularized
equations. It is found that the two approaches are essentially equivalent provided
the regularization parameter is chosen appropriately in terms of the time step ∆t.
The paper treats space as a continuum and, hence, its analysis is not limited to the
HPM method.
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1 Introduction

An important issue in numerical weather prediction is the treatment of poorly resolved
inertia-gravity waves. To circumvent the strict limitations imposed via the CFL con-
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dition on the maximum time step of explicit integration methods, most operational
codes make use of some implicitness. Each time step, fully implicit methods require
the solution of a nonlinear system of equations, whereas linearly implicit methods
require only the solution of a linear system. In this paper an alternative strategy is
investigated which is based on applying a regularization procedure to the continuous
governing equations that renders them suitable for explicit integration. This approach
has been proposed in the context of the Hamiltonian Particle-Mesh (HPM) method
(see, e.g. Frank et al. (2002) and Frank & Reich (2004)).

The HPM method is based on the Lagrangian formulation of fluid dynamics and uses
a conservative (Hamiltonian) version of the classical particle-mesh spatial truncation
technique (Birdsall & Langdon, 1981; Hockney & Eastwood, 1988). Encouraging nu-
merical results have been reported in a number of papers (Frank et al., 2002; Frank
& Reich, 2004; Cotter et al., 2004). However, with the exception of conservation
properties (Frank & Reich, 2003; Bridges et al., 2002; Cotter & Reich, 2004), the-
oretical understanding of the HPM method is somewhat limited. In this paper the
time-stepping aspect of the HPM method is investigated. It is applied to the two-
dimensional shallow-water equations (henceforth referred to as the SWEs) and its
linearized free and forced response are analysed and compared with the standard
semi-implicit approach (see, e.g., Staniforth (1997) and Durran (1998)).

In section 2 the regularization procedure is discussed and applied to the orographi-
cally forced SWEs on an f -plane. These equations are then linearized and discretized
in section 3, where the semi-implicit discretization of the linearized, unregularized
equations is also given. The analytical properties of the regularized continuous equa-
tions are discussed in section 4 which motivates a comparison of the non-rotating
discrete system with its semi-implicit counterpart in section 5. This comparison is
extended to the rotating system in sections 6 and 7 before conclusions are drawn in
section 8.

2 The regularization procedure of the HPM method applied to the SWEs

The numerical treatment of the SWEs has been the subject of extensive research
as these equations serve as a model system for the more complex primitive equa-
tions and/or the non-hydrostatic Euler equations of three-dimensional atmospheric
fluid dynamics Durran (1998). The orographically forced SWEs on an f -plane in an
Eulerian framework are

Du

Dt
= +fv − ghx − ghS

x , (1)

Dv

Dt
=−fu− ghy − ghS

y , (2)

Dh

Dt
=−h(ux + vy). (3)
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Here hS = hS(x, y) is the height of the orography above mean sea level and h =
h(x, y, t) is the fluid depth, i.e., the depth of the fluid between the orography and the
fluid’s free surface. Also, g is gravity (assumed constant), f is twice the (constant)
angular velocity of the reference plane,

D

Dt
(.) = (.)t + u(.)x + v(.)y, (4)

is the material time derivative and subscripts denote partial differentiation with re-
spect to that variable.

Alternatively, in a Lagrangian framework the SWEs are given by

ut = +fv − ghx − ghS
x , (5)

vt =−fu− ghy − ghS
y , (6)

xt = u, (7)

yt = v, (8)

h =

[
∂(x, y)

∂(a, b)

]−1

h0. (9)

Here x = x(a, b, t) and y = y(a, b, t) are now the coordinates of a fluid particle with
initial coordinates x = a and y = b,

∂(x, y)

∂(a, b)
= xayb − xbya, (10)

denotes the Jacobian of the transformation from (a, b) to (x, y), and h0(a, b) is the
initial fluid depth. Note that the independent variables in the Lagrangian framework
are time t and labels (a, b). Furthermore, the Lagrangian partial time derivative (.)t

corresponds to the material time derivative D(.)/Dt in the Eulerian framework.

