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We want to study limits of sequences of Riemannian manifolds
(Mi , gi), in various senses.

There is one obvious notion. On a fixed smooth manifold M, a
Riemannian metric is a section of s2T ∗M so we can consider
gi → g∞ , as sections of this bundle, in standard functions
spaces (C∞

loc, Ck ,α, L∞ . . . ).

But the questions are more involved because:

The diffeomorphisms of M act on the metrics.

We need to consider cases where the limit is a structure on
a different manifold, or singular space.
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Section 1: Hyperbolic surfaces: the Deligne-Mumford
moduli space
We consider a compact oriented 2-dimensional manifold Σ with
a metric g of constant Gauss curvature −1.

The universal cover is isometric to the hyperbolic plane.

Taking the upper half-space model H, the (oriented) isometry
group of H is PSL(2, R), acting by Möbius maps.

The isometries of H act simply transitively on unit tangent
vectors.
Any local isometry of H extends uniquely to a global one.

We have Σ = H/Γ where Γ ⊂ PSL(2, R).
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For each point p ∈ Σ we have the exponential map

expp : TΣp → Σ.

The injectivity radius inj(Σ) is the largest number r0 such that,
for all p, the map expp is injective on the open r0 disc in the
tangent space.
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Theorem 1 Let (Σi , gi) be a sequence of such Riemannian
manifolds with fixed genus γ ≥ 2. Suppose that inj(Σi) ≥ ρ for
some fixed ρ. Then there is a subsequence {i ′}, a compact
hyperbolic surface (Σ∞, g∞) and diffeomorphisms
φi ′ : Σ∞ → Σi ′ such that φ∗

i ′(gi ′) → g∞ in C∞.
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First observation : by Gauss-Bonnet the area of Σi is
4π(γ − 1).

We take the point of view that a hyperbolic surface is given by
gluing together a collection of discs in H by isometries in
PSL(2, R). (There are many other approaches to proving
Theorem 1.)

Given Σ as above, choose a maximal set of points p1, . . . pN

such that d(pα, pβ) > ρ/10. So any point q ∈ Σ is within
distance ρ/10 of some pα. Thus the discs with centre pα and
radius ρ/5 cover Σ, while the discs with same centres and radii
ρ/20 are disjoint. These latter discs have the same fixed area,
determined by ρ.
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So we get a bound on the number of discs in terms of ρ and the
genus γ. : N ≤ N(ρ, γ)
This obviously implies a bound on the diameter of Σ,

Diam(Σ) ≤ D.
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Going back to the sequence in the Theorem, for each i take
some cover of Σi by N = N(ρ, γ) discs of fixed radius ρ/5 with
centres pα,i ∈ Σi .
Let Dα,i be the open ρ/4 disc in Σi with centre pα,i .

Let dα,β,i be the distance between pα,i , pβ,i in the hyperbolic
surface Σi .

Since 0 ≤ dα,β,i ≤ D, we can suppose (passing to a
subsequence) that these converge: dα,β,i → dα,β .

So the discs Dα,i cover Σi and moreover each point of Σi lies
well inside at least one Dα,i .
Also, when a pair of these discs intersect the intersection is a
connected set.
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Fix a standard disc D of radius ρ/4 in H.
Second observation . The set of F ∈ PSL(2, R) such that
F (D) ∩ D is non-empty is compact.
Let

A = {(α, β) : d(α, β) < ρ/2}.

Without loss of generality we can the same set A if we replace
d(α, β) by d(α, β, i) for any i .

For each Σi we have an atlas of isometric charts
χα,i : D → Dα,i ⊂ Σi .
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When (α, β) ∈ A the discs Dα,i , Dβ,i intersect and we have an
overlap map fα,β,i defined on a subset of the standard disc D,
such that

χα,i = χβ,i ◦ fα,β,i .

The fact that the intersections are connected implies that fα,β,i

is the restriction of a global isometry Fα,β,i ∈ PSL(2, R).
So by the observation we can suppose that these have a limit
Fα,β as i → ∞.
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We construct a limiting surface as follows.

Start with the product X = D × {1, . . . , N} and define a relation
by (α, z) ∼ (β, w) if (α, β) ∈ A and w = Fα,β(z).

The compatability condition for the charts χα,i in Σi implies,
passing to the limit, that this is an equivalence relation.
Let Σ∞ be the quotient X/ ∼.

The inclusion D × {α} ⊂ X induces a map χα : D → Σ∞.

One checks that these form a system of charts defining a
compact hyperbolic structure on Σ∞.
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To get the statement of the Theorem we can use a general
results about manifolds, which we state imprecisely

Let M be a compact n-dimensional manifold defined by an atlas
of charts χα : Bn → M with overlap maps fαβ : Uαβ → Uβα

where
Uαβ = χ−1

α

(
χα(Bn) ∩ χβ(Bn)

)
.

