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PACS. 02.50.Ga – Markov processes.
PACS. 47.11.+j – Computational methods in fluid dynamics.
PACS. 83.10.Rs – Computer simulation of molecular and particle dynamics.

Abstract. – The method of dissipative particle dynamics (DPD) was introduced by
Hoogerbrugge and Koelman (Europhys. Lett., 19 (1992) 155) to study meso-scale material
processes. The theoretical investigation of the DPD method was initiated by Espanol (Phys.
Rev. E, 52 (1995) 1734) who used a Fokker-Planck formulation of the DPD method and applied
the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for
DPD. A current limitation of DPD is that it requires a clear separation of scales between the
resolved and unresolved processes. In this letter, we suggest a simple extension of DPD that
allows for inclusion of unresolved stochastic processes with exponentially decaying variance for
any value of the decay rate, and give an application of this algorithm to the simulation of the
shallow-water equations using the Hamiltonian particle-mesh method. The proposed extension
is as easy to implement as the standard DPD methods.

Dissipative particle dynamics. – Following the notation of Espanol [1], the standard
DPD method of Hoogerbrugge and Koelman [2] can be formulated as a stochastic differential
equation (SDE):

dri =
pi

mi
dt, (1)

dpi =

[
Fi − γ

∑
j �=i

ω
(
rij

)(
eij · vij

)
eij

]
dt+ σ

∑
j �=i

ω1/2
(
rij

)
eij dWij , (2)

where mi is the mass of particle i with position vector ri = (xi, yi, zi)T , rij = ri − rj ,
rij = |ri −rj |, eij = rij/rij , vij = vi −vj , vi = pi/mi, and Fi is the conservative force acting
on particle i. The dimensionless weight function ω(r) can be chosen in a rather arbitrary
manner. However, to reproduce the constant temperature macro-canonical ensemble, the
friction coefficient γ and the noise amplitude σ have to satisfy the fluctuation dissipation
relation

σ =
√
2kBTγ,
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where T is the temperature of the equilibrium state and kB is Boltzmann’s constant. Finally,
Wij(t) = Wji(t) are independent Wiener processes.

Let us write eqs. (1)-(2) in a more compact and general manner:

dr = M−1pdt, (3)

dp = −∇rV (r) dt−
K∑

k=1

∇rhk(r)
[
γḣk(r)dt+ σ dWk

]
, (4)

where r is the collection of the N particle position vectors ri, p is the associated momentum
vector, M is the diagonal mass matrix, v = M−1p, V (r) is the potential energy,

ḣk(r) = ∇rhk(r) · v,
and the functions hk(r) can again be chosen quite arbitrarily.

The choice
hk(r) = φ(rij), φ′(r) = ω1/2(r),

k = 1, . . . , (N − 1)N/2, in (4) leads back to the standard DPD model. However, one can also
set K = 3N and

hi(r) = xi, hi+N (r) = yi, hi+2N (r) = zi,

i = 1, . . . , N , in (4), which leads to the standard Langevin model

dr = M−1pdt, (5)
dp = −[∇rV (r) + γv

]
dt+ σ dW , (6)

where W (t) is now a N -vector of independent random Wiener processes. Yet another variant
of (4) is obtained in the context of the Hamiltonian particle mesh (HPM) method [3,4], which
itself is an application of the classical particle-in-cell (PIC) or particle-mesh methods [5, 6]
to geophysical fluid dynamics (GFD) [7]. Here the functions hk(r) would refer to some cell
averaged quantity and k would be its cell index. For example, the fluid density at a grid point
xk can be approximated by

hk(r) =
N∑

i=1

miψ
(|xk − ri|

)
,

with ψ(r) some proper shape function such as a tensor product cubic B-spline. We will come
back to this application in a later section.

