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Chapter 1

Holomorphic functions

1.1 Simple examples; algebraic functions

This is an introductory Chapter in which we recall some examples of holo-
morphic functions in complex analysis. We emphasise the idea of “analytic
continuation” which is a fundamental motivation for Riemann surface theory.

One naturally encounters holomorphic functions in various ways. One
way is through power series, say f(z) =

∑
anz

n. It often happens that a
function which is initially defined on some open set U ⊂ C turns out to have
natural extensions to larger open sets. for example the power series

f(z) = 1 + z + z2 + z3 + . . .

converges only for |z| < 1, but writing f(z) = 1/(1 − z) we see that the
function actually extends to C \ {1}. A more subtle example is the Gamma
function. For <(z) > 0 we write

Γ(z) =
∫ ∞

0
tz−1e−tdt.

The integral is convergent and defines a holomorphic function of z on this
half-plane. Integration by parts shows that

Γ(n) = (n− 1)!

if n is a positive integer. It is clear that Γ(z) tends to infinity as z tends to
0 but let us examine this more carefully by writing

Γ(z) =
∫ 1

0
tz−1e−tdt+

∫ ∞
1

tz−1e−tdt.

9



10 CHAPTER 1. HOLOMORPHIC FUNCTIONS

The second integral is defined for all z, and holomorphic in z. We write the
first integral as ∫ 1

0
tz−1(et − 1)dt+

∫ 1

0
tz−1dt.

Now the term ∫ 1

0
tz−1(et − 1)dt

is defined, and holomorphic in z, for <(z) > −1. The other integral we can
evaluate explicitly: ∫ 1

0
tz−1dt =

1

z
.

So we conclude that, for <(z) > 0,

Γ(z) =
1

z
+ Γ1(z)

say, where Γ1 extends to a holomorphic function on the larger half-plane
{z : <(z) > −1}. So Γ has a meromorphic extension to the larger half-plane.
Repeating the procedure, by considering

e−t − (1− t+
t2

2!
− t3

3!
+ . . .+

(−t)k
k!

),

we get a meromorphic extension to <(z) > −(k+1), and thence to the whole
of C.

Exercise. Show that Γ has a simple pole at the point z = −k for positive
integers k, with residue (−1)k/k!.

It often happens that when extending a function one encounters “multiple
valued functions”. For example

f(z) = 1 +
z

2
− z2

222!
+

3z3

233!
− 5.3z5

244!
+ . . . ,

is a perfectly good holomorphic function on the disc |z| < 1 which we recog-
nise as

√
1 + z. This cannot be extended holomorphicaly to z = −1 but,

more, if we try to extend the function to C \ {−1} we find that going once
around the origin the function switches to the other branch of the square
root. Particularly important examples of this phenomena occur for “alge-
braic functions”.
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Let P (z, w) be a polynomial in two complex variables. We want to think
of the equation P (z, w) = 0 as defining w “implicitly” as a function of z.
For example if P (z, w) = w2 − (1 + z) then we would get the function w =√

1 + z above. Or if P (z, w) = z3 + w2 − 1 we would get the function
w =

√
1− z3. Of course this does not make sense precisely because of the

problem of multiple values. The next theorem, which will be fundamental
later, expresses precisely the way in which such functions are defined.

First, some notation. Let X ⊂ C2 be the set of points (z, w) with
P (z, w) = 0. Second, we define the partial derivatives

∂P

∂z
,
∂P

∂w
,

in the obvious way. They are again polynomial functions of the two variables
z, w.

Theorem 1 Suppose (z0, w0) is a point in X and ∂P
∂w

does not vanish at
(z0, w0). Then there is a disc D1 centred at z0 in C and a disc D2 centred at
w0 and a holomorphic map φ : D1 → D2 with φ(z0) = w0 such that

X ∩ (D1 ×D2) = {(z, φ(z)) : z ∈ D1}.
The reader will recognise the set in the statement as the “graph” of the

map φ. Essentially the theorem says that w = φ(z) gives the unique local
solution to the equation P (z, w) = 0, where local means close to (z0, w0).

To prove the Theorem, recall that if f is a holomorphic function on an
open set containing the closure of a disc D which does not vanish on the
boundary ∂D then the number of solutions of the equation f(w) = 0 in D,
counted with multiplicity, is given by the contour integral

1

2πi

∫
∂D

f ′(w)

f(w)
dw.

If there is only one solution, w1, it is given by another contour integral

w1 =
1

2πi

∫
∂D

wf ′(w)

f(w)
dw.

We apply these formulae to the family of functions of the variable w: fz(w) =
P (z, w), where we regard z as a parameter. First take z = z0. Then the
hypothesis that ∂P

∂w
6= 0 means that f ′z0 does not vanish at w0. Thus we can
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find a small disc D2 centred at w0 so that fz0 has no other zeros in the closure
of D2. Since the boundary of D2 is compact there is some δ > 0 such that
|fz0 | > 2δ on ∂D2. By continuity, this means that if z is sufficiently close to
z0 we still have |fz| > δ, say, on ∂D2. Thus we can apply the formula above
for the number of roots of the equation fz(w) = 0. When z = z0 this must
be 1 so, by continuity, the same is true for z close to z0. Then we define φ(z)
to be this unique root. The second formula shows that

φ(z) =
∫
∂D2

w

P

∂P

∂w
dw,

which is clearly holomorphic in the variable z. This completes the proof.

1.2 Analytic continuation; differential equa-

tions

Next we want to give a precise meaning to possibly many-valued extensions
of a holomorphic function.

