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* We numerically solve the Cauchy problem for the focusing and defocusing nonlinear Schrodinger
(NLS) equations

e B e \u|2u =0
u(0,x) = ug(x)

and the Korteweg—de Vries (KdV) equation

U + 06ut, + Upypy = 0
u(0,x) = ug(x)
* We assume the initial condition 1s smooth and exponentially decaying
* We use inverse scattering numerically:

* We compute the forward transform by utilizing spectral methods

* We compute the inverse transform by solving Riemann—Hilbert problems numerically

* By deforming the Riemann—Hlilbert problem in the complex plane, we get representations which
are numerically stable and accurate uniformly for all space and time



Why not use standard numerical methoc

* [he standard numerical approach Is to employ pseudo-spectral methods

» Represent the solution by N evenly spaced points on, say, [-L, L]

* Reduce the PDE to an ODE on how the solution evolves pointwise in time



KdV (Pure solitons)
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A more generic solution to KdV

t = 0.000




Why not use standard numerical methoc

* [he standard numerical approach is to employ pseudo-spectral methods

» Represent the solution by N evenly spaced points on, say, |[-L, L]

* Reduce the PDE to an ODE on how the solution evolves pointwise In time

» Dispersion causes this approach to quickly fail as time T increases

. Dispersive waves travel linearly with time, so we must take L = O(T)

. Therefore, N = O(T)

AERSERCONdilontsiates that the fime step must be Ap — O(N_l)

* [he total work Is at least

90
O<N10gNKt> = O(TglogT)

* [The constant in front Is initial condition dependent, and typically very large!



Review: Fourier solution of linear KdV
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Inverse scattering for KdV

Direct transform

Time evolution

Inverse transform

u(t,z) (k)™ {55}, {Cse" ]



* Associated with an integrable PDE its Lax pair:

Mz = A(kauaaj):u and Ht = B(k,u,aj),u

* The variable u must satisfy the relevant PDE for the pairs to be compatible

* For our purposes, we only need the u, = Au eqguations, which are:

— KaV (self-adjoint):
Mz + (kQ +u)p =0

— defocusing NLS (self-adjoint):

— focusing NLS (not self-adjoint):

el
S e

— The direct scattering transform consists of spectral analysis of these equations



KdV Direct Scattering



* [he direct scattering transform is a map

initial condition ug(x) — scattering data r(k), {x1,...,kn},{C1,...,Cn}

* [he scattering data results from spectral analysis of

= 32 e UO($)

* This operator has continuous spectra on (—oo, 0] and N discrete eigenvalues on
the positive real axis at the points {k1,...,kN}:



EISERGISerctic eicenvalues K1, ..., kN Of

5= G agla)

correspond to the N-solitons of the solution
* [hese can be computed using Hill's method:
— Map (—00,0) to [—m, ) using £ arctan z
— Represent the mapped operator L by its action on n Fourier coefficients

— (alculate the positive eigenvalues of this discretized matrix

— Verify the eigenvectors correspond to L*(—o00, 00) solutions



n =500 k; = 0.381966

go(x) = sech*x
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Computed spectra for  ug(x) =5 SeCh2§

n=300«={4.,225,1.,025,2.66561 x 107"*]
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The reflection coefficient r(k) is defined for real k and corresponds to the contin-
uous spectrum of the previous Schrodinger operator

For each k, we can solve
Ve GG i 1 — (0
with three inrtial conditions:
Bl e e

Y (z) ~ e and P (z) ~eFF, x> o0

This is a second order equation: therefore there exists a and b so that

$(z) = a(k)y™ (z) + b(k)Y™ (z)

Then r(k) = b(k)/a(k)



* We need to solve
¢" () + (uo(z) + k*)p(x) = 0, b(x) ~e* 15 —oo

* We do a change of variables to factor out oscillations: ¢ = (1 + v)e”“’3

* Plugging this in gives us an equation for v:

v + 2ikv’ + ugv = —ug, v(—00) =0, v'(—0) =0

* We can easily solve this by mapping (—oo, 0) to the unit interval and using a spectral
method

» Using the same approach, we can compute ¥* on (0, co)

(40 vzt () = (50

e We then solve



Inrtial condition Reflection coefficient
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Inverse scattering for defocusing NLS

Direct transform

Time evolution

Inverse transform




* A matrix-valued Riemann—Hlilbert problem is the following:

* Given an oriented contour I' in the complex plane and a
matrix-valued function G defined on I (here, all functions

on I are analytic along each piece of I');

* FIind a matrix-valued function @ that is analytic everywhere

in the complex plane off of I' such that

T (z) =® (2)G(z) for zel and P(oc0) =1

where
D lim b (x)
where a:xis ?feft of T
P — lim P (x)