Let M ′ be another such manifold defined by data χ′
α, f ′αβ with

(for simplicity) the same domains Uαβ .
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Proposition

If f ′αβ is sufficiently close in C∞ to fαβ then, after perhaps
slightly shrinking the charts, we can find diffeomorphisms
gα : Bn → Bn close to the identity such that f ′αβ = g−1

β ◦ fαβ ◦ gα.

This collection gα is just the data needed to define a
diffeomorphism g : M → M ′.
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The proposition is a nonlinear version of the fact that
H1(M, T) = 0, where T is the sheaf of C∞ vector fields.
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Theorem 1 is of interest in Riemann surface theory because
the moduli space of genus γ hyperbolic surfaces modulo
diffeomorphism can be identified with the moduli space Mγ of
genus γ Riemann surfaces.

We are interested in compactifying this moduli space.

What happens in a sequence Σi with inj(Σi) → 0?
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For l > 0 define the “standard collar” Cl to be the quotient of H
identifying z with elz. The imaginary axis projects to a closed
geodesic γl of length l in Cl .

Define the standard cusp E to be the quotient of H identifying z
with z + 1.

Simon Donaldson Introduction to Riemannian convergence theory



Simon Donaldson Introduction to Riemannian convergence theory



The injectivity radius inj(Σ) is half the length of the shortest
closed geodesic in Σ.

Suppose that we have a closed geodesic Γ ⊂ Σ, of length l . A
neighbourhood of Γ in Σ is isometric to a neighbourhood of γl in
Cl . More generally, there is a locally isometric covering map
Cl → Σ taking γl to Γ.
Clearly, for fixed R the area of the R-neighbourhood of γl in Cl

tends to 0 as l → 0.

In our situation, if inj(Σi) → 0 we must have Diam(Σi) → ∞.

The converse is also true. as we saw.
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When i is large the surface Σi contains a long “thin” region,
isometric to part of the standard collar Cl , with l small.
The natural (subsequential) “limit”as i → ∞ is a complete
non-compact (possibly disconnected surface) Σ∞.
The surface Σ∞ has ends which are cusps, modelled on E .
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This can be used to define a compactification Mγ , which agrees
with the algebraic geometers Deligne-Mumford
compactification via stable nodal curves.
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Section 2: bounded local geometry

Recall that at each point p in a Riemannian manifold there is a
Riemann curvature tensor which is equivalent to the sectional
curvature function on 2-planes in TMp.

The sectional curvature gives strong control of geodesics,
hence of the exponential map and in turn of the geometry,
expressed in geodesic coordinates.

For any κ ∈ R let N(κ, n) be the simply connected n-manifold of
constant sectional curvature κ, with base point O.
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The basic comparison theorem (somewhat roughly stated):
Suppose that the sectional curvatures K of a complete manifold
(M, g) satisfy κ1 ≤ K ≤ κ2. Fix p ∈ M and an isometry
TMp = TNO.

Compare M with the N(κ, n), pulling back by the exponential
maps from p and 0.

Then the metric on M is smaller than N(κ1, n) and bigger than
N(κ2, n).

(More precisely, if κi > 0 we should restrict to points with
distance ≤ π

√
κi from p.)
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Fundamental fact Under the scaling g 7→ λ2g the curvature
multiplies by λ−2.

If f r << inj(M) and r << sup|Riem|1/2 then the geometry of M
on the scale of r is very close to Euclidean.
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Theorem 2 (Cheeger)
Fix r0, V , C > 0. If (Mi , gi) are compact n-dimensional
Riemannian manifolds with inj ≥ r0, Vol ≤ V , |Riem| ≤ C then
there is a subsequence which converges in C1,ν to a C1,ν

limiting metric g∞ on a manifold M.
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Explanation:

Here convergence is in the same sense as Theorem 1, via
maps φi ′ : M → Mi ′ .

C1,ν refers to the usual Hölder space, with any exponent
ν < 1.

Strictly, M is a C2,ν manifold, but it is known that any such
has a smooth structure.

A C1,ν metric has Christoffel symbols in C,ν so we have a
good theory of geodesics.

We could also say that we have weak convergence in Lp
2,loc

for any p < ∞. The limiting metric has a curvature tensor
in Lp.
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Equivalent hypotheses in Theorem 2 are:
Diam≤ D, Volume≥ V ′, |Riem| ≤ C.
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A proof of Theorem 2 can follow the same strategy as we used
for Theorem 1. We need to:

1 Choose charts so that the metric tensors converge in these
charts.

2 Arrange that the overlap maps between the charts
converge.

(There is an extra complication involving the domains of the
overlap maps, but this can be dealt with.)
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As a first attempt at a proof of Theorem 2 we could use use
geodesic charts on small metric balls and follow the plan of
proof of Theorem 1.
A bound on the curvature tensor gives a bound on the metric
tensor in geodesic co-ordinates. This gives a C1 bound on the
overlap maps.
The compact inclusion C1 → C,ν means that we can suppose
that the overlap maps converge in C,ν .

