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* We are Interested In numerically computing eigenvalue statistics of the GUE
ensembles, 1.e., Hermritian matrices with the distribution (given a particular V)

1
_e—nTr V(M) dM

Zin

* First question: can we automatically calculate the global mean distribution of

eigenvalues, 1.e., the equilibrium measure!
- Second question: how do statistics which satisty universality laws differ when n Is
finte!

* In short, we do the Riemann—Hilbert approach in a numerical way
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 Many other physical and mathematical objects have since been found to also

e described by random matrix theory, including:
* Quantum billiards

» Random Ising model for glass

* Irees In the Scandinavian forest

» Resonance frequencies of structural materials

* bven the nontrivial zeros of the Riemann zeta function!
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OUTLINE

|, Relationship of random matrix theory and orthogonal polynomials
2. Equilibrium measures supported on a single interval

|, Equivalence to a simple Newton rteration

2. Equilibrium measures supported on multiple intervals

3. Computation of large order orthogonal polynomials, through Riemann—
Hilbert problems

4. Calculation of gap eigenvalue statistics
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Relationship of random matrix theory with orthogonal polynomials

* For the Gaussian unitary ensemble (l.e., large random Hermitian matrices), gap eigenvalue statistics
can be reduced to the Fredholm determinant

det [I i Kn‘Q]

where the kernel K, Is constructed from py and pr+1; the orthogonal polynomials with respect to

the weight

e—nV(a?) dr

* Fredholm determinants can be easily computed numerically (Bornemann 2010), as long as we can
evaluate the kernel

* Therefore, computing distributions depends only on evaluating the orthogonal polynomials

* We will construct a numerical method for computing pr and pn+1 whose computational cost Is
iIndependent of n, which requires first calculating the equilibrium measure
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EQUILIBRIUM MEASURES

* Suppose the real line Is a conductor, on which

n discrete charges are placed, with total unit

charge

* Suppose further an external field V' is present
* The equilibrium measure
dp = Y(z) dx

s the limrting distribution (weak™ limit) of the
charges

* On the right Is a sketch for
V(z) = 22

| ! ! ! ! | L0 ! ! L @ | | ! ! | ! |
-2 —1 1 2

(see eg. Saff and Totik 1997)
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Applications of the equilibrium measure

* Global mean distribution of the eigenvalues of GUE matrix with distribution

1
_e—nTr V(M) dM

Ln,
» Distribution of near optimum interpolation points (Fekete points)

» Distribution of zeros of orthogonal polynomials with the weight

e—nV(a:') dr

* For V(z) = a2 these are scaled Hermite polynomials

* In the last slide, | cheated and plotted these roots
» Computing orthogonal polynomials

» Best rational approximation
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FORMAL DEFINITION

Given an external field V : R — R, the equilibrium measure is the unique
Borel measure du = v (x) dx such that

//log ) dpu(s) + /V(S) dp(s)

1S minimal.




» This definrtion can be reduced to the following Euler—Lagrange formulation:

1
2/10g iy du+V(z) =4 for =z & supppu

1
2/10g du + V(z) > £ for all real 2

[z — 2|
o e
o(z) = [ tog(z ~ x) dy
so that (where £ imply limit from the left and right)
gt +9g =V —¢ and g~logxz
» Differentiating we get

BT g = Ehll gbw% for gb(z):g/(z):/ dp(z)

% = b
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* Now suppose we manage to find an analytic function such that

L o =V and Ay
<

on some subset I' of the real line

* In certain cases (for example, It V'is convex), there is only one I such

that this 1s possible, hence I must be supp p

* Plemel)’'s lemma then tells us that we can find du = ¥(x) dz by:

— 67 (@)~ ¢ ()] = ¥(@
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* For a given I, we can find all solutions to

T +¢” =V' and ¢(z) ~

cr
Z

* [he goal, then, Is to choose I' so that:
* cr Is precisely 1
* ¢Is bounded

. This is the inverse Cauchy transform, which we denote by Prf
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¢ (2) + ¢ (2) =
f(2)
P = Z frz"
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PROBLEM ON THE
UNIT INTERVAL