Definition 1 Let φ be a holomorphic function defined on a neighbourhood
of a point z0 ∈ C. Let γ : [0, 1] → C be a continuous map with γ(0) = z0.
An analytic continuation of φ along γ consists of a family of holomorphic
functions φt, for t ∈ [0, 1], where φt is defined on a neighbourhood Ut of γ(t)
such that

• φ0 = φ on some neighbourhood of z0;

• for each t0 ∈ [0, 1] there is a δt0 > 0 such that if |t− t0| < δt0 the func-
tions φt and φt0 are equal on their their common domain of definition
Ut ∩ Ut0.

For example suppose z0 = 0 and φ is the function defined by the power
series above, giving a branch of

√
1 + z. Let γ be the path which traces out

the circle centred at −1
γ(t) = −1 + e2πit.

The the reader will see how to construct an analytic continuation of φ along
this path with φ1 equal to the other branch of the square root,

φ1 = −φ,
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on a suitable neighbourhood of 0.
Alongside the algebraic equations discussed above, another very impor-

tant way in which holomorphic functions arise is as solutions to differential
equations. Of course the simplest example here is the differential equation

du

dz
= g,

where g is a given function, whose solution is the indefinite integral of g and
is given by a contour integral. We know that we may again encounter many
valued functions, for example when g is the function 1/z. In our current
language, the contour integral along a (smooth) path γ furnishes an analytic
continuation of a local solution along γ.

We will consider second order linear, homogeneous equations of the form;

u′′ + Pu′ +Qu = 0,

where P and Q are given functions of z and u is to be found. Suppose
first that P and Q are holomorphic near z = 0. So they have power series
expansions

P (z) =
∑

pnz
n , Q(z) =

∑
qnz

n,

valid in some common region |z| < R. We seek a solution to the equation in
the form u(z) =

∑
unz

n. Equating terms we get, for each n ≥ 0,

(n+ 2)(n+ 1)un+2 +
∑
i≥0

(n+ 1− i)piun+1−i +
∑
j≥0

qjun−j = 0.

Both the sums are finite and only contain terms ui for i < n+2, so this gives
recursion formula. Given any choice of u0, u1 there is a unique way to define
all the ui satisfying the equations.

Exercise Show that the power series
∑
unz

n converges for |z| < R.
We conclude that the solutions of our equation on the disc |z| < R form

a 2-dimensional complex vector space.
Now suppose that P,Q are holomorphic on some open set Ω ⊂ C and let

γ : [0, 1]→ Ω be a path in Ω.

Proposition 1 If u is a solution to the equation (*) on a neighbourhood of
γ(0) then u has an analytic continuation along γ, through solutions of the
equation
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We leave the proof as an exercise. (In fact one can generalise the result
to the case when P,Q are themselves defined initially in a neighbourhood of
γ(0) and have analytic continuations along γ.)

This leads to the notion of the “monodromy” of solutions to a differential
equation. Suppose γ is a loop in Ω, with γ(0) = γ(1). Let u1, u2 be a basis for
the solutions of the differential equation on a small neighbourhood of γ(0).
Analytic continuation of u1, u2 along γ yields another pair of solutionsũ1, ũ2

say. these are linear combinations of the original pair

ũ1 = au1 + bu2, ũ2 = cu1 + du2.

In more invariant language, let V be the two dimensional vector space of
local solutions, then analytic continuation along γ gives a linear map

Mγ : V → V.

Interesting examples arise when the complement of Ω is a discrete subset
of C and P,Q are meromorphic.

Definition 2 A point z0 ∈ C is a regular singular point of the equation
u′′ + Pu′ +Qu = 0 if P has at worst a simple pole at z0 and Q has at worst
a double pole.

Consider a model case,

u′′ +
A

z
u′ +

B

z2
u = 0,

where A,B are complex constants. We try a solution u = zα defined on a
cut plane, say. This satisfies the equation if

α(α− 1) + Aα +B = 0.

If this quadratic equation (the indicial equation) has two distinct roots α1, α2

we get two solutions to our equation zα1 , zα2 in the cut plane. If there is a
double root α, the second solution is zα log z. The general case is similar

Proposition 2 If P (z) = A
z

+ P0(z) and Q(z) = B
z2 + C

z
+ Q0(z) where

P0, Q0 are holomorphic near 0 and if the indicial equation has roots α1, α2

with α1 − α2 /∈ Z then there are solutions

u1(z) = zα1w1(z) , u2(z) = zα2w2(z),

to the equation u′′ + Pu′ +Qu = 0 where w1, w2 are holomorphic in a neigh-
bourhood of 0.



1.2. ANALYTIC CONTINUATION; DIFFERENTIAL EQUATIONS 15

The proof goes by power series expansion, as before. If α1 − α2 ∈ Z the
second solution may involve log terms. Expressed in terms of monodromy, if
z0 is a regular single point of the equation u′′ + Pu′ +Q = 0 and γ is a loop
around z0 then in the case when α1−α2 /∈ Z the monodromy around γ is (in
a suitable basis) the diagonal matrix with entries e2πiα1 , e2πiα2 . In the other
case we may get a nontrivial Jordan form.

A very important example, which we will return to later, is the hyperge-
ometric equation:

z(1− z)u′′ + (c− (a+ b+ 1)z)u′ − abu = 0,

which has regular singular points at 0, 1. (It also has a regular single point
“at infinity” as we will explain later.) Here a, b, c are fixed parameters.

Exercise Show that the indicial equation at z = 0 has roots 0, c and that
the solution corresponding to the root 0 is the hypergeometric function

F (z) = 1 +
ab

c
z+

a(a+ 1)b(b+ 1)

c(c+ 1)2!
z2 +

a(a+ 1)a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)3!
z3 + . . . ,

in |z| < 1.
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Chapter 2

Surface Topology

2.1 Classification of surfaces

In this second introductory chapter we change direction completely. We
discuss the topological classification of surfaces, and outline one approach
to a proof. Our treatment here is almost entirely informal; we do not even
define precisely what we mean by a “surface”. (Definitions will be found in
the following Chapter.) However it is not in fact too hard to turn our informal
account into a precise proof. The reasons for including this material here are,
first, that it gives a counterweight to the previous chapter: the two together
illustrating two themes—complex analysis and topology—which run through
the subject of Riemann surfaces; and, second, that we are able to introduce
some more advanced ideas that will be taken up later in the book.