We get a C,ν limiting manifold M but this is two derivatives less
than what we want, and it is not clear if there is a useful
Riemannian limit.
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To prove Theorem 2 we need a better choice of local
coordinates. One approach uses harmonic coordinates, which
we discuss in Section 6. Here we will outline a “gauge theory”
approach.

In general the problem can be seen as seeking a “quantitative”
version of a standard differential geometric result.
Standard Theorem : Riem= 0 implies Local Euclidean
coordinatesgij = δij

Quantitative version : Riem smallimplies local co-ordinates
with gij − δij small.
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Let g be a metric on the unit ball Bn with |gij − δij | < ε and
|Riem| < ε. Regard the Levi-Civita connection of g as an SO(n)
connection ∇g on a bundle over B. Parallel transport along rays
gives an orthonormal frame of 1-forms ηi with |∇gηi | ≤ cε. This
implies that |dηi | ≤ cε and so

‖dηi‖Lp ≤ cε.
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The usual proof of the Poincaré Lemma constructs a chain
homotopy operator on differential forms over the ball
T0 : Ωp → Ωp+1 such that η = dT0η + T0dη. This construction is
based on radial dilation about the origin. The operator T0 does
not behave very well on function spaces: it takes Lp to Lp.
Averaging over different choices of origin (and being somewhat
vague about the domain of definition of the forms) we get a
better chain homotopy T which maps Lp to Lp

1, by elliptic theory.
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’
In the situation above we get (on a slightly smaller ball)
functions hi such that ηi = dhi + θi where ‖θi‖Lp

1
≤ cε. Write

Gij = (dhi , dhj) then we have

‖Gij − δij‖Lp
1
≤ cε.

Now use hi as new coordinates. In these coordinates the metric
tensor differs from Euclidean in Lp

1 norm from Euclidean by at
most cε.
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This has gained one derivative over the first attempt. To gain
one more derivative one can apply a well-known theorem of
Uhlenbeck to the connection ∇g (once ε is small). This gives an
orthonormal frame ηi with ∇gηi small in Lp

1, and we get the
similar conclusion, but now with the metric tensor controlled in
Lp

2.

For large enough p, this gives control in C1,ν , by Sobolev
embedding theorems.

Uhlenbeck’s theorem can be seen as a nonlinear version of the
preceding discussion.
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Section 3: Gromov-Hausdorff convergence
Let A, B be compact metric spaces. The Gromov-Hausdorff
distance DGH(A, B) is the infimum of ε such that there is a
metric dε on the disjoint union A t B extending the given
metrics on A, B and such that both A, B are ε-dense.

Given dε we define for a ∈ A a set Nε(a) ⊂ B of points within ε
of a. Then for b1 ∈ Nε(a1), b2 ∈ Nε(a2) we have

|d(b1, b2) − d(a1, a2)| ≤ 2ε.

Similarly for b ∈ B we have Nε(b) ⊂ A.

On scales >> ε the metrics on A, B are almost equivalent.
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Theorem 3 (Gromov’s compactness theorem) .
Let Xi be a sequence of compact metric spaces with diameters
≤ D. Suppose that for each η > 0 there is a number N(η) such
that each Xi can be covered by N(η) η-balls. Then there is a
subsequence which converges in the Gromov-Hausdorff
metric.

This is analogous to the fact that a bounded sequence in a
separable Hilbert space has a weakly convergent
subsequence.

The proof of Gromov’s Theorem is “elementary”. The general
idea is that if the Xi are finite sets with at most a fixed number
of points then the result is clear. The hypothesis in the theorem
means that for all ε each Xi can be approximated to within
distance ε in DGH by a finite set of fixed size.
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Based convergence . Let Xi be locally compact metric spaces
and xi ∈ Xi . The pairs (Xi , xi) have a based GH limit (X∞, x∞) if
for each R the sequence of R-balls centred at xi converge to
that centred at x∞.

Example Let Σi be a sequence of hyperbolic surfaces splitting
into a union of two infinite-diameter pieces ΣI , ΣII by developing
a long neck, as we discussed in Section 1. For different
sequences of base points pi ∈ Σi we can arrange that the
based limit is:

(ΣI , pI) for some pI ∈ ΣI ;

(ΣII , pII) for some pII ∈ ΣII ;

(R, 0)

In the last case the dimension drops in the limit.
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We can also consider scaled limits. For a sequence of real
numbers λi > 0 and based metric spaces ((Xi , λi dXi

, xi).
In the example above we can get additional scaled limits (for
different choices of λi , pi ):

R2,

One point.