The HPM method applies to the Lagrangian framework and the HPM discretization
consists essentially of three steps.

First, (5)-(9) are regularized by applying a modified Helmholtz operator A to the
fluid depth approximation obtained from the continuity equation (9). This step leads
to a modification of the fluid depth h, as used in the momentum equations (5) and
(6), of the form:

h = A ∗ µ, µ =

[
∂ (x, y)

∂ (a, b)

]−1

µ0, (11)

where
A ∗ µ ≡

(
1 + γ2 − α2∇2

)−1
µ, (12)

so that
µ =

(
1 + γ2 − α2∇2

)
h. (13)

Also, ∇2 = ∂2
x + ∂2

y , α > 0 is a prescribed ‘smoothing length scale’ and γ > 0 is a
further smoothing parameter, which is set equal to zero in the standard implementa-
tions of the HPM method. Additionally, µ0 = (1 + γ2 − α2∇2) h0. Note that µ is now
used to indicate the unmodified fluid depth as it appears in the continuity equation.
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Second, the resulting equations are discretized in time by an explicit, staggered
leapfrog discretization

un+1 − un

∆t
= +f

vn+1 + vn

2
− ghn+1/2

x − ghS
x , (14)

vn+1 − vn

∆t
=−f

un+1 + un

2
− ghn+1/2

y − ghS
y , (15)

xn+1/2 − xn−1/2

∆t
= un, (16)

yn+1/2 − yn−1/2

∆t
= vn, (17)

µn+1/2 =

∂
(
xn+1/2, yn+1/2

)
∂ (a, b)

−1

µ0, (18)

together with hn+1/2 = A ∗ µn+1/2.

Third, a spatial discretization, via a classical particle-mesh method (Birdsall & Lang-
don, 1981; Hockney & Eastwood, 1988), is applied, taking particular care that the
resulting finite-dimensional differential equations are conservative (i.e., Hamiltonian)
(Frank et al., 2002; Frank & Reich, 2004).

The empirical rationale behind the introduction of a smoothing operator A into the
HPM method is to control poorly resolved, high-frequency, inertia-gravity waves.
It has been found that such waves can otherwise destabilize the HPM method. The
particular form of the operatorA is motivated by its success in numerical experiments.
However, other ‘smoothing’ operators are conceivable.

In this paper, only the analysis of the first two steps in the derivation of the HPM
method is considered and therefore the spatial discretization aspect of the HPM
method is ignored.

3 Linearizing the Lagrangian fluid equations and the HPM discretization

The only nonlinearity in the Lagrangian picture arises from equation (11). Its lin-
earization about a motionless basic state of constant free surface height H leads to
the relation

h = A ∗ µ, µ = H(1− x′a − y′b), (19)

provided the orography hS is assumed to be a perturbation quantity, in the sense
|hS| � H. Here x′ = x− a and y′ = y− b denote small perturbations about the basic
state. Since the basic state is assumed to be motionless, x′a ≈ x′x and y′b ≈ y′y. Hence,
the linear system of partial differential equations is
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ut = +fv − ghx − ghS
x , (20)

vt =−fu− ghy − ghS
y , (21)

x′t = u, (22)

y′t = v, (23)

µ = H(1− x′x − y′y), (24)

together with h = A ∗ µ. Eqs. (22)-(24) can be simplified to the Eulerian form

µt =−H(ux + vy), (25)

since x′xt = ux and y′yt = vy.

It can be verified that linearization and discretization are commutative processes and,
hence, the staggered leapfrog discretization applied to the linear equations (20), (21)
and (25) gives

un+1 − un

∆t
= +f

vn+1 + vn

2
− ghn+1/2

x − ghS
x , (26)

vn+1 − vn

∆t
=−f

un+1 + un

2
− ghn+1/2

y − ghS
y , (27)

µn+1/2 − µn−1/2

∆t
=−H(un

x + vn
y ), (28)

together with hn+1/2 = A ∗ µn+1/2.

In section 4, the analytic solutions of (20), (21), and (25) are compared to the solutions
of the standard linearized SWEs with h = µ and the impact of the filtering operator
A on both the forced and free solutions is discussed.