Consider the Joukowski map from the unit circle to the unit interval

Functions analytic inside and outside the unit circle are mapped to
functions analytic off the unit interval.
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VWe define four inverses to the Joukowski map:

I e) = s VR LY | JB () — e =V |

—»‘-
P S
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Suppose B pUie tne Then the following
inverse Cauchy transform . |
function satisfies the

of the mapped function RNIE
on the unit circle Al ]

[T (@) + 67 (@)

f(J(2))
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* [he problem:

* [herefore, we find that
1

where there Is now a free parameter

Pef = 5 [$UF (@) + 9T 2 (@))] — Lon

2

1 1 0
= [ (00)) + 9= (00))] = 5 [9(0) + B(o0)] = 212 =
* Fortunately,
1
o) ez =1
has no jJump on the contour: kT +k~ =0 and k(2)~ -

(2) +&r(2)
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* Now suppose fis sufficiently smooth, so that it can be expanded into

Chebyshev series (in O(n log n) time using the DCT):

= fiTe(2)"
k=0

* [hen

FIE) =faty O Fid

lg——09

[t follows that (a numerically stable, uniformly convergent expression)

Pef(2) ka 2 — Ln(z) + (2
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OTHER INTERVALS

22 —a — b
b— a

Mo p)(2) = maps the interval (a,b) to the unit interval.

Let f(a,b),k be the Chebyshev coefficents over (a, b), so that

== Z f(a,b),ka (M(a,b) (Z))k

k=0

Then

Vv

By 2 Z Fam) odr (M (2))" f(a’zb>’0 M q,1)(2)E(M(a,p)(2))+E6(Mq,1)(2))
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1 ~ i fa,b :
Plab)ef(2) = 3 > Fflapywd it (Mg (2))" ( 2) 2 Mq 5 (2)(M(q 1) (2)) + E6(Mqp)(2))

* Let f = V' The only way the solution is bounded is if
E=0 and - fupo=—8

 Since
e (2) ~ : FO(27%) and Mgy (2) ~ i - O(1)
g 22 ’ D= @
we require
b—a -
3 f(a,b),l =1
so that (equivalent to
1 standard conditions in

Plapy f(2) ~ = terms of moments)
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* We thus have two unknowns, a and b, with two conditions:

b—a -

f(a,b),o =0 and ] f(a,b),l =1

- The Chebyshev coefficients can be computed efficiently using the FFT

- Moreover, each of these equations are differentiable with respect to a and b
- Thus we can setup a trivial Newton rteration to determine a and b
* [his rteration Is guaranteed to converge to supp pu whenever V' is convex
- on, If supp u Is a single interval and the initial guess of a and b are sufficiently accurate

* We then recover the equilibrium measure using the formula

M el
e V! W(a’b) () kaUk—l(M(a,b) (7)) dx

=

dp
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e In the last two examples, the potential was not convex
e [herefore, we have no guarantee that these are indeed the equilibrium measures

e However, we can verify that they are, by testing the conditions that

g =g =\ — {2 on Supp ol
and g7 4+ ¢ <V — /¢ on the real line,

where g = [ Pf and £ is some constant
e \We must therefore calculate the indefinite integral of P f

e [his will be needed for the multiple interval case as well
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e [t Is straightforward to find the following formulze:

/m () dz = “;b og J; 1 (Mx(2)),

/ME z2)kx(z)dz = . 9 ME(Z) —J{ (Ms(2))]
[y gz = 5 S M) e T ()|
[T s o = 130 | S T M) = I (M) .

e The first three have a branch cut along (—oo, b), the rest only along (a, b)

e By using JT_l(Mg(a:)) and JJl(Mg(x)) we can reliably evaluate these along the
branch cut

e [he constant of integration is a free parameter; chosen so that

S o@)
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MULTIPLE INTERVALS

e We first compute Pr where I' consists of two, disjoint intervals I' =17 U1’

e Ve represent the solution as a sum over each Interval.