S1 × R.
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Section 4: collapsing with bounded curvature and
almost-flat manifolds
What can happen if we drop the injectivity radius assumption in
Theorem 2? We clearly do not necessarily have convergence in
the same sense. For example take Mi = Y × T m

εi
where T m

εi
is a

flat torus scaled to have diameter εi and εi → 0. In this section
we look at some variations on this phenomenon.
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Let P be the circle bundle over R2 with a connection having
curvature ω = dx1dx2. Write V for the “vertical” vector field on
P which generates the S1 action and X1, X2 for the horizontal
lifts of ∂

∂x1
, ∂

∂x2
. So X1, X2, V form a frame for the tangent bundle

and the only non-vanishing Lie bracket between them is
[X1, X2] = V .

For a fixed ε > 0 define X0 = ε−1V so the only bracket is
[X1, X2] = εX0.
Define a Riemannian metric gε on the 3-manifold P by
declaring that X0, X1, X2 form an orthonormal frame. The
formulae for the Levi-Civita connection and curvature show that
the curvature of (P, gε) is O(ε2).

The length of a circle fibre in the metric gε is 2πε.
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P carries a group structure, the Heisenberg group, such that
the vector fields Xi are left-invariant. As a manifold we can
identify P = R2 × S1 and the product is

(v , λ)(v ′, λ′) = (v + v ′, λλ′ exp(iω(v , v ′)).

Let L be a lattice in R2 with a fundamental domain of area 2π,
for example Z × 2πZ. Then L is a subgroup of P and the
quotient N = P/L is a circle bundle over a 2-torus T 2 = R2/L
with first Chern class 1.
The metric gε descends to N and clearly for ε small the
diameter of N is essentially the same as that of T 2. We get a
family of metrics on N with curvature tending to zero but
diameter bounded below.
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We have H1(N, R) = R2, so N is not homeomorphic to a
3-torus.

N is an example of an “almost-flat” manifold.

Take another parameter η and write gε,η = η2gε. Then (N, gε,η)
has diameter O(η) and curvature O(η−2ε2),
Consider a Riemannian product Y × N with a fixed metric on Y
and a sequence of metrics gεi ,ηi on N. If we choose the
parameters so that ηi → 0 but η−2

i ε2
i is bounded we get another

example of a sequence of metrics with bounded curvature
collapsing to a lower dimensional manifold Y (which is the
Gromov-Hausdorff limit).

There are two different collapsing scales: ηi (“in the T 2

direction”) and the much smaller ηiεi (“in the S1 direction” ).

Simon Donaldson Introduction to Riemannian convergence theory



More generally we can construct fibrations

N → M → Y ,

for example we could vary the lattice L as we move around Y .
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There is a theory due to Cheeger, Gromov, Fukaya. . . of
“F-structures” and “N-structures which, very roughly speaking,
says that this is the general picture, for collapsing sequences
with bounded curvature.
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Example: graph manifolds
Let Γ0 be the union of three line segments forming the letter Y .
Let Z0 be the 2-sphere with three discs removed and
π0 : Z0 → Γ0 a map of the obvious kind taking the boundary
circles to the end points.
Given a trivalent graph Γ we define a (family of) 3-manifolds MΓ

as follows. For each vertex take a copy of Z0 × S1 and for each
edge take a copy of T 2 × [0, 1].
Each boundary component of Z0 × S1 is a 2-torus so we can
glue these components together to get a compact 3-manifold
MΓ with a map π : MΓ → Γ.
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There are choices involved in gluing the T 2 boundaries and for
generic choices there will be no free S1 action on MΓ, although
such actions exist locally.

We can choose a sequence of metrics on MΓ with bounded
curvature such that based Gromov-Hausdorff limits are either R
or Z0 with its infinite-diameter hyperbolic metric.

These kind of metrics arise in the analysis of the Ricci flow on
3-manifolds and Perelman’s proof of Thurston’s Geometrisation
conjecture.
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Section 5: Ricci curvature

The Ricci tensor (or Ricci curvature) of a Riemannian manifold
(M, g) is a contraction of the full curvature tensor. It is a section
of S2(T ∗M), thus there is a notion of positive Ricci curvature
etc.

The Ricci tensor is strongly related to the volume form volg of
the metric. In geodesic coordinates about a point

volg =

(

1 −
1
3

∑
Rijxixj + O(x3)

)

dx1 . . . dxn.

So positive/negative Ricci curvature makes volumes
smaller/larger in these coordinates (for sufficiently small x).
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Digression
In complex differential geometry, a volume form on a complex
manifold M is the equivalent to a Hermitian metric on the
canonical line bundle KM = ΛmT ∗M (where m is the complex
dimension).

