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The frequency of oscillations ω is large

To begin with, no stationary points in interval:


 
 
 
 
 for


What are highly 
oscillatory integrals?

g
′(x) != 0 a ≤ x ≤ b

I[f ] =
∫ b

a
f(x) eiωg(x) dx



Applications

Acoustic integral equations

Function approximation

Spectral methods

Modified Magnus expansions

Computing special functions



Why are these integrals 
“hard” to compute?
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History

Asymptotic theory (expansions, stationary phase, 
steepest descent) 

Filon method (1928)

Wrongly claimed to be inaccurate (Clendenin 1966)

Levin collocation method (1982)

Other methods (numerical steepest descent, 
Zamfirescu method, series transformations, Evans 
& Webster method)



Asymptotic Expansion

Rewrite the equation:

Integrate by parts:

Error term is of order 

=
1

iω

(

f(b)

g′(b)
eiωg(b)

−

f(a)

g′(a)
eiωg(a)

−

∫ b

a

d

dx

f(x)

g′(x)
eiωg(x)dx

)

−
1

iω
I

[

d

dx

f(x)

g′(x)

]

= O

(

1

ω2

)

I[f ] =
∫ b

a
f(x) eiωg(x) dx =

1
iω

∫ b

a

f(x)
g′(x)

d
dx

eiωg(x) dx



Define ¾ k by
 

The asymptotic expansion is

For increasing frequency, the s-step 
partial sum has an error of order

σk+1 =

σ
′

k

g′

σ1 =

f

g′

I[f ] ∼ −

∞
∑

k=1

1

(−iω)k

[

σk(b)eiωg(b)
− σk(a)eiωg(a)

]

QA
s [f ] − I[f ] ∼ O

(

ω−s−1
)



• Suppose 

If f and its derivatives are bounded as ω 
increases, then

Corollary

I[f ] ∼ O

(

1

ωs+1

)

0 = f(b) = f ′(b) = · · · = f (s−1)(b)

0 = f(a) = f ′(a) = · · · = f (s−1)(a)



Interpolate f by a polynomial v such that the 
function values and the first s   — 1 derivatives 
match at the boundary (Hermite interpolation)

I[v] is a linear combination of moments

We can compute I[v] if we can compute moments

Use corollary to determine the order of the error

The Filon-Type method

(From Iserles & Nørsett, 2005a)



For nodes a = x0  < · · · < xº = b and multiplicities 
{mk}, let

 
 
 
 
 
 
  satisfy the system

Approximate I[f] by I[v]

If m0,mº  ¸ s then the corollary implies

I[f ] − I[v] = I[f − v] ∼ O

(

1

ωs+1

)

v(xk) = f(xk)

v(mk−1)(xk) = f (mk−1)(xk)

k = 0, 1, . . . , ν

(Iserles & Nørsett, 2005a)

·
·
·

v(x) =
∑

ckxk



Two-term asymptotic expansion, Filon-type method with 
endpoints and multiplicities equal to 2, and Filon-type 
method with nodes {  0,½,1} and multiplicities {  2,1,2}               
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Suppose F     is a function such that

Rewrite preceding equation as

Collocate F by                       using the system

Approximate I[f] by

The Original Levin 
Collocation method

(From Levin, 1982)

v =

∑
ckψk

d

dx

[

F (x) eiωg(x)
]

= f(x) eiωg(x)

L[F ] ≡ F ′(x) + iωg′(x) F (x) = f(x)

L[v](x0) = f(x0) , · · · , L[v](xν) = f(xν)

QL[f ] ≡ I[L[v]] = v(b)eiωg(b)
− v(a)eiωg(a)



For nodes {xk} and multiplicities {mk} suppose

Regularity condition:             can interpolate the 
nodes and multiplicities (always satisfied with 
polynomial basis)

Then, for m0,mν ≥ s :

Levin-type method

I[f ] − QL[f ] = I[f − L[v]] ∼ O

(

1

ωs+1

)

L[v](xk) = f(xk)

L[v](mk−1)(xk) = f (mk−1)(xk)

k = 0, 1, . . . , ν

{g′ψk}
·
·
·



Sketch of Proof
The order follows from the corollary if f – L[v] and 
all its derivatives are bounded for increasing ω

Collocation matrix can be written as

Regularity condition ensures G is non-singular

From Cramer’s rule

Hence v and its derivatives are                andO
(

ω
−1

)