The second part of the paper, sections 5-7, is devoted to the numerical discretization
(26)-(28) and a comparison with the semi-implicit discretization of (20), (21), and
(25) with h = µ, namely

un+1 − un

∆t
= +f

vn+1 + vn

2
− g

hn+1
x + hn

x

2
− ghS

x , (29)

vn+1 − vn

∆t
=−f

un+1 + un

2
− g

hn+1
y + hn

y

2
− ghS

y , (30)

hn+1 − hn

∆t
=−H

un+1
x + un

x

2
−H

vn+1
y + vn

y

2
. (31)

Such a comparison is motivated by the fact that the semi-implicit time discretization
is widely used in numerical weather prediction and climate modelling. Note that,
for the linear equations, the semi-implicit method is akin to the Crank-Nicolson,
trapezoidal and implicit midpoint methods.
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4 Analytic impact of regularizing the linear SWEs on an f-plane

In order to isolate the slow modes (here the stationary, degenerate Rossby modes)
from the propagating fast (inertia-gravity) modes, the curl and divergence of (20) and
(21) are formed, giving

ζt = −fD, (32)

and

Dt = fζ − g∇2(h + hS). (33)

Eq. (25) may be rewritten as

µt = −HD. (34)

Manipulation of (32) and (34) yields

Qt = 0, (35)

where

Q ≡ ζ − f

H
µ, (36)

is the linearized and scaled potential vorticity perturbation. Eqs. (33), (34) and (36)
then lead to

µtt =−HDt = −fHζ + gH∇2h + gH∇2hS

=−
(
fHQ + f 2µ

)
+ c2

0∇2(h + hS), (37)

with µ and h related by (13) and c0 ≡
√

gH. It is convenient, using (13) and (12), to
rewrite (37) as an equation for h, i.e., as

htt + f 2h− f 2L2
R∇2A ∗ h = −f 2A ∗

(
HQ

f
− L2

R∇2hS

)
, (38)

where LR ≡ c0/f denotes the Rossby radius of deformation.

Eqs. (35) and (38) govern the evolution of Q and h respectively, and ζ can be diagnosed
from these using (36).

Eq. (35) essentially governs the geostrophic (f = const.) degenerate Rossby mode and
has the solution Q = Q0 where Q0 is the initial value of Q. Eq. (38) is a forced, second-
order-in-time partial differential equation for h. Both Q = Q0 and hS are independent
of time. Therefore, the forced response of h is stationary. It is the free, time dependent
response of h that governs the propagation of the inertia-gravity modes.

The behaviour of the free and forced responses of the regularized and unregularized
equations are now compared.
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4.1 Forced solutions

After application of (1 + γ2 + α2∇2) to (38), the time-independent, forced solution
h = hforced is related to Q0 and hS by

hforced = −
[
1 + γ2 −

(
L2

R + α2
)
∇2
]−1

(
H

f
Q0 − L2

R∇2hS

)
, (39)

where superscript “forced” denotes the forced solution. Furthermore, noting that the
forced solution is time-independent, the forced solution for ζ is found from (33) to be
related to that of h by

ζforced =
g

f
∇2

(
hforced + hS

)
, (40)

which does not introduce any further dependence on the regularization parameters α
and γ. Hence, only the forced response of the fluid depth, hforced, need be considered.

Comparison of (39) with the unregularized result (i.e., (39) with α ≡ 0 and γ ≡ 0),
shows that, provided α � LR and γ � 1, the regularization does not significantly
influence the forced response of h to the initial potential vorticity perturbation Q0

and to the orography hS. It is found later (see discussion in section 8) that such a
choice of α and γ is not only justified but practicable.

4.2 Free solutions

Using (12) and c2
0 = f 2L2

R, the free response of (38), which represents the inertia-
gravity waves, is governed by the regularized wave equation

hfree
tt + f 2hfree − c2

0

(
1 + γ2 − α2∇2

)−1
∇2hfree = 0, (41)

where superscript “free” denotes the free solution.