This defines a connection on the line bundle with a curvature
form iρ of type (1, 1).

In local complex co-ordinates za = x1 + iya, if

|dz1 . . . dzm|
2 = h

then the volume form is

h−2dx1dy1 . . . dxmdym

and the curvature form is

ρ = −i∂∂ log h.
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If M has a Kähler metric g and we use the volume form of g the
tensor ρ is the same as the Ricci tensor, up to normalising
factor.

Positive Ricci curvature ⇔ K−1
M ample ⇔ Fano;

Negative Ricci curvature ⇔ KM ample ⇒ General type.
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The Ricci curvature is also strongly related to the Laplace
operator.

The Bochner identity , for a 1-form α on a Riemannian manifold
(M, g):

Δα = ∇∗∇ α + Ricci.α,

where Δ = d∗d + dd∗ and

∇∗ : Γ(T ∗M) ⊗ T ∗M) → Γ(T ∗M)

is the formal adjoint of the covariant derivative

∇ : Γ(T ∗M) → Γ(T ∗M ⊗ T ∗M).
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We will discuss two results about Ricci curvature:

volume comparison (Bishop)

splitting theorem (Cheeger-Gromoll)
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A fundamental differential inequality
Let (M, g) be a Riemannian n-manifold with Ricci ≥ 0 and f be
a function on M with |df | = 1. Write v for the gradient vector
field of f . Then

∇v (Δf ) ≥ |∇∇f |2 ≥
1

n − 1
(Δf )2 . (∗∗)

(In these lectures we use the “geometers” sign convention for
the Laplacian Δ = d∗d on functions.)
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This is a consequence of the Bochner identity.

Take α = df so Δα = dΔf and ∇vΔf = (Δα, α). Since
Ricci ≥ 0 we have ∇vΔf ≥ (∇∗∇α, α).
Now for any 1-form α

1
2

Δ|α|2 = (∇∗∇α, α) − |∇α|2.

In our case |α| = 1 so (∇∗∇α, α) = |∇α|2 and we get

∇vΔf ≥ |∇∇f |2.
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For the second inequality in (**) notice that |df | = 1 implies that
∇v v = 0. (i.e. the integral curves of the vector field v are
geodesics). This means v is in the kernel of the Hessian ∇∇f .
The last inequality follows from the fact that for a symmetric
matrix H of rank ≤ n − 1 we have

∑
H2

ij ≥
1

n−1Trace(H)2.

Geometric significance The orthogonal complements of v are
the tangent space of the level sets of f . The Hessian ∇∇f is the
second fundamental form of the level set and −Δf is the mean
curvature.

Important supplement : if equality holds in (**) then the second
fundamental form of the levels set is a multiple of the metric.
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Bishop comparison theorem

Let (M, g) be a complete Riemannian n-manifold with Ricci ≥ 0
and p be a point in M. Write V (r) for the volume of the metric
ball of radius r centred at p. Then V (r)/r n is a decreasing
function of r .

(In particular, V (r) is at most the volume of the Euclidean
r -ball.)

There is a more general theorem under the hypothesis
Ricci ≥ λ.
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Outline proof.

For exposition, consider first the case when the metric has
rotational symmetry about p and we take radius r less than the
injectivity radius. Then dV

dr = A(r) where A(r) is the volume of
the boundary of the r -ball. Let f be the distance to p, so
|df | = 1. By considering the flux of the radial vector field, or
otherwise, one sees that

Δf = −A−1 dA
dr

.

Write m(r) = −Δf and apply the inequality (**)

dm
dr

≤ −
1

n − 1
m2.

This integrates to give m ≤ (n − 1)/r which implies that A/r n−1

is decreasing and, integrating again, one sees that V/r n is
decreasing.
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For the general case, take polar coordinates (r , σ) on Rn, with
σ ∈ Sn−1 and write the pull-back of the volume form by the
exponential map as A(r , σ)drdσ. Let R(σ) be the largest
distance such that the geodesic in the direction σ minimises up
to distance R(σ). The same arguments apply to A(r , σ) for
each fixed σ and for r ≤ R(σ).

The exponential map at p maps the union of these
ray-segments onto M.

Important supplement If s < r and A(s)/sn−1 = A(r)/r n−1

then the metric is “conical” in the annulus B(r) \B(s) (see later).
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A geodesic γ : R → M in a complete Riemannian manifold is
called a “line” if d(γ(a), γ(b)) = |a − b| for all a, b ∈ R.

The splitting theorem
If M contains a line and Ricci ≥ 0 then M is a Riemannian
product R × N.

