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• We are interested in numerically computing eigenvalue statistics of the GUE 
ensembles, i.e., Hermitian matrices with the distribution (given a particular V)

• First question: can we automatically calculate the global mean distribution of 
eigenvalues, i.e., the equilibrium measure?

• Second question: how do statistics which satisfy universality laws differ when n is 

finite?

• In short, we do the Riemann–Hilbert approach in a numerical way

1
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• Many other physical and mathematical objects have since been found to also 
be described by random matrix theory, including:

• Quantum billiards

• Random Ising model for glass

• Trees in the Scandinavian forest

• Resonance frequencies of structural materials

• Even the nontrivial zeros of the Riemann zeta function!
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OUTLINE

1. Relationship of random matrix theory and orthogonal polynomials

2. Equilibrium measures supported on a single interval

1. Equivalence to a simple Newton iteration

2. Equilibrium measures supported on multiple intervals

3. Computation of large order orthogonal polynomials, through Riemann–
Hilbert problems

4. Calculation of gap eigenvalue statistics
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• For the Gaussian unitary ensemble (i.e., large random Hermitian matrices), gap eigenvalue statistics 
can be reduced to the Fredholm determinant

where the kernel         is constructed from pn and pn+1; the orthogonal polynomials with respect to 
the weight

• Fredholm determinants can be easily computed numerically (Bornemann 2010), as long as we can 
evaluate the kernel 

• Therefore, computing distributions depends only on evaluating the orthogonal polynomials

• We will construct a numerical method for computing pn and pn+1 whose computational cost is 
independent of n, which requires first calculating the equilibrium measure

Relationship of random matrix theory with orthogonal polynomials

e−nV (x) dx

det [I +Kn|Ω]

Kn
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EQUILIBRIUM MEASURES
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• Suppose the real line is a conductor, on which 
n discrete charges are placed, with total unit 
charge

• Suppose further an external field V is present

• The equilibrium measure 

is the limiting distribution (weak* limit) of the 
charges

• On the right is a sketch for 

 V(x) = x2

dµ = ψ(x) dx

(see eg. Saff and Totik 1997)
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Applications of the equilibrium measure

• Global mean distribution of the eigenvalues of GUE matrix with distribution

• Distribution of near optimum interpolation points (Fekete points)

• Distribution of zeros of orthogonal polynomials with the weight

• For V(x) = x2 these are scaled Hermite polynomials

• In the last slide, I cheated and plotted these roots

• Computing orthogonal polynomials

• Best rational approximation

e−nV (x) dx

1
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e−nTrV (M) dM
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Given an external field V : R → R, the equilibrium measure is the unique
Borel measure dµ = ψ(x) dx such that

� �
log

1

|t− s| dµ(t) dµ(s) +
�

V (s) dµ(s)

is minimal.

FORMAL DEFINITION
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• This definition can be reduced to the following Euler–Lagrange formulation:

• We let

so that (where ± imply limit from the left and right)

• Differentiating we get

g+ + g− = V − � and g ∼ log z

2

�
log

1

|x− z| dµ+ V (z) = � for z ∈ suppµ

2

�
log

1

|x− z| dµ+ V (z) ≥ � for all real z

g(z) =

�
log(z − x) dµ

φ+ + φ− = V � and φ ∼ 1

z
for φ(z) = g�(z) =

�
dµ(x)

z − x
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• Now suppose we manage to find an analytic function such that

on some subset Γ of the real line

• In certain cases (for example, if V is convex), there is only one Γ such 

that this is possible, hence Γ must be supp μ

• Plemelj’s lemma then tells us that we can find                    by:

φ+ + φ− = V � and φ ∼ 1

z

dµ = ψ(x) dx

i

2π

�
φ+(x)− φ−(x)

�
= ψ(x)
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• For a given Γ, we can find all solutions to

• The goal, then, is to choose Γ so that:

•  cΓ is precisely 1

•     is bounded

• This is the inverse Cauchy transform, which we denote by PΓf 

φ+ + φ− = V � and φ(z) ∼ cΓ
z

φ
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PROBLEM ON 
THE CIRCLE

f(z) =
∞�

k=−∞
f̂kz

k

φ+(z) + φ−(z) = f(z) and φ(∞) = 0

φ+ φ−
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PROBLEM ON 
THE CIRCLE

f(z) =
∞�

k=−∞
f̂kz

k

φ+(z) + φ−(z) = f(z) and φ(∞) = 0

φ+ =
∞�

k=0

f̂kz
k φ− =

−1�

k=−∞
f̂kz

k
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Consider the Joukowski map from the unit circle to the unit interval

Functions analytic inside and outside the unit circle are mapped to 
functions analytic off the unit interval.