Comparison of (41) with the unregularized wave equation

hfree
tt + f 2hfree − c2

0∇2hfree = 0, (42)

reveals that the impact of the regularization procedure is to artificially reduce the

frequency of linear inertia-gravity waves from ω = ±
√

f 2 + c2
0 (k2 + l2) to

ω = ±

√√√√f 2 +
c2
0 (k2 + l2)

1 + γ2 + α2 (k2 + l2)
. (43)

This is an analytic result, independent of any discretization procedure. It means that a
spurious numerical dispersion is introduced into the continuous problem such that the
highest wavenumber components are increasingly retarded as a function of increasing
wavenumber (i.e., decreasing scale).
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The result is qualitatively reminiscent of the impact of a semi-implicit discretization of
the original, unregularized equations, which also progressively retards the propagation
of gravity modes as a function of decreasing scale (see e.g., Staniforth (1997)). Thus,
in qualitative terms at least, the regularization procedure does at an analytic level
what the semi-implicit method is known to do at a discrete level. This aspect is now
investigated.

5 An equivalence between explicit time-staggered discretization of the
regularized equations and semi-implicit time discretization of the un-
regularized equations

For simplicity, throughout this section the non-rotating, linear SWEs are considered,
i.e., it is assumed that f ≡ 0. The more general case of f 6= 0 is addressed in sections
6 and 7.

5.1 Explicit time-staggered discretization of the regularized SWEs

Consider the explicit time-staggered discretization of the regularized SWEs (26)-(28)
with f ≡ 0. Taking the divergence of (26) and (27), and using (13), yields the formu-
lation

Dn+1 −Dn

∆t
= −g∇2

(
hn+1/2 + hS

)
, (44)

and
hn+1/2 − hn−1/2

∆t
= −HA ∗Dn, (45)

in terms of the variables hn+1/2 and Dn ≡ un
x + vn

y . Algebraic manipulation of (44)
and (45) then yields

hn+3/2 − 2hn+1/2 + hn−1/2 = c2
0∆t2∇2A ∗

(
hn+1/2 + hS

)
. (46)

Averaging successive time steps of (46), defining the integer time-level approximations

hn ≡ 1

2

(
hn+1/2 + hn−1/2

)
, (47)

and using (12) leads to the equivalent formulation

hn+1 = 2hn − hn−1 + (c0∆t)2
(
1 + γ2 − α2∇2

)−1
∇2

(
hn + hS

)
. (48)

Algorithmically, most of the computational cost of the time-staggered discretization
of the regularized equations is the overhead, when applying the smoothing opera-
tor in (46), of solving a modified Helmholtz problem whose Helmholtz coefficient is
(1 + γ2) α−2.
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5.2 Semi-implicit time discretization of the unregularized SWEs

Repeating the manipulations from the previous section but for (29)-(31), the semi-
implicit discretization of the unregularized SWEs with f ≡ 0 becomes equivalent
to

hn+1 − 2hn + hn−1 = (c0∆t)2∇2

[
(hn+1 + 2hn + hn−1)

4
+ hS

]
, (49)

which can be considered to be a time-centred discretization of the wave equation (42)
for f = 0.

Algorithmically, most of the computational cost of the semi-implicit discretization
is the overhead of solving the modified Helmholtz problem defined by (49) whose
Helmholtz coefficient is (c0∆t/2)−2. The inversion of this modified Helmholtz operator
yields the equivalent ‘explicit’ recursion relation

hn+1 = 2hn − hn−1 + (c0∆t)2

[
1−

(
c0∆t

2

)2

∇2

]−1

∇2
(
hn + hS

)
. (50)

Comparing now (48) with (50), it is seen that they are equivalent if α is set to c0∆t/2
and γ to zero, which, for hS ≡ 0, can be seen as a numerical approximation to
(42). The two Helmholtz coefficients are then also identical. This means that, in the
non-rotating case, the time-staggered discretization of the regularized, linear SWEs is
precisely equivalent to a semi-implicit time discretization of the unregularized linear
SWEs when α = c0∆t/2 and γ = 0. (As will be found in section (7), γ plays a crucial
role when f 6= 0.)