L[v] = v′ + iωg′v = O(1)

A = P + iωG

ck =
detAk

detA
=

O(ωn)
(iω)n+1 detG +O(ωn)

= O
(
ω−1

)



Asymptotic expansion, Filon-type method with only endpoints 
and multiplicities equal to 3, and Levin-type method with same 
nodes and multiplicities                    
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Levin-type method and Filon-type method with endpoints and 
multiplicities 2, Levin-type method and Filon-type method with 
nodes {0,¼,⅔,1} and multiplicities {  2,2,1,2}  
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Multivariate Highly 
Oscillatory integrals

The boundary of Ω is piecewise smooth

Nonresonance condition is satisfied:

∇g  is never orthogonal to the boundary

No critical points in domain:


 
 
 
 
 
 for (x,y) ∈ Ω

∫
Ω

f(x, y)eiωg(x,y) dV

∇g(x, y) "= 0



There exists an asymptotic expansion that 
depends on f and its derivatives at the vertices

The s-step approximation, which uses the order  
s  – 1 partial derivatives of f at the boundary, has 
an error

The multivariate Filon-type method consists of 
interpolating f and its derivatives at the vertices

O

(

1

ω
s+d

)



For a function F, we write the integral as

Green’s theorem states that the above integral is 
the same as

Thus collocate f  by v using the operator

∮
∂Ω

eiωg(x,y)
F · ds =

∮
∂Ω

eiωg(x,y)(F1(x, y) dy − F2(x, y) dx)

∫∫
Ω

[F1,x + F2,y + iω(gxF1 + gyF2)] e
iωg dV

L[v] = v1,x + v2,y + iω(gxv1 + gyv2) = ∇ · v + iω∇g · v



For nodes {xk} and multiplicities {mk} 
collocate                        

 
 
 
 using the system

Regularity condition:
 
 
 
 
 can interpolate at 
the given nodes, plus regularity condition 
satisfied in lower dimensions

Method has asymptotic order

Levin-type method

∂|m|

∂x
m

L[v](xk) =
∂|m|

∂x
m

f(xk)
k = 0, 1, . . . , ν

|m| ≤ mk − 1

v = [v1, v2]
! =

∑
ckψk

{∇g · ψk}

O
(
ω−s−2

)



T1(t)

T2(t)

T3(t)

QL
g [f ] =

∑

!

QL
g(T!(t))

[v(T!(t)) · JT!(t)]

Ω

for

∫∫

Ω
feiωg dV ≈

∫∫

Ω
L[v]eiωg dV =

∮

∂Ω
eiωgv · ds =

∑

#

∫

T!

eiωgv · ds

=
∑

#

∫ 1

0
eiωg(T!(t))v(T#(t)) · JT!(t) dt ≈ QL

g [f ]

JT (t) =
(

T ′
2(t)

−T ′
1(t)

)



Domains
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Levin-type method with only vertices and multiplicities all 
one on a two-dimensional simplex

ω
3 |Error|
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Levin-type method with only vertices and multiplicities all 
two on a quarter circle

ω
4 |Error|
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Stationary points

Consider the integral

where

∫ 1

−1
f(x)eiωg(x) dx

0 = g(0) = g
′(0) = · · · = g

(r−1)(0), g
(r)(0) > 0

1 2-1-2

1

-1

cos 20 x2



Stationary Points

Filon-type methods work, but still require 
moments (which are harder to find since the 
oscillator is more complicated)

Levin-type methods do not work

We will combine the two methods to derive a 
Moment-free Filon-type method



Asymptotic Expansion

Can still do integration by parts (r = 2):

Unfortunately requires moments

I[f ] = I[f − f(0)] + f(0)I[1]

=
1

iω

∫ 1

−1

f(x) − f(0)

g′(x)

d

dx
eiωg(x) dx + f(0)I[1]

=

[

f(1) − f(0)

g′(1)
eiωg(1)

−

f(−1) − f(0)

g′(−1)
eiωg(−1)

]

−

1

iω
I

[

d

dx

[

f(x) − f(0)

g′(x)

]]

+ f(0)I[1]

(From Iserles & Nørsett, 2005a)



Moment-Free Methods

Idea:  find alternate to polynomials that can be 
integrated in closed form for general oscillators

Can be used to find an asymptotic expansion 
which does not require moments (turns out to 
be stationary phase under a different guise)