PROBLEM ON THE 
UNIT INTERVAL

J(z) =
1

2

�
z +

1

z

�
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We define four inverses to the Joukowski map:

J−1
+ (x) = x−

√
x− 1

√
x+ 1 J−1

− (x) = x+
√
x− 1

√
x+ 1

J−1
↑ (x) = x+ i

√
1− x

√
1 + x J−1

↓ (x) = x− i
√
1− x

√
1 + x
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Suppose we compute the 
inverse Cauchy transform 
of the mapped function 
on the unit circle

Then the following 
function satisfies the 
necessary jump

φ+ φ−

φ = P f(J(·))

f(J(z))

f(J(z))

1

2

�
φ(J−1

+ (x)) + φ(J−1
− (x))

�

1

2

�
φ+(J−1

↓ (x)) + φ−(J−1
↑ (x))

�

1

2

�
φ+(J−1

↑ (x)) + φ−(J−1
↓ (x))

�
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• The problem: 

• Fortunately,

has no jump on the contour: 

• Therefore, we find that

where there is now a free parameter

κ(z) =
1√

z + 1
√
z − 1

κ+ + κ− = 0 and κ(z) ∼ 1

z

Pξf =
1

2

�
φ(J−1

+ (x)) + φ(J−1
− (x))

�
− f̂0

2
zκ(z) + ξκ(z)

1

2

�
φ(J−1

+ (∞)) + φ(J−1
− (∞))

�
=

1

2
[φ(0) + φ(∞)] =

f̂0 + 0

2
=

f̂0
2

�= 0
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• Now suppose f is sufficiently smooth, so that it can be expanded into 

Chebyshev series (in O(n log n) time using the DCT):

• Then

• It follows that (a numerically stable, uniformly convergent expression)

f(x) =
∞�

k=0

f̌kTk(x)
k

Pξf(z) =
1

2

∞�

k=0

f̌kJ
−1
+ (z)k − f̌0

2
zκ(z) + ξκ(z)

f(J(z)) = f̌0 +
1

2

∞�

k=−∞
f̌kz

k
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OTHER INTERVALS

M(a,b)(z) =
2z − a− b

b− a
maps the interval (a, b) to the unit interval.

Let f̌(a,b),k be the Chebyshev coefficents over (a, b), so that

f(z) =
∞�

k=0

f̌(a,b),kTk(M(a,b)(z))
k

Then

P(a,b),ξf(z) =
1

2

∞�

k=0

f̌(a,b),kJ
−1
+ (M(a,b)(z))

k−
f̌(a,b),0

2
M(a,b)(z)κ(M(a,b)(z))+ξκ(M(a,b)(z))
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• Let f  =   .  The only way the solution is bounded is if

• Since

we require

so that

ξ = 0 and f̌(a,b),0 = 0

b− a

8
f̌(a,b),1 = 1

P(a,b)f(z) ∼
1

z

(equivalent to 
standard conditions in 
terms of moments)

P(a,b),ξf(z) =
1

2

∞�

k=0

f̌(a,b),kJ
−1
+ (M(a,b)(z))

k −
f̌(a,b),0

2
M(a,b)(z)κ(M(a,b)(z)) + ξκ(M(a,b)(z))

J−1
+ (z) ∼ 1

2z
+O

�
z−2

�
and M(a,b)(z) ∼

2z

b− a
+O(1)

V �
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• We thus have two unknowns, a and b, with two conditions:

•  The Chebyshev coefficients can be computed efficiently using the FFT 

• Moreover, each of these equations are differentiable with respect to a and b

•  Thus we can setup a trivial Newton iteration to determine a and b

•  This iteration is guaranteed to converge to supp µ whenever V is convex

• or, if supp µ is a single interval and the initial guess of a and b are sufficiently accurate

• We then recover the equilibrium measure using the formula

f̌(a,b),0 = 0 and
b− a

8
f̌(a,b),1 = 1

dµ =

�
1−M(a,b)(x)

π

∞�

k=1

f̌kUk−1(M(a,b)(x)) dx
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•

•

•

g+ + g− = V − � µ
g+ + g−≤ V − �

g =
�
Pf �

• Pf

•
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• æ

�
κΣ(z) z =

a− b

2
J−1
+ (MΣ(z)),

�
MΣ(z)κΣ(z) z =

b− a

2

�
MΣ(z)− J−1

+ (MΣ(z))
�
,

�
J−1
+ (MΣ(z)) z =

b− a

4

�
1

2
J−1
+ (MΣ(z))

2 − J−1
+ (MΣ(z))

�
,

�
J−1
+ (MΣ(z))

k z =
b− a

4

�
1

k + 1
J−1
+ (MΣ(z))

k+1 − 1

k − 1
J−1
+ (MΣ(z))

k−1

�
.