6 Explicit time-staggered discretization of the forced regularized SWEs
on an f-plane

Consider now the explicit, time-staggered discretization of the regularized linear
SWEs on an f -plane, i.e., equations (26)-(28).

6.1 Derivation of an equivalent difference equation for the fluid depth

Defining

ζn ≡ vn
x − un

y , (51)

and assuming a continuous representation in space, (26)-(28), together with (13), may
be equivalently rewritten as
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ζn+1 − ζn

∆t
=−f

2

(
Dn+1 + Dn

)
, (52)

Dn+1 −Dn

∆t
=

f

2

(
ζn+1 + ζn

)
− g∇2

(
hn+1/2 + hS

)
, (53)

hn+1/2 − hn−1/2

∆t
=−HA ∗Dn. (54)

Subtracting (54) from its index increment gives

hn+3/2 − 2hn+1/2 + hn−1/2

∆t2
= −HA ∗

(
Dn+1 −Dn

∆t

)
, (55)

and using (53) gives

hn+3/2 − 2hn+1/2 + hn−1/2

∆t2
= A ∗

[
−Hf

2

(
ζn+1 + ζn

)
+ c2

0∇2
(
hn+1/2 + hS

)]
. (56)

Using (47), (56) then leads to

hn+1 − 2hn + hn−1

∆t2
= A ∗

[
−Hf

4

(
ζn+1 + 2ζn + ζn−1

)
+ c2

0∇2
(
hn + hS

)]
. (57)

Next, using (36) and (13), the discrete linear potential vorticity perturbation is defined
as

Qn ≡ ζn − f

H
µn = ζn − f

H

(
1 + γ2 − α2∇2

) hn+1/2 + hn−1/2

2
. (58)

It can be verified that Qn is constant and equal to its initial value Q0 under the
equations (52)-(54).

Hence, ζn can be replaced in (57) by

ζn = Q0 +
f

H

(
1 + γ2 − α2∇2

)
hn, (59)

with corresponding replacements for the integer shifted values. Finally, the governing
second-order difference equation for h is derived as

hn+1 − 2hn + hn−1

∆t2
= −f 2

4

(
hn+1 + 2hn + hn−1

)
−A ∗

[
fHQ0 − c2

0∇2
(
hn + hS

)]
.

(60)

6.2 Stability of the free solution

Using the definition (12), the free solution to (60) is governed by the equation

hn+1 − 2hn + hn−1

∆t2
= −f 2

4

(
hn+1 + 2hn + hn−1

)
+
(
1 + γ2 − α2∇2

)−1
c2
0∇2hn. (61)
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Seeking solutions of the form

hn ∝ λnei(kx+ly), (62)

yields (
λ2 − 2Bλ + 1

)
= 0, (63)

where

B ≡ b (1− F 2)− c2
0∆t2 (k2 + l2) /2

b (1 + F 2)
, b ≡ 1 + γ2 + α2

(
k2 + l2

)
, F ≡ f∆t

2
, (64)

with solutions

λ = B ± i
√

1−B2. (65)

Thus, the requirement for stability that |λ| ≤ 1 gives the necessary and sufficient
condition

B2 ≤ 1, (66)

in which case |λ| = 1 and the solutions are neutrally stable. Substituting the defini-
tions (64) into (66) then gives

(
c2
0∆t2

2

)2 (
k2 + l2

)2
≤ 4b2F 2 + b

(
1− F 2

)
c2
0∆t2

(
k2 + l2

)
, (67)

which may be rewritten as

0 ≤
(
c2
0∆t2m2 + 4F 2b

)(
1 + γ2 + α2m2 − c2

0∆t2

4
m2

)
, (68)

where m = (k2 + l2)
1/2

is the horizontal wave number. For this inequality to be
satisfied for any horizontal wavenumber thus requires

α2 ≥
(

c0∆t

2

)2

. (69)

In order that the regularized continuous governing equations are as close as possible
to the unregularized ones, as small a value of α as possible, consistent with numerical
stability, should be chosen. Therefore, from (69) the optimal choice for the smoothing
length scale is α = c0∆t/2. Note also that, for fixed γ, increasing α beyond this
lower limit for stability, anyway decreases the coefficient of the associated Helmholtz
problem and, hence, decreases the efficiency of an iterative solver.