We finally mention an application to molecular dynamics (MD) suggested by Ma and
Izaguirre [8]. Here the stochastic part of the dynamics is used to stabilize long-time step
methods and the functions hk correspond to entries in the MD potential energy function. For
example, if one would like to stabilize a bond stretching mode between atoms i and j, then
hk(r) = |ri − rj |.
Generalized DPD dynamics. – Several problems, such as the Kac-Zwanzig heat bath

models (see, e.g., [9–11]), lead to generalized (non-Markovian) Langevin equations of type

ṙ = M−1p, (7)

ṗ = −∇rV (r)−
∫ t

0

K(t− s)v ds+ U(t), (8)

where K(τ) is a memory kernel and U(t) is an N -vector of independent and stationary zero-
mean Gaussian processes. It is natural and possible to apply the same generalization to the



C. J. Cotter et al.: An extended dissipative particle dynamics model 725

standard DPD model. It is important, however, that such a generalized model should still
satisfy local conservation of momentum (Newton’s third law). This idea leads us to consider
the equations:

ṙ = M−1p, (9)

ṗ = −∇rV (r)−
K∑

k=1

∇rhk(r)
[ ∫ t

0

Kk(t− s)ḣk

(
r(s)

)
ds+ Uk(t)

]
, (10)

where Kk(τ), k = 1, . . . ,K, are again memory kernels and Uk(t) are stationary zero-mean
Gaussian processes. The auto-covariance functions satisfy the fluctuation dissipation relation

E
[
Uk(t)Uk(s)

]
= kBTKk(t− s).

The following argument helps to further illuminate the generalized DPD equations (9)-(10).
Define h(r) = (h1(r), . . . , hK(r))T as a new variable and introduce its conjugate momenta,
denoted by ph. Set V = 0 for a moment. Then (9)-(10) leads to generalized Langevin
equations of type (7)-(8) in (h,ph) with the matrix M−1 replaced by [∇rh · M−1∇rh],
which we assume to be constant for simplicity of argument.

It is convenient to approximate non-Markovian generalised Langevin dynamics models by
higher-dimensional SDEs as discussed in detail by Mori [12, 13] (see also Kupferman [9]). In
this note we only consider the special case of exponentially decaying kernels

Kk(τ) = λke
−αk|τ |,

where αk is the decay rate and λk is a scaling (coupling) parameter. In this case, then Uk(t)
are Ornstein-Uhlenbeck (OU) processes and the integro-differential equations (9)-(10) can be
reformulated as the following SDE:

dr = M−1pdt, (11)

dp = −
[
∇rV (r) +

K∑
k=1

∇rhk(r)sk

]
dt, (12)

dsk = −[
αksk − λkḣk(r)

]
dt+

√
2kBTλkαk dWk, k = 1, . . . ,K, (13)

where Wk(t) is a Wiener process for each k.
We call eqs. (11)-(13) the extended dissipative particle dynamics (EDPD) model. The

standard DPD model (3)-(4) can be recovered in the limit of α � 1 subject to λ/α = const,
in which case eq. (13) reduces to

sk dt =
λ

α
ḣk(r)dt+

√
2kBTλ

α
dWk

and we identify γ = λ/α and σ =
√

2kBTλ/α. A rigorous proof of this statement could be
performed along the lines of [14].

Generalized DPD models for other Markovian memory kernels can be found following [9,
11,13,15].
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Time discretizations for the EDPD model. – The following modification of the popular
Störmer-Verlet method [16] suggests itself:

pn+1/2 = pn − ∆t

2

[
∇rV (rn) +

∑
k

∇rhk(rn)sn
k

]
, (14)

rn+1 = rn +∆tM−1pn+1/2, (15)

(1 + αk∆t)sn+1
k = sn

k + λk

[
hk(rn+1)− hk(rn)

]
+

√
2kBTλkαk∆twn+1

k , (16)

pn+1 = pn+1/2 − ∆t

2

[
∇rV

(
rn+1

)
+

∑
k

∇rhk

(
rn+1

)
sn+1

k

]
, (17)

where wn+1
k ∼ N (0, 1) are independent random variables.