The statement of the clasification of closed surfaces is probably well-
known to many readers. We write down two families of surfaces Σg,Ξh for
integers g ≥ 0, h ≥ 1.

The surface Σ0 is the 2-sphere S2. The surface Σ1 is the 2-torus T 2. For
g ≥ 2 we define the surface Σg by taking the “connected sum” of g copies
of the torus. In general if X and Y are (connected) surfaces the connected
sum X]Y is a surface constructed as follows. We choose small discs DX in X
and DY in Y and cut them out to get a pair of “surfaces-with-boundaries”,
coresponding to the circle boundaries of DX and DY . Then we glue these
boundary circles together to form X]Y . [DIAGRAM 1]

One can show that this resulting surface is (up to natural equivalence)

17



18 CHAPTER 2. SURFACE TOPOLOGY

independent of the choices of discs. Also the operation ] is commutative and
associative, up to natural equivalence. Now we define inductively, for g ≥ 2

Σg = Σg−1]Σ1 = Σg−1]T
2,

which we can write as

Σg = T 2] . . . ]T 2.

[DIAGRAM 2]
There are many other representations of these surfaces, topologically

equivalent. For example we can think of Σg as being obtained by delet-
ing 2g discs from the 2-sphere and adding g cylinders to form g “handles”.
Or we start with a disc and add g ribbons in the manner shown:

[DIAGRAM 3]
The boundary of the resulting surface-with-boundary is a circle and we

form Σg by attaching a disc to this boundary to get a closed surface (i.e. a
surface with no boundary).

The surface Ξ1 is the real projective plane RP 2. We can form it by
starting with a Mobius band and attaching a disc to the boundary circle.
We cannot do this within ordinary 3-dimensional space without introducing
self-intersections: more formally RP 2 cannot be embedded in R3. But we
can still perform the construction to make a topological space and if we like
we can think of embedding this in some Rn for larger n. Again there are
many other models possible. Notice that we can think of our Mobius band as
a disc with a twisted ribbon attached [DIAGRAM 4]. Then the construction
falls into the same pattern as our third representation of Σg.

Now we make the family of surfaces Ξh by taking connected sums of copies
of Ξ1 = RP 2:

Ξh = RP 2] . . . ]RP 2.

Now let S be any closed, connected, surface. (More precisely we mean
compact and without boundary, so for example R2 would not count as
closed.) We say S is orientable if it does not contain any Mobius band,
non-orientableif it does.

Classification Theorem
If S is orientable it is equivalent to one (and precisely one) of the Σg.
If S is not orientable it is equivalent to one (and precisely one) of the Ξh.
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(We emphasise again that this statement has quite a different status from
the other “Theorems” in this book, since we have not even defined the terms
precisely.)

To see an example of this, consider the “Klein bottle” K. This can be
pictured in R3 as shown in [DIAGRAM 5], except that there is a circle of
self-intersection. So we should think of pushing the handle of the surface into
a fourth dimension where it passes through the “side”, just as we can take a
curve in the plane as pictured in [DIAGRAM 6] and remove the intersection
point by lifting one branch into three dimensions.

Now it is true but perhaps not immediately obvious, that K is equivalent
to Ξ2. To see this cut the picture in Diagram 5 down the vertical plane of
symmetry. Then you can see that K is formed by gluing two Mobius bands
along their boundaries. By definition of the connected sum this shows that
K = RP 2]RP 2, since the complement of a disc in RP 2 is a Mobius band.

Now we will outline a proof of the classification theorem. The proof
uses ideas that (when developed in a rigorous way of course), go under the
name of “Morse Theory”. A detailed technical account is given in the book
Differential Topology by Hirsch. The idea is that, given our closed surface S,
we choose a typical real valued function on S. Here “typical” means, more
precisely, that f is what is called a Morse function. What this requires is that
if we introduce a choice of gradient vector field of f on S then there are only
a finite number of points Pi, called critical points, in S where v vanishes, and
near any of one of these points Pi we can parametrise the surface by two real
numbers u, v such that the function is given by one of three local models:

• u2 + v2 + constant.

• u2 − v2 + constant.

• −u2 − v2 + constant.

The critical point Pi is said to have index 0, 1 or 2 respectively in these three
cases.

For example if S is a typical surface in R3 we can take the function
f to be the restriction of the z co-ordinate (say): the “height” function
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on S. The vector field v is the projection of the unit vertical vector to
the tangent spaces of S and the critical points are the points where the
tangent space is horizontal. The points of index 0 and 2 are local minima and
maxima respectively and the critical points of index 1 are “saddle points”.
[DIAGRAM 8]

Now for each t ∈ R we can consider the subset St = {x ∈ S : f(x) ≤ t}.
There are a finite number of special cases, the “critical values” f(Pi) where
Pi is a critical point. If f is a sufficiently typical function then the values
f(Pi) will all be different, so to each critical value we can associate just one
critical point. If t is not a critical value then St is a surface with boundary.
Morover if t varies over an interval not containing any critical values then
the surfaces-with boundaries St are equivalent for different parameters t in
the interval. To see this, if t1 < t2 and [t1, t2] does not contain any critical
value then one deforms St2 into St1 by pushing down the gradient vector field
v. [DIAGRAM 9]

Now consider the exceptional case when t is a critical value, t0 say. The
set St0 is no longer a surface. However we can analyse the difference between
St+ε and St−ε for small positive ε. The crucial thing is that this analysis is
concentrated around the corresponding critical point, and the change is the
surface follws one of three standard local models, depending on the index.