Xr—r =z

h is right of T ' 1
where x is right o (see eg. Muskhelishvili [953)



Many linear differential equations have well-known integral representations

» e.g, Airy equation, Bessel equation, Hypergeometric equation and heat and wave equations (via Fourier
transform)

Matrix-valued RH problems can be (loosely) viewed as an analogy of integral representations for nonlinear
equations

Importantly, RH problems can be used to determine asymptotics of solutions
* This works similar to integral representations: the contour is deformed along the path of steepest descent
Using a new approach, RH problems can now be used as a numerical tool

Previous method: the Sine kernel RH problem (on the unit interval) and a special solution to PainlevéV were
computed in (Dienstfrey 1998), by adapting standard singular integral equation (SIE) methods

» Required exponentially clustered collocation points near the endpoints

» Not applicable to more complicated domains



Inverse transform

* [he inverse transform is a Riemann—Hilbert problem on the real line:

. 1—|r(2)]*  —F(z)e 22tz +22)
+.)
() (Z) = O (Z) (T(Z)GQi(QtZQ—I—xZ) 1

>

* Then the solution to dNLS Is

u(t,z) =21 lim 2®(2)12

2 0



Construction of a collocation method



* Consider the Cauchy transform

Crf(z)

This map defines a one-to-one correspondence between a function defined on I' and a

s e R

dt.

function which s analytic everywhere off I' which decays at 0o

o | et
d=7+CV

* The RH problem & = ®~ G becomes
CViz)—C V(r)G(z) =G(z) =1 for rel

* Having a method to compute the Cauchy transform and its left and right limits allows
us to apply the linear operator

MV =CTV — (C"V)E (similar to Dienstfrey 1998)




* We want to construct an approximation to V which satisfies
A =G =
at a sequence of points; 1.e., we construct a collocation method:

e For some basis {%1,...,¥,} of functions defined on I" and set of
nodes {z1,..., Zm} on I’
 Write

Vn = Z Ckwk
=

* Solve the linear system

coMiy(z1)+ -+ e, Mip,(z1) =G(z1) — 1

coMyi(zm) + - + cu MYy (2,) : G(zm) — 1



* Consider the map

M_l(z) = 1+ 2

B ERaPsTtRE Fealline to the unit circle

— More precisely: it conformally maps the upper half plane to the interior of
the circle

- -

» [t also conformally maps the lower half plane to the exterior of the circle

25



* [he Inverse

1_
e
z+1

conformally maps the unit circle to the real line

* The Cauchy transform is (due to Plemelj's lemma)

C(—co,00)f(2) = Colf o MI(M™(2)) — Colf o M](-1)

* Thus we have reduced the construction of our collocation method to one problem: the
computation of the Cauchy transform over the unit circle



* We know

e zl<land £ >0
Colo®](z) =X —2* |z|>1and k<0

0 otherwise

» Thus we know the Cauchy transform exactly on the real line:

M= z)" — (—1)° Sz > 0= andise
C(_OO,OO)[M_l(o)k](z) — IR Y S < () cinel b < (0

0 otherwise

* We use this basis In the collocation system, with mapped evenly spaced points

(Based on Weideman 1995)






» Finally, we recover the solution to dNLS:

u(t,z) =2i lim 2®(2)12 = 2i lim 2CV(2)12

Z—> OO Z—> 0O

1 ©.@)
= — lim A C2EE dx
e b7

W Z==00
1 O
— ——/ V(Zl?)lg dZE

7T—OO

1 O
~> ——/ Vn(w)lz dZE

7T—OO



Convergence o

E 107

S 10710

2 -13

* [he error in approximation Is 12_16
bounded by

— Vol < [1+ Clogn || M| IM|] IV — PV

NN

Number of
collocation points n

Collocation matrix Interpolation of
(Grows logarithmically) solution by basis

(Converges spectrally)



Nonlinear steepest descent



» [he previous method works well for small & and ¢

 But as & and t become large the jump matrix

( 1 —r(2)r(—2z) r(z)eQi(QtzzJFm))

T(Z)GZi(ZtZQ_HUZ) 1

becomes osclllatory

* We overcome this by deforming the Riemann—Hilbert problem into the complex
plane

» [his converts oscillations Into exponential decay

* We must deform through the stationary points:

X

e e
; At




* [here are two ways we use to factor the jump matrix:

e 1 T 1 ZLe®
e ") =ep0= e ) () (1)
e 1
g0

* The key now Is that we can lens the jump contours without altering behaviour at infinity:

C
ABC

(based on Delft & Zhou 20053)






Jump matrices after truncation
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Algorithm for computation

* We must choose a basis and compute the Cauchy transform over I'

» By splitting the domain and using conformal maps, this can be reduced to computing the
Cauchy transform over the unit interval

he Cauchy transform for Chebyshev polynomials over the unit interval can be found In
closed form!