Prf = Pr,r1 + Pr,ro

e \We need to determine r1 and 7o
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e \We represent r; and ro as Chebyshev series

e From the one interval case, we can compute

Pr,re(2) = > FaxPraTe(Mr, (2))

e [hus, at mapped Chebyshev points xllﬁk, i :CJFVA we determine 7y, by solving
the linear system
T = T T
7“1(5’331) [Pf‘; PFQ]T2(5’33'1) = f(le)

e In coefficient space, this linear system can be written as the identity matrix plus a
sparse, compact matrix, whose nonzero entry count only depends on I'; and I's,

not on the length of the Chebyshev series of f

e Thus itis still an O(nlogn) algorithm
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We can now setup the Newton iteration

The solution must be bounded, so we have two conditions

T10 =720 =0

The solution must be asymptotic to % so (forI'y = (a1,b1) and I's = (a2, b))

o — Ol Ibz—azv
3 1,1 2.1

8

We need one more condition. Recall that g = f P f satisfies
G =g =/ = Vel and Ty
The key Is the constant of integration Is the same on both intervals, I.e,

g (b1) + g (b1) =V (b1) = g7 (a2) + g~ (a2) — V(az)
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ORTHOGONAL POLYNOMIALS
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* Once we have computed the equilibrium measure, we can set up the Riemann—Hilbert
problem for the orthogonal polynomials

* RH problems can be computed numerically (as described last week)

* We need to write the RH problem so that the solution Is smooth (no singularities)
along each contour, and localized around stationary points

* This will be accurate in the asymptotic regime: arbitrarily large n

* [he key result: we can systematically compute arbitrarily large order orthogonal
polynomials with respect to general welights

* We could also use this to compute the nodes and weights of Gaussian quadrature rules
with respect to general weights in O(n) time
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e The unaltered Riemann—Hilbert problem for orthogonal polynomials is
Bl e 2 (9(2_”_1)
—I_ L Y,
e ) ooy T

e We know how to compute g such that g(z) ~logz and g* +g~ =V — ¢
on supp du
e’y
e
where W ~ | and

- end 1 eV (e 9"
e—ng_ 1 eng"‘

e gl =) e =) (based on
A Deift 1999)

e We thus let

\I/_l_

—g )
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From the construction of g, the matrix
en(g™—9")  onlgT+g™ V)
an(97—97)

has the following nice properties:

e Off of supp u, it has the form

(]_ en(g++g_v)>
1

which decays exponentially (g decays at infinity, so V' dominates)

e On supp u, it has the form

en(g__g+) e_en s 1 1 1 L_l
en(g+_g_) I3 en(V—E—Zg_) 1 iy en(V—£—2g+) 1

—nt/2 (based on
for L= [
en€/2 Deift 1999)
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VWe thus want to solve the
RH problem (where all the .
jJumps are computable ( 1>
numerically!)

I

(1 en(g"+g~ -V

(1 en(29v‘|‘£)>
1

(based on
1> Deift 1999)
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e \We can find a parametrix P(z) in closed form that satisfies

PRS2 (_1 1> and P(z) ~ 1

e \We can also construct parametrices ()1 and ()2 around each stationary point, by
using the jJump curves
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RANDOM MATRIX DISTRIBUTIONS
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- VWWe want to compute gap probabilities

* [hese are expressible as

det [[ = ]Cn‘Q]

for (where ® is still the solution the RH problem)

L nev(e)+v(y) 211(@) P21 (y) — P11 (y)Por ()

lCn ’ e A
(,y) 2771e % —
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ALGORITHM

® Input: potential V, dimension of random matrix n, gap interval ()

®* Qutput: probability that there are no eigenvalues in ()
e Step 1: Compute the equilibrium measure using Newton iteration

e Step 2: Construct and solve the orthogonal polynomial RH problem
numerically

e Step 3: Use Bornemann’s Fredholm determinant solver
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UNIVERSALITY

e et

1
Knla,a) (

* Then it 1s known that, for a inside the support of the equilibrium measure and

() =a -

S, S)

any polynomial potential, the Fredholm determinant converges to the
Fredholm determinant over (—s,s) with the sine kernel

sinm(z — y)
e

Koolz,y) =

* However, for finite n, the distributions vary
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Potential of numerical RH approach for
random matrix theory

» Discovery of unknown universality laws!

* Inverse problem: determining information about the potential V from
observed data!

» Can we determine which random matrix ensemble generates the
zeros of the Riemann—Zeta function?

» Modelling physical systems!
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