Index 0 Near the critical point the St0±ε corresponds to {u2 + v2 ≤ ±ε}
which is empty in one case and a disc in the other case. In other words, St0+ε

is obtained from St0−ε by adding a disc as a new connected component.
Index 2 This is the reverse of the index 0 case. The surface St0+ε is formed

by attaching a disc to a boundary component of St0−ε.
index 1 This is a little more subtle. The local picture is to consider

{u2 − v2 ≤ ±ε},
as shown in [DIAGRAM 10]. This is equivalent to adding a strip to the
boundary [DIAGRAM 11]. Thus St0+ε is formed by adding a strip to the
boundary of St0−ε.

We can now see a stratgy to prove the Classification Theorem. What
we should do is to prove a more general theorem, classifying surfaces with
boundary (not necessarily connected, and including the case of empty bound-
ary). Suppose we have any class of model surfaces with boundary which is
closed under the three operations associated to index 0,1,2 critical points
explained above. Then it follows that our original closed surface S must lie
in this class, since it is obtained by a sequence of these operations.
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For r ≥ 0 let Σg,r be the surface with boundary (possibly empty) obtained
by removing r disjoint discs from Σg. Similarly for Ξh,r. Now we aim to
prove that the class of disjoint unions of copies of the Σg,r and Ξh,r (for any
collection of g’s h’s and r’s) is closed under the three operations above. That
is if X is in our class (a disjoint union of copies of Σg,r and Ξh,r and we obtain
X ′ by performing of the operations then X ′ is also in our class. This does
require a little thought, and consideration of various cases.

Index 0 This is obvious, since Σ1,1 is the disc so we can include a new disc
component in our class.

Index 2 Also obvious. We cap off some boundary component with a disc
turning some Σg,r into a Σg,r−1 or a Ξh,r into a Ξh,r−1.

Index 1 This requires more work. There are various cases to consider.
Case 1. The ends of the attaching strip lie on different components of X.
Case 2. The ends of the attaching strip lie on the same component of X.
Now Case 2 subdivides into
Case 2(i) The ends of the strip lie on the same boundary component of a

component of X.
Case 2(ii) The ends of the strip lie on the different boundary components

of one common component of X.
Further, each of these cases 2(i), 2(ii) subdivide because there are two

ways we can make the attaching, diferring by a twist, in just the same fashion
as when we form a Mobius band from a disc above. (The reader may like to
think through why we do not need to make this distinction in Case 1.)

Now let us get to work.
Case 1. Let the relevant components of X be A and B say. Then we can

write A = A′ \ disc, B = B′ \ disc for some A′, B′ and \ disc means that the
operation of removing a disc, so of course the boundaries of the indicated
discs contain the attaching regions. Then we can see that the manifold we
get when we attach a strip is (A′]B′) \ disc. [DIAGRAM 12].

Case 2(i). Let the component of X to which we attach the strip be
A = A′ \disc. Then in the untwisted case we get, after the strip attachment,
A′ \ disc \ disc. [DIAGRAM 13]

In the twisted case we get (A′]RP 2) \ disc. [DIAGRAM 14]
Case 2(ii). Here the distinction between the “twisted” and “untwisted”

attachments are more subtle.Suppose again that the component of X where
we attach the disc has the form A = A′ \ disc \ disc with the two indicated
discs corresponding to the attaching regions. Choose a path Γ in A between
points in the two attaching regions. [DIAGRAM 15]. Then we will say the
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twisted case is when the union of the attached strip and a strip about Γ
in A form a Mobius band, and that the untwisted case is when the union
forms an ordinary band. Then a little thought shows that the operation takes
A′\disc\disc to A′]T 2\disc in the untwisted case and to A′]K in the twisted
case. However we have seen that K is equivalent to Ξ2 so we can write the
new surface as A′]RP 2]RP 2 \ disc.

At this point we have the proof of a result, although not quite the one we
want. Our agrument shows that any connected surface S is equivalent to a
connected sum Σg]Ξh.

This holds because the class of disjoint unions of surfaces with boundary
of the form Σg]Ξh \ r discs is closed under the operations above.

To complete the proof of the classification Theorem stated we need
Lemma The surfaces T 2]RP 2 and RP 2]RP 2]RP 2 are equivalent.

Given this we see that if h > 1 the surface Σg]Ξh is equivalent to Ξh+2g

so the the result we obtained above implies the stronger form.

To prove the Lemma it suffices to show that K]RP 2 is equivalent to
T 2]RP 2 since we know that K is equivalent to RP 2]RP 2. Now RP 2 \ disc
and T 2 \ disc are pictures together in [DIAGRAM 16] From this one can see
easily that (T 2]RP 2) \ disc is pictured in [DIAGRAM 17].

Similarly a little thought shows that K \ disc is as in [DIAGRAM 18].
(That is, it is similar to the torus case but with one strip twisted.) So
(K]RP 2) \ disc is pictured in [DIAGRAM 19].

We can deform this picture into the other by sliding handles around the
boundary as shown in [DIAGRAMS 20, 21]. When we attach the disc this
gives an equivalence between K]RP 2 into T 2]RP 2 as desired

2.2 Discussion: the mapping class group

This topological classification of surfaces has been known for many years and,
while our discussion above is completely informal, a fully rigorous proof is
not really difficult by modern standards. From this one might be tempted
to think that the subject of surface topology is a closed, fully understood,
area. One might be further tempted to think that the analogous classification
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problem in higher dimensions—the topological classification of manifolds—
should not be too much harder. However the second of these notions is
certainly false and the first is false if one broadens the conception of surface
topology slightly. Moreover these two issues are tightly connected as we will
now explain.