6.3 Forced solution

Seeking solutions of the form hn = hn±1 = hforced in (60) and using the definition
(12) gives the relation

0 = −f 2
(
1 + γ2 − α2∇2

)
hforced − fHQ0 + gH∇2

(
hforced + hS

)
. (70)
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Solving for hforced in (70) shows that the numerical forced fluid depth hforced is given
exactly as in (39), and this itself reduces to the unregularized result under the as-
sumption that α � LR and γ2 � 1.

6.4 Free solution

From (61) the free solution (corresponding to the inertia-gravity waves) is governed
by the explicit recursion relation

hn+1 = 2hn − hn−1 − f 2∆t2

1 + f 2∆t2/4

[
1− L2

R

(
1 + γ2 − α2∇2

)−1
∇2
]
hn

= 2hn − hn−1 − f 2∆t2

1 + f 2∆t2/4

(
1 + γ2 − α2∇2

)−1

×
{

1− L2
R∇2 + γ2

[
1−

(
α2

γ2

)
∇2

]}
hn. (71)

This is compared to the corresponding expression for the semi-implicit discretization
in the next section.

7 Semi-implicit time discretization of the forced SWEs on an f-plane

In this section, the semi-implicit time discretization (29)-(31) is considered on an
f -plane and the resulting discretization is compared to the explicit, time-staggered
discretization of the regularized equations.

7.1 Derivation of an equivalent difference equation for the fluid depth

Manipulating (29)-(31) in a similar way as in section 6, leads to the equivalent for-
mulation

hn+1 − 2hn + hn−1

∆t2
=−fH

4

(
ζn+1 + 2ζn + ζn−1

)
+ gH∇2

[
(hn+1 + 2hn + hn−1)

4
+ hS

]
, (72)

in terms of the fluid depth and the vorticity alone. Next, the discrete linear potential
vorticity perturbation is defined as

Qn ≡ ζn − f

H
hn. (73)
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It can be verified that Qn is constant and equal to its initial value Q0 under the
semi-implicit time discretization. Hence, ζn in (72) may be replaced by

ζn = Q0 +
f

H
hn, (74)

with corresponding replacements for the integer shifted values. Finally, the governing
second-order difference equation for h is derived as

hn+1 − 2hn + hn−1

∆t2
=−f 2

4

(
hn+1 + 2hn + hn−1

)
− fHQ0

+ gH∇2

[
(hn+1 + 2hn + hn−1)

4
+ hS

]
. (75)

7.2 Stability of the free solution

It can be verified that the semi-implicit method is unconditionally (neutrally) stable.

7.3 Forced solution

Seeking solutions of the form hn = hn±1 = hforced in (75) gives the relation

0 = −f 2hforced − fHQ0 + gH∇2
(
hforced + hS

)
. (76)

Solving for hforced, it is found that the numerical forced fluid depth hforced is given
exactly as in the unregularized case (i.e., (39) with α ≡ 0 and γ ≡ 0).

7.4 Free solution

The free solutions to (75) are governed by the equation

hn+1 − 2hn + hn−1

∆t2
= −f 2

4

(
hn+1 + 2hn + hn−1

)
+

gH

4
∇2

(
hn+1 + 2hn + hn−1

)
, (77)

which can be rearranged to give the explicit recursion

hn+1 = 2hn − hn−1 − f 2∆t2

1 +

(
f∆t

2

)2

−
(

c0∆t

2

)2

∇2

−1 (
1− L2

R∇2
)
hn. (78)

This is to be compared to the corresponding recursion (71) for the explicit, time-
staggered discretization of the regularized equations. Noting that LR ≡ c0/f , it is
found that the two recursions are precisely equivalent for α = c0∆t/2 if additionally
the choice γ = f∆t/2 is made. This choice is consistent with the non-rotating (f ≡ 0)
case where γ was required to be zero.
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8 Conclusions