* We must include the junction points of I in the collocation system

his Is needed to ensure that the approximation 1s bounded

» The Cauchy transform of our basis explodes there; therefore, we assign It a special value
corresponding to the value If the singularrties were to cancel



* We use the fact that the Cauchy transform of Chebyshev polynomials

1
it L /

27

. Tk($)

dx

8 =z

can be expressed exactly in terms of hypergeometric functions

» And calculated rapidly, uniformly accurate in z using a one-term recurrence
relationship

* [t M is an affine transformation, then we have (from Plemelj's lemma)

Crr(=1,1)f(2) = Cc1,plf o M{(M ™ (2))



Affine maps




Plecewise collocation basis

Ty (Mg (x))




For our choice of basis and each affine transformation M, we can calculate
Gty | e o M (Z) — C o Do s )

exactly

The problem:

Cor((—1,1)) [Tk © =) — C—1,1yTk(1) = o0

However, the solution V' lies in a special space Z that implies its Cauchy transform
s bounded at kg

We therefore assume that our numerical approximation V,, € Z, allowing us to
assign a value

CM((—l,l))[Tk 2 M_l](ko) 5 C(—l,l)Tk(l) ~ Qg

The resulting linear system imposes that the approximation V,, i1s indeed in Z
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Fvolution of defocusing NLS
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Evolution of defocusing NLS (Absolute value)
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Inverse scattering tfor KaV

Direct transform

D ——————> r(k), 1k51 5105}

Time evolution

Inverse transform

Ui —




(

Reflection data

T(k)v {/{j} ) {CJ}

1

Undeformed RH Problem

1 —r(z)r(—=2) r(z)e21(4t23+wz)) o

T(Z)GZi(éLtzg—l—xz)




Deformations

* We have two stationary points at Undeformed
L
LT e
g 12t
Q
« We will deform the contour through these stationary
points along the paths of steepest descent &
» Different regimes of x and ¢ require different lensings 1 —rz)n(—2) © —nomiC
T(Z)621(4tz3—|—:1;z) 1
« Added difficulty: the lensing introduces a pole O

« Deformations based on Delft & Zhou 1993, Delft,
Zhou & Venakides 1994, Grunert & Teschl 2008



Different regions for deformations

Transition

Painlevé |

Soliton

Dispersive






KdV One soliton




Rlei e tt—20)
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Plot for t = 200, —1000 < z < 1000




Change of contour

X

X



Focusing NLS



Focusing NLS

* [he undeformed jump contour Is very similar to defocusing NLS:

1 — |7°(Z)‘2 —f(z)e—Qi(QtZQ—HUZ) e ‘T(Z)‘Q f(2)6_21(2t’z2+x’2)
T(Z)GQi(Qtz2—|—:1;z) 1 7“(2)621(2t22+$z) 1

* [he deformations are the exact same as well
- Except now we have discrete spectra, which may be anywhere in the complex plane

* For numerical examples, we just specity simple discrete spectra



Reflection data

T(k)v {/{j} ) {CJ}

Undeformed RH Problem

1
ef(r1)
ee(ml)
D (]. _C]_ ]%—Kjl )
1

( 1+ |r(2)|° r(z)e21(2t22+f”z))
r(

Z)GQi(th2—|—a:z) 1




fNLS Soliton + Dispersion

t=0.




~ocusing NLS with boundary conditions



* We can use a similar approach to solve NLS on the half line with Robin boundary
conditions:

1Ug + Uy T 2 \u\Q uw =0,
au(0,t) +u;(0,t) =0 and
u(z,0) = up(x)

* The basic idea: use a Darboux transformation to extend ug(x) to the entire real
ine

— For Neumann a = 0 it is the even extension ug(—x) = ug(x)

— For Dirichlet a = oo, it is the odd extension ug(—x) = —ug(x)

— In general, the extension results from solving a linear ODE.

* [he extension can have a discontinuity in derivatives at zero. However, our method
for computing the direct scattering transform is not affected!

(based on Biondini & Bui 2012)



fNLS with Neumann condrtions

t=0.
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fNLS with Neumann condrtions
(Absolute value)

t=0.

10 13

20



Defocusing solitons

* Suppose we switch the sign in the jump matrix for the focusing solitons

1 -1 * 1 O
1 1

* [hen the solution satisfies defocusing NLS
» How can this be! Doesn't defocusing NLS have no solitons (except dark solitons)?

ERlEliss e oct solitons ™

* [he answer: these solitons have poles!
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