Suppose one tries to implement the same strategy to classify 3-dimensional
manifolds. Then it is not hard to show that any close 3-manifold can be
built up from standard pieces in a similar fashion to what we have discussed
above. More precisely, any closed 3-manifold has a Heegard decomposition.
This is defined as follows. Take the standard picture of the surface Σg in
R3 and let Ng be the 3-dimensional region enclosed by the surface. So Ng

is a 3-manifold with boundary Σg. Now let N ′g be another copy of Ng with
boundary Σ′g; another copy of Σg. Let φ : Σg → Σ′g be a homeomorphism.
Then we can obtain a 3-manifold Mφ by gluing Ng to N ′g along their bound-
aries by φ. More precisely we define Mφ to be the quotient of the disjoint
union Ng ∪N ′g by the equivalence relation which identifies x ∈ Σg ⊂ Ng with
φ(x) ∈ Σ′g ⊂ N ′g. Then a Heegard decomposition of a 3-manifold M is a
homeomorphism M ∼= Mφ for some φ, and , as we have said, any M arises
in this way, determined up to equivalence by a φ. Of course if we fix some
standard identification between Σg and Σ′g as a reference then we can regard
φ as a self-homeomorphism from Σg to itself.

Now the point is that the apparent simplicity of this description of 3-
manifolds is illusory, because the set of self-homeomorphisms of a surface Σg

is enormously complicated (at least once g ≥ 2). These self-homeomorphisms
obviously form a group and there is a natural notion of equivalence (isotopy)
such that the set of equivalence classes of self-homeomorphisms modulo iso-
topy forms a countable discrete group Γg called the “mapping class group” of
genus g. The complication which we refer to really resides in the complexity
of this group. Looking back at the clasification of surfaces from this perspec-
tive we can see that what made the argument run so smoothly in that case
is that the analogous group associated to the 1-dimensional manifold—the
circle– is very simple. The group of self-homeomorphisms of the circle mod-
ulo isotopy has just two elements, realised by the identity and a reflection
map. This means that when we talked about “attaching a disc to a circle
boundary” say, the meaning was essentially unambiguous. (However there
is an issue lurking here because we do have two distinct ways of attaching
surfaces along circle boundaries, and we should really have kept track of
this throughout our discussion above. In the end it turns out that this does
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not matter, because it happens that for any surface with boundary there is
a self-homeomorphism of the surface inducing the non-trivial map on any
given boundary component. This was much the same issue as that which the
reader was invited to consider when attaching twisted or untwisted bands in
Case 1 above.)

Expressing our main point in another way: the complexity of surface
topology arises not from the relatively easy fact that any orientable surface S
is equivalent to some Σg but from the fact that there is a vast set of essentially
different choices of equivalence between Σg and S, any two differing by an
element of the mapping class group.

To illustrate these remarks we introduce “Dehn twists”. Let S be an
orientabl surface and C ⊂ S be an embedded circle. Since S is orientable
there is a neighbourhood N of C which we can identify with a standard band
or cylinder S1 × [−1, 1]. We define a homeomorphism φ0 : S1 × [−1, 1] →
S1 × [−1, 1] as follows. Regard S1 as the unit circle in C and fix a function
f(t) on [−1, 1] which is equal to 0 for t ≤ −1/2 say and to 2π for t ≥ 1/2
say. Then set

φ0(eiθ, t) = (ei(θ+f(t)), t).

The choice of f means that φ0 is the identity near the boundary of the
cylinder. Now if we identify the cylinder with the neighboourhhod N in S
we can regard φ0 as a homeomorphism from N to N , equal to the identity
near the boundary. Define φ : S → S by

φ(x) = x if x /∈ N, φ(x) = φ0(x) if x ∈ N.
The fact that φ0 is the identity near the boundary means that φ is a homeo-
morphism from S to itself, the “Dehn twist” around C [DIAGRAM 22]. Of
course the construction depends on various particular choices: the function
f , the neighboorhood N and the identification of N with the cylinder, but
up to isotopy the map φ is independent of these choices and we get a well-
defined element of the mapping class group. We will see later that these Dehn
twists, and the mapping class group generally, arise naturally in questions of
complex analysis and geometry.



Part II

Basic Theory
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Chapter 3

Basic definitions

3.1 Riemann surfaces and holomorphic maps

Definition 3 A Riemann surface is given by the following data.

• A Hausdorff topological space X.

• A collection of open sets Uα ⊂ X, where α ranges over some index set,
which cover X (i.e. X =

⋃
α Uα).

• For each α a homeomorphism

ψα : Uα → Ũα,

where Ũα is an open set in C with the property that for all α, β the
composite map ψα ◦ ψ−1

β is HOLOMORPHIC on its domain of defini-
tion.

The maps ψα are referred to as “charts”, or “co-ordinate charts” or just
“local co-ordinates”, and the entire collection of data (Uα, Ũα, ψα) is called
an “atlas” of charts.

The reader who has never encountered this kind of notion before may find
the definition hard to digest, so a few remarks are in order.

First, we define ψ−1
β to be the obvious homeomorphism from Ũβ to Uβ so

ψα ◦ ψ−1
β is well defined as a map

ψα ◦ ψ−1
β : Vα,β → Vβ,α

27
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where Vα,β = ψβ(Uα ∩ Uβ) and Vβ,α = ψα(Uα ∩ Uβ). Since Vα,β and Vβ,α are
open sets in C the notion of a holomorphic map, as specified in the definition,
makes sense. Notice that, interchanging α and β, it is a consequence of
the definition that ψα ◦ ψ−1

β is a homeomorphism from Vα,β to Vβ,α with a
holomorphic inverse.