Can be used as an interpolation basis in a Filon-
type method, to improve accuracy like before



Incomplete Gamma 
Functions

Suppose

Solve the differential equation

Solution is known:

g(x) = x
r

L[v] = v
′ + iωg

′
v = v

′ + riωx
r−1

v = x
k

v(x) =
ω−

1+k

r

r
e−iωx

r
+

1+k

2r
iπ

[

Γ

(

1 + k

r
,−iωxr

)

− Γ

(

1 + k

r
, 0

)]

x ≥ 0



Now replace occurrences of      with

We obtain

Calculus can show that

x
r

g(x)

Dr,k(sgn x) =











(−1)k sgn x < 0 and r even,

(−1)ke−
1+k

r
iπ sgn x < 0 and r odd,

−1 otherwise.

φr,k(x) = Dr,k(sgnx)
ω−

k+1
r

r
e−iωg(x)+ 1+k

2r
iπ

[

Γ

(

1 + k

r
,−iωg(x)

)

− Γ

(

1 + k

r
, 0

)]

L[φr,k] (x) = sgn (x)r+k+1 |g(x)|
k+1

r
−1g′(x)

r



These functions look ugly, but have following 
nice properties:

Are smooth:


 
 
 
   form a Chebyshev set (can 
interpolate any given nodes/multiplicities)


 
 
 
 are independent of 

Are integrable in closed form:

φr,k,L[φr,k] ∈ C∞

{L[φr,k]}

L[φr,k] ω

I[L[φr,k]] = φr,k(1)eiωg(1)
− φr,k(−1)eiωg(−1)



Asymptotic expansion versus Moment-free Filon-type method 
with endpoints and zero and multiplicities equal to {2,3,2}
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Use terms from the asymptotic expansion as the 
collocation basis:

Captures asymptotic behaviour of the expansion 
while allowing for possibility of convergence

If the regularity condition is satisfied then we 
obtain an order of error
 
 
 
 
 
 
 , where n is 
the size of the system and s is again the smallest 
endpoint multiplicity

Levin-Type method with 
asymptotic basis

∇g · ψ1 = f, ∇g · ψk+1 = ∇ · ψk, k = 1, 2, . . . .

O
(

ω
−n−s−d

)



Asymptotic expansion , Filon-type method with only endpoints 
and multiplicities equal to 3, and Levin-type method with 
asymptotic basis with nodes {0,½,1}     and multiplicities all one
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Asymptotic Filon Levin with asymptotic basis

order of error with ! = 50

log10 |Error|

∫ 1

0

log(x + 1) eiωx dx



Levin-type method with asymptotic basis with only vertices 
and multiplicities all one on a two-dimensional simplex
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Write the Airy function as

Approximate first integral with Moment-free 
Filon-type method

Approximate second integral with Levin-type 
method with asymptotic basis

Airy function

Ai (x) = !
[

1
π

√
x

∫ ∞

0
eix3/2(t3−t) dt

]

= !
[

1
π

√
x

∫ 2

0
eix3/2(t3−t) dt +

1
π

√
x

∫ ∞

2
eix3/2(t3−t) dt

]



One-term asymptotic expansion, Moment-free Filon-type 
method & Levin-type method with asymptotic basis with nodes 
{0,1,2}, {0,0.5,1,1.5,2,3} and {0,1,2} with multiplicities 
{2,3,2} compared to

ω

Ai (−ω)

Ai (−ω)
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Asymptotic expansion , Filon-type method with only endpoints 
and multiplicities equal to 3, and Levin-type method with 
asymptotic basis with only endpoints     and multiplicities all one
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Order 4 5 7

Filon-type 0.042 0.0016 1.3 · 10–6

Levin-type 0.015 0.00043 3 · 10–7

Asymptotic 
expansion

0.0083 0.00011 1.7 · 10–8

Levin 
asymptotic 

basis
0.00059 2.8 · 10–6 9.9 · 10–12

ω = 200

∫ 1

0
e
10x

e
iω(x2+x)

dx



Miscellaneous
Filon-type and Levin-type methods do not need 
derivatives to obtain high asymptotic orders

Can use incomplete Gamma functions for 
multivariate integrals with stationary points

Can replace collocation with least squares 

Collocation with WKB expansion can be used to 
approximate oscillatory differential equations

0 11
ω

1− 1
ω
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