Simon Donaldson Introduction to Riemannian convergence theory



Lemma If M is complete with Ricci ≥ 0 and if there is a smooth
function φ : M → R with |∇φ| = 1 then M = N × R.

Proof Let c : R → M be an integral curve of the gradient vector
field v and take m(t) = Δφ(c(t)). So we get
m′(t) ≥ m2/(n − 1). It is an exercise to show that the only
solution of this inequality defined for all t is m = 0.
The first inequality in (**) implies that ∇∇φ = 0 from which one
easily sees that φ is the projection to R in a Riemannian
product M = R × N.
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The Busemann function associated to the line γ is

B(p) = lim
s→∞

d(γ(s), p) − s.

This function is not smooth a priori. The idea of (one) proof of
the splitting theorem is to show that it is differentiable with
|∇B| = 1 and to adapt the proof of the Lemma to this situation.
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Section 6: Harmonic coordinates

Consider a local co-ordinate system xi on a ball B in a manifold
(M, g) with Δgxi = 0. Let ηi = dxi . Then

Δ(ηi , ηj) = (∇∗∇ηi , ηj + (ηi ,∇
∗∇ηj) + 2(∇ηi ,∇ηj).

Since Δηi = 0 the Bochner formula gives

Δ(ηi , ηj) = 2(Ricciηi , ηj) + 2(∇ηi ,∇ηj).

Simon Donaldson Introduction to Riemannian convergence theory



The covariant derivatives ∇ηi are given by the Christoffel
symbols which depend on one derivative of the metric tensor so
we get, schematically,

Δgij = Rij + Qij(∂g, g), (∗ ∗ ∗∗).

Fix p large. Suppose we have bounds

C−1 (δij
)
≤
(
gij
)
≤ C(δij),

‖∂g‖L2p ≤ c

Then elliptic theory applied to (****) gives a bound on the Lp
2

norm of gij over an interior ball in terms of C, c and an Lp bound
on the Ricci curvature.
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The harmonic radius rh(M, g) of a compact Riemannian
manifold is the supremum of numbers ρ such that there are
harmonic coordinates satisfying the estimates above on every
unit ball in the rescaled metric (M, ρ−2g).

In other words we get “good” coordinates on all balls of radius
ρ < rh in the original metric.
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Theorem 4 (Anderson)
Let (M, g) be a compact Riemannian n manifold with |Ricci| ≤ Λ
and inj(M) ≥ δ > 0. Then rh(M, g) ≥ ε for some ε > 0
depending only on n, Λ, δ.

A Corollary is that we can extend Theorem 2 to manifolds with
a bound on |Ricci|, rather than the full |Riem|.
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The proof of Theorem 4 goes by contradiction.

First show by elliptic theory that for a metric on the unit ball in
Rn which is sufficiently close in Lp

1 to the Euclidean metric there
are good harmonic coordinates.

Now if the statement is false there is a sequence of
Riemannian manifolds (Mi , Gi) with inj(Mi) → ∞, |Ricci| → 0
and rh(Mi , Gi) = 1.

Choose pi ∈ Mi such that there are no good coordinates on
the ball of radius 2 centred at pi .

We can suppose that there is a based limit (M∞, G∞, p∞) with
metrics converging strongly in Lp

2 on bounded subsets.
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The limit has infinite injectivity radius and Ricci = 0; it is a
smooth metric by elliptic regularity.

If we know that M∞ = Rn, with Euclidean metric, we get a
contradiction to the statement in bold above.
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The fact that M∞ = Rn can be established using the splitting
theorem.

There is a related theorem of Anderson which, for simplicity, we
state in the case Ricci = 0.
Theorem 4’ There is as a δ > 0 such that if the volume of a unit
ball of a metric with Ricci = 0 is at least (1 − δ) times the
volume of the Euclidean ball then there are coordinates on the
half-sized ball in which the metric satisfies C∞ estimates.
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Section 7: Convergence under Ricci curvature
bounds—theory

Theorem 5 (Gromov) Any sequence (Mi , gi) of compact
Riemannian n-manifolds with Ricci ≥ Λ, and diameter ≤ D for
some Λ, D has a Gromov-Hausdorff convergent subsequence.

For simplicity suppose Λ = 0. Let M be one of the Mi and write
V = Vol(M). Given ε > 0, choose a maximal collection of
disjoint ε/10 balls Bα in M. The Bishop inequality gives

Vol(Bα) ≥
( ε

10D

)n
V .

If the number of balls is N we get

N
( ε

10D

)n
V ≤ V ,

which gives an upper bound on N. Then the statement follows
from Theorem 3.
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There is a similar compactness result for based limits (without
diameter bound).

A sequence of based Riemannian manifolds (Mi , gi , pi with
Ricci ≥ Λ is called non-collapsing if there is some δ > 0 such
that the volume of the unit ball in Mi centred at pi is ≥ δ.