The second remark is that in practice, when working with Riemann sur-
faces, one rarely sees this bulky collection of data explicitly. Suppose we have
a point p in X. This lies in at least one Uα, so we choose one. The map ψα is
just a complex-valued function defined on a neighbourhhod of p, and we will
normally denote this by a symbol such as z. Then in making calculations
near to p we label points by the corresponding value of the variable z in C,
so we are effectively working in the traditional notation of complex analysis.
On the other hand we might have chosen a different co-ordinate chart, ψβ,
which we might call w. Thus the map ψα ◦ ψ−1

β expresses, in more classical
notation, z as a holomorphic function of w. The key feature of Riemann
surface theory is that we have to study the behaviour of our calculations and
constructions under such a holomorphic change of variable to obtain results
which are independent of the choice of co-ordinate chart.

The third remark has more mathematical content. The main ideas em-
bodied in the definition are not specific to the particular case at hand. If we
take the same definition but replace the word HOLOMORPHIC by another
appropriate condition (****) on maps between open sets in C then we get
a definition of another kind of mathematical object. The main instances we
need are

• Taking (****) to be SMOOTH we get the definition of a smooth surface.
Here a smooth map between open sets in C is one which is differentiable
infinitely often (C∞) in the sense of two real variables, identifying C
with R2.

• Taking (****) to be SMOOTH WITH POSITIVE JACOBIAN we get
the definition of an oriented smooth surface. Here the Jacobian is, as
usual, the determinant of 2 × 2 matrix of first derivatives of the map.

But there are many other interesting possibilities. For example, we could take
(****) to be SMOOTH WITH JACOBIAN 1, to get the notion of a “surface
with an area form”. More generally, there is no need to restrict to two real
dimensions. If we modify our definition to allow Ũα to be open sets in Rn

(for fixed n) and if we fix a suitable condition on maps between open sets in
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Rn we get the definition of a corresponding class of n-dimensional manifolds.
Taking smooth maps, we get the notion of a n-dimensional smooth manifold.
So a smooth surface is the same as a 2-dimensional smooth manifold. Slightly
more sophisticated, if n = 2m and we identify R2m with Cm we may consider
the condition that a map between open sets in Cm be holomorphic in the sense
of several complex variables. Then we get the notion of an m-dimensional
complex manifold. So a Riemann surface is the same thing as a 1-dimensional
complex manifold.

Exercise 1. Show that a Riemann surface is naturally an oriented
smooth surface.

Exercise 2. Suppose F = F (x, y, z) is a smooth function on R3 with
F (0, 0, 0) = 0 and that the partial derivative Fz = ∂F

∂z
does not vanish at

(0, 0, 0). Then one can show that there is a smooth function f(x, y), defined
on a disc D = {(x, y) ∈ R2 : x2 + y2 < r2} and taking values in an interval
I = (−ε, ε) ⊂ R, such that the intersection of F−1(0) with the cylinder D×I
is the graph of f . (This result is analogous to Theorem 1, and is another
instance of the implicit function theorem.) Using this, prove the following
result. Let F be a smooth function on R3 and S = F−1(0). Suppose that
at each point of X at least one of the partial derivatives Fx, Fy, Fz does not
vanish. Then X is naturally an oriented smooth surface.

Carrying on with the theory, we consider maps between Riemann surfaces.

Definition 4 Let X be a Riemann surface with an atlas (Uα, Ũα, ψα) and let
Y be another Riemann surface with atlas (Vi, Ṽi, φi). A map f : X → Y is
called holomorphic if for each α and i the composite φi◦f◦ψ−1

α is holomorphic
on its domain of definition.

Here φi ◦ f ◦ ψ−1
α is a map from ψα(Uα ∩ f−1(Vi)) to Ṽi; these are open

sets in C so the condition of being holomorphic is the usual one of complex
analysis.

Again, this definition has obvious variants which we will not spell out in
detail. For example we get the definition of a smooth map between smooth
surfaces, a smooth function on a smooth surface, a smooth map from R to
a surface etc.

Now of course we say that two Riemann surfaces X and Y are equivalent
if there is a holomorphic bijection f : X → Y with holomorphic inverse. We
will often treat equivalent Riemann surfaces as identical. For example this
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allows us to remove the dependence of the definition of a Riemann surface on
the particular choice of atlas. If we have one atlas (Uα, Ũα, ψα) we can always
concoct another one, for example by adding in some extra charts. Strictly,
according to our definition, this gives a different Riemann surface, with same
underlying set X. However the surfaces that arise are all equivalent, since
the identity map gives a holomorphic equivalence between them.

3.2 Examples

3.2.1

First, any open set in C is naturally a Riemann surface. Familiar examples
are the unit disc D = {z : |z| < 1} and the upper half-plane H = {w ∈
C : Im(w) > 0}. These Riemann surfaces are equivalent, via the well known
map

z =
w − i
w + i

.

Next we consider the Riemann sphere S2. As a set this is C with one
extra point∞. The topology is that of the “one point compactification”: i.e.
open sets in S2 are either open sets in C or unions

{∞} ∪ (C \K)

where K is a compact subset of C. Alternatively (as our notation has already
suggested), we can define the topology by an obvious identification of C∪{∞}
with the unit sphere in R3. We make S2 into a Riemann surface with an
atlas of two charts:

U0 = {z ∈ C : |z| < 2} , U1 = {z ∈ C : |z| > 1/2} ∪ {∞}.

We take Ũ0 = Ũ1 = U0 and we let ψ0 : U0 → Ũ0 be the identity map. We
define ψ1 by ψ1(∞) = 0 and ψ1(z) = 1/z for z ∈ C, |z| > 1/2. Then the
maps ψ0 ◦ ψ−1

1 and ψ1 ◦ ψ−1
0 are each the map z 7→ 1/z from the annulus

{z1/2 < |z| < 2} to itself, so these are both holomorphic and the condition
of the definition is realised.

This example is perhaps confusing in its simplicity but we have spelled it
out in detail to illustrate how the definition works. Notice that the Riemann
sphere is an example of a compact Riemann surface.
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3.2.2 Algebraic curves

. This is a much more extended example, in which we cover some important
theory. We begin with “affine curves”.