One can formally consider the DPD limit αk → ∞ subject to λk/αk = γk = const and
∆t = const. A straightforward calculation yields the limiting scheme

pn+1/2 = pn − ∆t

2

[
∇rV (rn) +

∑
k

∇rhk(rn)sn
k

]
, (18)

rn+1 = rn +∆tM−1pn+1/2, (19)

sn+1
k =

γk

∆t

[
hk(rn+1)− hk(rn)

]
+

√
2kBTγk/∆t wn+1

k , (20)

pn+1 = pn+1/2 − ∆t

2

[
∇rV

(
rn+1

)
+

∑
k

∇rhk

(
rn+1

)
sn+1

k

]
, (21)

which becomes identical to a scheme suggested for DPD by Groot and Warren [17] once we
replace [hk(rn+1)− hk(rn)]/∆t by ∇rhk(rn+1) · M−1pn+1/2.

The scheme (14)-(17) requires only one force field evaluation per time step, conserves
linear and angular momentum within the standard DPD setting, but is not symmetric (or self-
consistent in the sense of Pagonabarraga, Hagen and Frenkel [18]). Hence let us replace (16)
by the implicit midpoint approximation(

1 +
αk∆t

2

)
sn+1

k =
(
1− αk∆k

2

)
sn

k + λk

[
hk(rn+1)− hk(rn)

]
+

√
2kBTλkαk∆tw

n+1/2
k ,

where w
n+1/2
k ∼ N (0, 1) are again independent random variables. The new combined scheme

is now clearly symmetric and not more expensive than (14)-(17).
Let us investigate the limit αk∆t � 1. After a few straightforward calculations one derives

the limiting equations (18)-(21) with (20) replaced by

sn+1
k −sn−1

k

2∆t
=−γk

hk

(
rn+1

)−2hk(rn)+hk

(
rn−1

)
∆t2

+
√

2kBTγk/∆t
w

n+1/2
k −w

n−1/2
k

∆t
. (22)

Upon ignoring the noise term for a moment, we find that (22) corresponds to an explicit
midpoint discretization in sk of

d
dt

sk = −γk
d2

dt2
hk(r).

However, the explicit midpoint method is known to be unconditionally unstable. This has the
implication that the symmetric variant of (14)-(17) cannot be used with a step-size ∆t � 1/αk.
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On the other hand, the symmetric scheme is superior to (14)-(17) whenever an accurate
resolution of the dynamics with a step-size ∆t 
 1/αk is desired. This situation is similar to
the behavior of the BBK scheme [19] for the standard Langevin equations in the Brownian
dynamics limit γ∆t → ∞ and ∆t = const (see, for example, Skeel and Izaguirre [20]). Note
that the self-consistent scheme of Pagonabarraga, Hagen and Frenkel [18] becomes equivalent
to the BBK scheme when applied to the standard Langevin equations (5)-(6).

A numerical experiment. – In [3], Frank, Gottwald and Reich suggested a particle-mesh
method, called the Hamiltonian particle-mesh (HPM) method, for the solution of the two-
dimensional rotating shallow-water equations (SWEs). The Lagrangian formulation of the
SWEs is

Ẍ = −f0Ẋ
⊥ − c20∇Xh(X),

where X = (X,Y )T are the particle positions, Ẋ⊥ = (Ẏ ,−Ẋ)T . The layer depth h is given
by the convolution

h(x, t) =
∫

h0(a)δ(x − X(a, t))da,

where a = X(a, 0) are the initial particle positions and h0(a) is the initial layer depth at a.
See [3, 4] for more details and [7] for the significance of the shallow-water model to GFD.