• (−∞, b) (a, b)

• J−1
↑ (MΣ(x)) J−1

↓ (MΣ(x))

•

g(z)− z = O

�
1

z

�
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MULTIPLE INTERVALS

• PΓ Γ Γ = Γ1 ∪ Γ2

•

PΓf = PΓ1r1 + PΓ2r2

• r1 r2
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• r1 r2

•

PΓλrκ(z) =
�

řλ,kPΓλTk(MΓλ(z))

• xΓλ
1 , . . . , xΓλ

N rλ,k

r1(x
Γ1
j ) + [P+

Γ2
+ P−

Γ2
]r2(x

Γ1
j ) = f(xΓ1

j )�
P+
Γ1

+ P−
Γ1

�
r1(x

Γ2
j ) + r2(x

Γ2
j ) = f(xΓ2

j )

•
Γ1 Γ2

f

• O(n n)
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•

•

ř1,0 = ř2,0 = 0

• 1
z Γ1 = (a1, b1) Γ2 = (a2, b2)

b1 − a1
8

ř1,1 +
b2 − a2

8
ř2,1

• g =
�
Pf

g+ + g− = V − � Γ1 Γ2

g+(b1) + g−(b1)− V (b1) = g+(a2) + g−(a2)− V (a2)
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α
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ORTHOGONAL POLYNOMIALS
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• Once we have computed the equilibrium measure, we can set up the Riemann–Hilbert 
problem for the orthogonal polynomials

• RH problems can be computed numerically (as described last week)

• We need to write the RH problem so that the solution is smooth (no singularities) 
along each contour, and localized around stationary points

• This will be accurate in the asymptotic regime: arbitrarily large n

• The key result: we can systematically compute arbitrarily large order orthogonal 
polynomials with respect to general weights

• We could also use this to compute the nodes and weights of Gaussian quadrature rules 
with respect to general weights in O(n) time
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• The unaltered Riemann–Hilbert problem for orthogonal polynomials is

Φ+
= Φ−

�
1 e

−nV

1

�
and Φ ∼

�
zn O

�
z−n−1

�

O
�
zn−1

�
z−n

�

• We know how to compute g such that g(z) ∼ log z and g+ + g− = V − �
on supp dµ

• We thus let

Φ = Ψ

�
e
ng

e
−ng

�

where Ψ ∼ I and

Ψ+
= Ψ−

�
e
ng−

e
−ng−

��
1 e

−nV

1

��
e
−ng+

e
ng+

�

= Ψ−

�
e
n(g−−g+)

e
n(g++g−−V )

e
n(g+−g−)

�
(based on 
Deift 1999)
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(based on 
Deift 1999)

From the construction of g, the matrix

�
en(g

−−g+) en(g
++g−−V )

en(g
+−g−)

�

has the following nice properties:

• Off of supp µ, it has the form

�
1 en(g

++g−−V )

1

�

which decays exponentially (g decays at infinity, so V dominates)

• On supp µ, it has the form

�
en(g

−−g+) e−�n

en(g
+−g−)

�
= L

�
1

en(V−�−2g−) 1

��
1

−1

��
1

en(V−�−2g+) 1

�
L−1

for L =

�
e−n�/2

en�/2

�
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We thus want to solve the 
RH problem (where all the 

jumps are computable 
numerically!)

�
1 en(g

++g−−V+�)

1

� �
1 en(2g−V+�)

1

�

�
1

en(V−�−2g) 1

�

�
1

en(V−�−2g) 1

�

�
1

−1

�

(based on 
Deift 1999)
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• P (z)

P+ = P−
�

1
−1

�
P (z) ∼ I

• Q1 Q2
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UP

UP
UP

UPUP

UP

UQ1 UQ2

P

�
1

en(V−�−2g) 1

�
P−1

P

�
1

en(V−�−2g) 1

�
P−1

PQ−1
1 PQ−1

2
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RANDOM MATRIX DISTRIBUTIONS
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• We want to compute gap probabilities

• These are expressible as

for (where Φ is still the solution the RH problem)

det [I +Kn|Ω]

Kn(x, y) =
1

2πi
e−n/2[V (x)+V (y)]Φ11(x)Φ21(y)− Φ11(y)Φ21(x)

x− y
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• Input: potential V, dimension of random matrix n, gap interval Ω

• Output: probability that there are no eigenvalues in Ω

• Step 1: Compute the equilibrium measure using Newton iteration

• Step 2: Construct and solve the orthogonal polynomial RH problem 
     numerically

• Step 3: Use Bornemann’s Fredholm determinant solver

ALGORITHM
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UNIVERSALITY

• Let

• Then it is known that, for a inside the support of the equilibrium measure and 
any polynomial potential, the Fredholm determinant converges to the 
Fredholm determinant over (–s,s) with the sine kernel

• However, for finite n, the distributions vary

K∞(x, y) =
sinπ(x− y)

x− y

Ω = a+
1

Kn(a, a)
(−s, s)
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sin 3x+ 10x20x4x2

n = 30, 50, ∞
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• Discovery of unknown universality laws?
• Inverse problem: determining information about the potential V from 

observed data?
• Can we determine which random matrix ensemble generates the 

zeros of the Riemann–Zeta function?
• Modelling physical systems?

Potential of numerical RH approach for 
random matrix theory
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