Let P (z, w) be a polynomial in two complex variables. Define X, as a
topological space, to be the set of zeros of P in C2,

X = {(z, w) ∈ C2 : P (z, w) = 0}.

Let us suppose that P has the following property. For each point (z0, w0) of
X, at least one of the partial derivatives Pz, Pw does not vanish. Then we
can make X into a Riemann surface in the following way. Suppose (z0, w0)
is a point of X where Pw does not vanish. Then according to Theorem 1 we
can find small discs D1, D2 and a holomorphic map f : D1 → D2 such that
X ∩ (D1 × D2) is the graph of f—points of the form (z, f(z). We make a
co-ordinate chart with Uα = X ∩ (D1 ×D2), with Ũα = D1 and with ψα the
restriction of the projection from D1 ×D2 to D1. Symmetrically, if (z1, w1)
is a point of X where Pz does not vanish we can find discs B1, B2 say and
a holomorphic map g : B2 → B1 describing X ∩ (B1 × B2) as the set of
points of the form (g(w), w). Clearly then we can find a collection of charts,
either of the first kind or the second kind, which cover X. We have to check
that the “overlap maps” between the charts are holomorphic. Now between
charts of the first kind the overlap map will be the identity map on a suitable
intersection of discs in C. Likewise for the two charts of the second kind.
Between a chart of the first kind, say Uα, Ũα, ψα as above, and a chart of the
second kind, the overlap map will be given by the composite

z 7→ (z, f(z)) 7→ f(z),

i.e. by the holomorphic map f .

The preceding discussion is crucial in understanding the historical roots
and the significance of the notion of a Riemann surface. Our Theorem 1
made precise the idea of an algebraic function, defined locally, and leads to
the question of understanding how the different local pictures fit together.
Now we can say, roughly speaking that this is encoded in the topology of the
Riemann surface X ⊂ C which is described locally by the branches of the
algebraic function.
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The addition of the point at infinity turns the non-compact Riemann
surface C into the compact Riemann sphere. We extend this idea to the
algebraic curves considered above, defining projective curves.

Recall that complex projective space CPn is the quotient of Cn+1\{0} by
the equivalence relation which identifies vectors v, λv in Cn+1 \{0} for any λ
in C \ {0}. A point in CPn can be represented by homogeneous coordinates
[Z0, . . . , Zn], with the understanding that [λZ0, . . . , λZn] represents the same
point.

Exercise Prove that CPn is compact, in its natural topology.

Let U0 be the subset of CPn consisting of points with the co-ordinate
Z0 6= 0. Since, in this case,

[Z0, Z1, . . . , Zn] = [1, Z1/Z0, . . . , Zn/Z0],

we can identify U0 with Cn. That is, a point (z1, . . . , zn) in Cn is identified
with the point [1, z1, . . . , zn] in CPn. The complement of U0 in CPn is a copy
of CPn−1, the “hyperplane at infinity”. For example when n = 1 , CPn−1

is a single point so CP1 = C ∪ {∞} and CP1 can be canonically identified
with Riemann sphere. For general n and any i ≤ n we can define a subset
Ui ⊂ CPn as the set of points where the co-ordinate Zi does not vanish.
Then

CPn = U0 ∪ U1 . . . ∪ Un
and each Ui is a copy of Cn. When making calculations around a point in
CPn we can always choose a Ui containing that point, and then perform
our calculations in Cn. (In fact, CPn is an n-dimensional complex manifold,
with charts furnished by the Ui, although we will not make explicit use of
this notion.)

Now let p be a homogeneous polynomial in the variables Z0, . . . , Zn. This
means that p can be written as

p(Z0, . . . , Zn) =
∑

i0,...,in

ai0...inZ
i0
0 . . . Z in

n ,

where for each term in the sum i0 + . . . in = d for some fixed integer d,
the degree of p. Equivalently

p(λZ0, . . . , λZn) = λdp(Z0, . . . Zn).
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Thus the equation p(Z0, . . . , Zn) = 0 defines a subset of CPn in the obvious
way. For example, if p is the polynomial p(Z0, Zn) = Z0 then this zero-set
would just be the hyperplane at infinity considered above. (More generally,
if p has degree 1 then the zero set is a copy of CPn−1 in CPn.) The upshot
of this is that if we have a collection of homogeneous polynomials p1, pr (of
any degrees d1, . . . , dr) then we define a subset V of CPn as the intersection
of the zero sets of the pi. Such a set in CPn is called a projective algebraic
variety, and their study is the field of projective algebraic geometry. Notice
that V is compact, as a closed subset of the compact space CPn.

To make things more concrete, we will now suppose that n = 2 and
consider a single homogeneous polynomial p(Z0, Z1, Z2) of degree d. We
denote its zero set in CP2 by X. Let P be the corresponding inhomogeneous
polynomial in two variables z, w:

P (z, w) = p(1, z, w).

By definition, the intersection of X with U0 = C2 is the zero set X of P that
we considered before: an affine algebraic curve. Thus

X = X ∪ (X ∩ L∞),

where L∞ = CP2 \ U0 is the line at infinity. There is an exceptional case
when P is the polynomial Zd

0 , in which case X is empty (since P (z, w) = 1)
and X = L∞, but otherwise X ∩ L∞ will be a finite set of points and X is a
compactification of X obtained by adjoining this finite set.

Now suppose that the polynomial P (z, w) obtained from p satisfies the
condition of the previous subsection: that Pz, Pw do not both vanish at any
point of X. Then we have made X into a Riemann surface. We can repeat
the discussion, replacing Z0 by Z1 and Z2. If the partial derivatives of the
corresponding inhomogeneous polynomials satisfy the relevant non-vanishing
conditions then we make X ∩ U1 and X ∩ U2 into Riemann surfaces. It is
easy to check that the three Riemann surface structures are equivalent on
their common regions of definition X ∩ Ui ∩ Uj, and thus we make X into a
compact Riemann surface.