The HPM method may be viewed as an accurate numerical discretisation of the regularised
fluid equations:

Ẍ = −f0X
⊥ − c20∇XA ∗ h(X),

where A is a smoothing operator. For later reference we denote the numerically unresolved
part of the layer depth by

η = h− A ∗ h. (23)

We next give a brief summary of the HPM method. One introduces a regular grid xkl =
(k∆x, l∆y)T , particles Xi = (Xi, Yi)T , grid-centred basis functions ψkl(X), and the layer
depth approximation

h̃kl(t) =
N∑

i=1

miψkl(Xi)

at xkl. The basis functions form a partition of unity, i.e.
∑

k,l ψkl(x) = 1. The smoothing
operator A is now defined as the discretization of the inverse modified Helmholtz operator
with smoothing length Λ = 4∆x over the grid xkl. The discrete approximation is denoted by
{amn

kl }. Consequently, the finite-dimensional Hamiltonian equations of motion are given by

Ẍi = −f0Ẋ
⊥
i − c20

∑
k,l

∇Xi
ψkl(Xi)hkl, hkl =

∑
m,n

amn
kl h̃mn.

For further implementation details see again [3, 4].
We now model the numerically unresolved gravity waves in the layer depth, given by (23),

with a generalized Langevin process. This idea can be mathematically motivated by represent-
ing η as the solution of a linear wave equation coupled to the particle system and subsequent
reduction following the Kac-Zwanzig approach (see [11] and references therein, as well as [21]).
The assumption of exponentially decaying kernel (which can be obtained by assuming that
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Fig. 1 – Decay of scaled energy E(t)/E(0) for various values of the parameter ε. The value ε = 1 is
the most realistic one in the context of the shallow-water equations. The limit ε � 1 corresponds to
the standard DPD model.

the waves are “localised”) leads to the EDPD extension of the HPM equations given below:

dXi = Vi dt, (24)

dVi = −f0V
⊥

i dt− c20
∑
k,l

[hkl + skl]∇Xi
ψkl(Xi) dt, (25)

dskl = [−αskl + λpkl]dt+ c−1
0 (2kBTαλ)1/2 dWkl, (26)

where pkl is defined by

pkl =
∑

i

mi∇Xi
ψkl(Xi) · Vi.

The only necessary modification is a scaling of the term multiplying dWkl by c−1
0 . The scaling

is necessary because c20 multiplies the force term in (25). It should be noted that this extended
model still preserves circulation (see Frank and Reich [4]).

The parameter values f0 = 2π, c0 = 2π, a mesh-size ∆x = ∆y = 2π/64, and a total of
N = 65536 particles are used in the numerical experiments. The initial conditions for Xi and
Vi correspond to an unstable shear flow and are chosen as in [3]. We set kBT = 4 × 10−4,
λ = εΛ2 and α = εΛ/c0 with ε as a free parameter and Λ = 4∆x. This choice corresponds
to γ = Λ3/c0 in the standard DPD method. We also have rkl(0) ∼ N (0, (kBTλ)1/2/c0).
Experiments are conducted for values of ε varying between ε = 0.1, . . . , 10. The value ε = 1
is the most natural choice [21]. Varying ε allows us to demonstrate the importance of the
finite decay of correlation in the EDPD model with the standard DPD model corresponding
to ε � 1.

One should keep in mind that the initial data for the macroscopic variables are far from
thermal equilibrium. In fact, for the given initial conditions and parameters, the particles lose
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energy to the heat bath. This can be seen from the decay of the total particle energy,

E =
1
2

∑
i

mi

∥∥Ẋ
∥∥2 +

c20
2

∑
k,l

h̃kl(hkl − 1),

which is a conserved quantity for the HPM method. In fig. 1, we plot the decay of the scaled
energy E(t)/E(0) for various values of ε. We note that the decay rate changes dramatically
for ε ∈ [0.1, 2], while for ε ≥ 10 the energy decay rate becomes independent of ε. This is the
regime where the standard DPD method gives essentially identical results.

Conclusion. – The proposed EDPD method allows one to take into account a finite
temporal decay of correlation in the unresolved degrees of freedom. A couple of numerical
schemes have been suggested that are as easy to implement (and in case of self-consistency even
easier) as the standard DPD algorithms available in the literature. It has been demonstrated
theoretically and numerically that the limit α → ∞ subject to constant γ = λ/α leads back
to the standard DPD model. The effect of finite decay of correlation on the energy decay has
been demonstrated for the two-dimensional rotating shallow-water equations.
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