By the Bishop comparison theorem it is equivalent to take balls
of any fixed radius.
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There is a good structure theory, due to Cheeger, Colding,
Naber. . . for non-collapsed limits of manifolds with a lower
bound on Ricci.

Let (Z , dZ ) be the limit of (Mi , gi). Initially, Z is a metric space.

Fix q ∈ Z and let λi be a sequence λi → ∞. By a variant of
Theorem 5, the sequence of based metric spaces (Z , λi dZ ) has
a Gromov-Hausdorff convergent subsequence with limit W say.

W can also be obtained as a rescaled based limit of a
subsequence of the Mi .
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Such a space W is called a tangent cone of Z at q. (These are
not always unique.)

For a point w ∈ W and sequence μi → ∞ we can find a
subsequential based limit of the rescaled metrics on W—an
iterated tangent cone of Z . Then we can apply the same
process again . . . .

Any iterated tangent cone can be obtained as a rescaled based
limit of a subsequence of the original manifolds Mi .
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Cones
Let (V , gV ) be a compact Riemannian manifold. The cone on V
is the completion of the Riemannian metric dr2 + r2gV on
(0,∞) × V . Taking the completion adds a vertex point r = 0.

If (V , dV ) is a general metric space the cone can be defined, as
a metric space, by the cosine formula:

d((v1, r1), (v2, r2))
2 = r2

1 + r2
2 − 2r1r2 cos θ,

where θ = min (dV (v1, v2), π).
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Theorem 6 (Cheeger-Colding)
Any tangent cone, as above, is a metric cone.

(Also, the diameter of V is ≤ π.)
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Suppose that (Mi , gi) have bounded Ricci curvature and
non-collapsed Gromov-Hausdorff limit Z .
Let R ⊂ Z be the set of points q such that some tangent cone
is Rn.
(R is the “regular set”).

Theorem 6’ R is an open subset of Z . It is an n-dimensional
manifold and the metric on Z restricted to R is represented by a
limiting C1,ν (or Lp

2) Riemannian metric.

This follows from a result like Theorem 4’ and some difficult
facts about volumes and Gromov-Hausdorff limits.
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The complement Σ = Z \ R is called the singular set of the limit
space.

We say that a tangent cone W splits off Rk if W = Rk × W ′ for
some W ′.

For k ≤ n − 1 let Σk ⊂ Σ be the set of points where some
tangent cone splits off Rk but no tangent cone splits off Rk+1.

So Σ = Σn−1 t Σn−2 t ∙ ∙ ∙ t Σ0.
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Theorem 6” (Cheeger-Colding)

dim Σk ≤ k

Here dim is the Hausdorff dimension.

In particular, R is dense in Z .
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The proofs of Theorems 6, 6’, 6” involve hard extensions of the
volume comparison and splitting theorems to limits spaces, or
equivalently “quantitative” versions of those theorems for
Riemannian manifolds.

For example, if p ∈ (M, g) with Ricci ≥ 0 and for some s < r
r−nVol(Bp,r ) is close to s−nVol(Bp,s) then the metric is “close” to
conical on the annulus Bp,r \ Bp,s.
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Section 8: Convergence under Ricci curvature
bounds—some examples

Hyperk ähler 4-manifolds
A hyperkähler triple on an oriented 4-manifold X is a triple of
closed 2-forms ω1, ω2, ω3 satisfying the orthogonality relations

ωi ∧ ωj = δijvol,

for some volume form vol.

Given such a triple, define a quadratic form g on tangent
vectors by

g(v)vol =
1
3

∑
iv (ωa) ∧ iv (ωb) ∧ ωc ,

where the sum runs over cyclic permutations of (123).

Then it is a fact that g is a Riemannian metric on X with zero
Ricci curvature.
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Let β1, β2, β3 be a standard basis of left-invariant 1-form on the
the Lie group SU(2) with

dβ1 = 2β2 ∧ β3,

etc.. Take a co-ordinate t on R (or an interval I in R) and
functions f1(t), f2(t), f3(t). Then define 2-forms on the product
I × SU(2),

ωa = d ( f (t)βa ) .

The orthogonality condition above for the volume form
2dt ∧ β1 ∧ β2 ∧ β3 is 2faf ′a = 1, so fa(t) =

√
t + τa.
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If all τa are 0 we get | ∂
∂t | = 1/(4t3/4). Take r = t1/4 so | ∂

∂r | = 1.
We find that the metric is a cone

dr2 + r2(β2
1 + β2

2 + β2
3).

Identify SU(2) with S3 (the unit quaternions). Then we see that
what we have is the flat metric on R4.
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Now take f1(t) =
√

t + 1, f2(t) = f3(t) =
√

t .