A regularization of the orographically forced SWEs, as used in the recently proposed
HPM method, has been analysed in terms of linear perturbations. The effect of the
regularization is governed by two parameters: α, which measures the length scale at
which the scale-dependent smoothing becomes significant; and γ, which is a measure
of the scale-independent smoothing. Provided γ is chosen so that γ � 1 and α is
chosen to be much smaller than the Rossby radius of deformation, i.e., such that
α2 � L2

R, then the forced response of the regularized equations is close to that of
the unregularized equations. Further, and as expected, the free response (the inertia-
gravity waves) of the regularized equations approaches that of the unregularized ones
as α → 0 and γ → 0. For non-zero values of α, the inertia-gravity waves are increas-
ingly retarded as their wavenumber increases (reminiscent of the effect on discrete
inertia-gravity waves of the semi-implicit scheme). Increasing γ away from zero also
retards the inertia-gravity waves but the effect, in isolation from α, is independent of
the wavenumber.

The regularized equations have then been discretized using an explicit, time-staggered
leapfrog scheme. It is found that numerical stability of the free solution of this scheme
requires

α ≥ c0∆t

2
. (79)

Therefore, noting the above requirement for accuracy, that α be as small as possible,
the optimal choice for the smoothing length is α = c0∆t/2. Increasing α beyond this
value will unnecessarily reduce the accuracy of the free and forced responses. Addi-
tionally, for a fixed value of γ, it would also decrease the coefficient of the associated
Helmholtz problem and, hence, decrease the efficiency of an iterative solver.

The regularized, time-staggered leapfrog discretization has been compared to the
popular semi-implicit time discretization. It is found that, for the linearized equations,
if α assumes its optimal value and the choice γ = f∆t/2 is made, then the two
schemes give exactly the same numerical dispersion relation for the free response, i.e.,
for the inertia-gravity waves. Additionally, the regularized, time-staggered leapfrog
discretization yields a very similar result to the analytic forced response (which is
obtained exactly by the semi-implicit discretization) provided (α/LR)2 � 1 and γ2 �
1. With α = c0∆t/2 and γ = f∆t/2 then α/LR = γ and the two conditions reduce
to the same requirement, namely that the time step should be chosen such that
f∆t/2 � 1. This is generally the case for models of the Earth’s atmosphere.

References

Birdsall, C. & Langdon, A. 1981 , Plasma Physics via Computer Simulations,
McGraw-Hill, New York.

Bridges, T., Hydon, P. & Reich, S. 2002 , Vorticity and symplecticity in Lagrangian
fluid dynamics, Technical report, University of Surrey.

14



Cotter, C. & Reich, S. 2004 , Adiabatic invariance and applications: From molecular
dynamics to numerical weather prediction, BIT.

Cotter, C., Frank, J. & Reich, S. 2004 , Hamiltonian particle-mesh method for two-
layer shallow-water equations subject to the rigid-lid approximation, SIAM J. Appl.
Dyn. Sys. 3, 69–83.

Durran, D. 1998 , Numerical methods for wave equations in geophysical fluid dynam-
ics, Springer-Verlag, Berlin Heidelberg.

Frank, J. & Reich, S. 2003 , Conservation properties of Smoothed Particle Hydrody-
namics applied to the shallow-water equations, BIT 43, 40–54.

Frank, J. & Reich, S. 2004 , The Hamiltonian particle-mesh method for the spherical
shallow water equations, Atmospheric Science Letters 5, 89–95.

Frank, J., Gottwald, G. & Reich, S. 2002 , The Hamiltonian particle-mesh method, in
M. Griebel & M. Schweitzer, eds, ‘Meshfree Methods for Partial Differential Equa-
tions, Lecture Notes in Computational Science and Engineering’, Vol. 26, Springer-
Verlag, Berlin Heidelberg, pp. 131–142.

Hockney, R. & Eastwood, J. 1988 , Computer Simulations Using Particles, Institute
of Physics Publisher, Bristol and Philadelphia.
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