One finds that the metric is

1

16t
√

t + 1
dt2 +

t
√

t + 1
β2

1 +
√

t + 1(β2
2 + β2

3).

Let v1 be the left-invariant vector field dual to β1. This
generates an action of a circle by right multiplication on SU(2).
The quotient SU(2)/S1 is S2 = CP1.

As t → 0 the lengths of the S1 orbits tends to 0.
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The choice of v1 singles out a complex structure R4 = C2. Blow
up the origin to get Ĉ2, with a sphere E of self-intersection −1.
We have a metric on Ĉ2 \ E .

This does not quite extend to a smooth metric on Ĉ2 because it
has a cone angle 4π transverse to E .

Let X be the quotient of Ĉ2 by the involution induced by
z 7→ −z on R4.

We get a smooth metric gX —the Eguchi-Hanson metric—on X .
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For another point of view, we can see X as the cotangent
bundle of the 2-sphere and consider the action of
SO(3) = SU(2)/ ± 1. The zero section is a sphere S of
self-intersection −2.
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Fix a base point x0 ∈ X and consider the scaled metrics λ2gX

with λ → 0.

In the scaled metrics the area of S is O(λ2).

The based Gromov-Hausdorff limit of (X , λ2gX , x0) is R4/ ± 1,
which is the cone over S3/ ± 1.
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Going back to the general theory, it is known that (for
non-collapsed limits with bounded Ricci curvature)
Σn−1, Σn−2, Σn−3 are empty.

(This is a difficult theorem of Cheeger and Naber: in the Kähler
case the proof is much easier.)

So the first situation to consider is that of “codimension 4”
singularities, with tangent cone Rn−4 × W ′.

The 4-dimensional factor W ′ is the cone over a smooth
Riemannian 3-manifold V with constant Ricci curvature. In
dimension 3 this implies constant curvature, so V = S3/Γ for
some finite subgroup Γ ⊂ SO(4), acting freely on S3.
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Consider dimension n = 4 for simplicity.

There are abundant examples of sequences of 4-manifolds with
bounded Ricci curvature converging to a limit with point
singularities of this form.

The manifolds contain regions where the metric is
well-approximated by λ2gX for small λ.
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Example A smooth complex surface in CP3 of degree ≥ 3 has
a Kähler-Einstein metric (Ricci = λg), unique up to scale.

Let S be a surface of degree ≥ 3 with one ordinary double point
singularity, defined by an equation P = 0.

For generic p the surfaces St defined by equations P + tp = 0
are smooth, for small t ∈ C, and the limit of their
Kähler-Einstein metrics as t → 0 has a singular point with
tangent cone C2/ ± 1.
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Collapsing limits are more complicated.

Rough sketch of an example (Hein, Sun, Viaclovsky, Zhang
2021)

See also the article of Song Sun in Notices Amer. Math. Soc.
March 2022.

Let V1, V2 be generic quadric surfaces in CP3 defined by
polynomials Q1, Q2. Fix a generic polynomial p of degree 4;
then the surface St defined by the equation Q1Q2 + tp = 0 are
smooth for small t . They have Kähler-Einstein metrics with
Ricci = 0.

How do these metrics behave as t → 0?

Simon Donaldson Introduction to Riemannian convergence theory



V1 ∩ V2 is a curve of genus 1, a 2-torus T , which has a flat
metric. The self-intersection number of T in Vi is 8.

The complements Vi \ T have complete “Tian-Yau”metrics with
Ricci = 0.

The “end” of Vi \ T is topologically (0,∞) × N, where N is an
S1 bundle over T of Chern class 8.

Taking account of orientations, these ends do not match up in
the obvious way.

That would require gluing a bundle of Chern class 8 to one of
Chern class −8
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If the metrics on St are normalised to have diameter 1 the
Gromov-Hausdorff limit is the interval [0, 1].
A suitable choice of base points and scale factors gives a
based, scaled limit V1 \ T with the Tian-Yau metric. Similarly for
V2 \ T .
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The end of V1 \ T has the following asymptotic metric model.
Let gEuc be the flat Euclidean metric on (0,∞) × T . Take
coordinates s on (0,∞) and x1, x2 on T .
Let π : P → (0,∞) × T be a circle bundle with Chern class 8 on
T and let α be a connection 1-form on P with curvature a
constant multiple of dx1dx2.
The metric model (for s >> 0 of the end is

sπ∗gEuc + s−1α2

(for large s).

For each fixed s we have one the nilmanifold metrics we
considered in Section 4: as s increases the T factor expands
while the circle fibres shrink.
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There are 16 special regions in the neck (topologically 4-balls),
where the model is the “Taub-NUT” metric.

The Taub-NUT metric has an S1-action with a fixed point. This
provides a mechanism which allows matching of the two ends.
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