Exercise. Show that if p(Z0, Z1, Z2) is a homogeneous polynomial of
degree d then

∂p

∂Z0

+
∂p

∂Z1

+
∂p

∂Z2

= dp.
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Use this to prove the following. If for each non-zero (Z0, Z1, Z2) where
p(Z0, Z1, Z2) = 0 at least one of ∂p

∂Zi
does not vanish then X is a Riemann

surface.
It is not hard to extend this discussion to Riemann surfaces obtained as

algebraic varieties in CPn for larger n, but we will not go through this here.

To see how this construction works, consider the polynomial

P (z, w) = z3 − zw2 + 10z2 + 3w + 16.

This has real co-efficients so, to aid our geometric intuition, we can consider
the corresponding real agebraic curve XR in R2, which we can sketch. It
takes some labour to work out an accurate picture of this, but one thing
we can read off easily is the asymptotic behaviour. Informally, when z, w
are large, the leading, cubic, terms in P should dominate the other terms,
so we expect that the curve has asymptotes given by the zeros of z3 − zw2.
Factorising this as

z3 − zw2 = z(z − w)(z + w),

we expect that the curve has asymptotic lines z = 0, z = ±w, and this
is indeed the case. Now consider the homogeneous polynomial of degree 3
corresponding to P :

p(Z0, Z1, Z2) = Z3
1 − Z1Z

2
2 + 10Z2

1Z0 + 3Z2Z
2
0 + 16Z3

0 .

This defines a subset X of CP2 as above and one can check that the condition
of the Exercise above is satisfied, so X is a Riemann surface. Now X meets
the line at infinity L∞ at the points [0, Z1, Z2] which satisfy P (0, Z1, Z2) = 0.
But

p(0, Z1, Z2) = Z3
1 − Z1Z

2
2 ,

So X ∩ L∞ consists of three points Z1 = 0, Z1 = ±Z2 which of course
correspond exactly to the asymptotic lines we saw in the affine picture. (One
can carry over the entire projective space construction to the case of real
co-efficients, getting a real projective curve XR ⊂ X, and in this case all
the points of X ∩ L∞ lie in XR and so were apparent as asymptotes of our
sketch of XR.)

What we see from this example–and which of course holds more generally–
is that the projective space construction gives us a systematic way to discuss
the asymptotic phenomena of affine curves.
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3.2.3 Quotients.

We begin with a very simple case. Consider 2πZ as an subgroup of C under
addition and form the quotient set C/2πZ. First, this has a standard quotient
topology in which it is clearly homeomorphic to a cylinder S1 ×R. Second,
we can make C/2πZ into a Riemann surface in a very simple way. For each
point z in C we consider the disc Dz centred on z and with radius 1/2.
Clearly if z1, z2 are two points in Dz and if

z1 = z2 + 2πn,

for n ∈ Z, then we must have n = 0 and z1 = z2. (Since 1/2 < π.) What this
means is that the projection map π : C → C/2πZ maps Dz bijectively to
the quotient space. We use this to construct a chart about π(z) ∈ C/2πZ,
taking U = π(Dz), Ũ = Dz and ψz the local inverse of π. Then we cover
C/2πZ by some collection of charts of this form. The overlap maps between
the charts will have the just have the shape

z 7→ z + 2πn,

for appropriate n ∈ Z, and these are certainly holomorphic. In fact the
Riemann surface C/2πZ that we construct this way is equivalent to C \ {0},
with the equivalence induced by the map z 7→ eiz.

Now let Λ be a lattice in C; that is a discrete additive subgroup. To be
concrete we can consider the lattice

Λ = Z⊕ Zλ,

where λ is some fixed complex number with positive imaginary part. We can
repeat the discussion above without essential change, all we need to do is to
choose the radius r of Dz so that

2r < minn,m|n+ λm|
where n,m run over the integers, not both zero. Since |n + λm| ≥ Im(λ) if
m 6= 0 and |n+ λm| ≥ 1 if m = 0 and n 6= 0, it suffices to take

2r < min(1, Im(λ)).

In this way we see that C/Λ is a Riemann surface, clearly homeomorphic to
the torus S1 × S1 and in particular compact.
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The construction of the Riemann surface structures in the examples above
is rather trivial, but we have gone through it at some length because precisely
the same ideas apply more generally. Suppose a group Γ acts on a Riemann
surface X by holomorphic automorphisms. Suppose that the following condi-
tion (*) holds. Around each point p of X we can find an open neighbourhood
N such that if q1, q2 ∈ N and g ∈ Γ with γ(q1) = q2 then we must have γ = 1
and q1 = q2. Then we can go through exactly the same construction to en-
dow the the quotient set X/Γ with a Riemann surface structure. Notice that
the condition considered above implies that Γ acts freely on X. Conversely
in many situations the freeness of the action will imply that this property
holds.

With this theory in place we can easily write down some examples which
lead to very interesting Riemann surfaces, very important in Number Theory.
Consider the upper half plane H. The holomorphic automorphisms of H are
given by Mobius maps

z 7→ az + b

cz + d
.

where a, b, c, d are real and ad− bc = 1. In other words

Aut(H) = PSL(2,R),

the quotient of the group SL(2, R) of 2 × 2 real matrices of determinant 1
by the subgroup {±1}. So if we have a suitable subgroup Γ ⊂ PSL(2,R)
we can construct a Riemann surface H/Γ. Fix an integer a > 1 and let Γ̃a
be the set of matrices M with integer entries, with determinant 1 and with
M = ±1 modulo a. Dividing by ±1 we get a subgroup Γa ⊂ PSL(2,R).

Exercise. Show that if a > 4 then Γa acts freely on H. Study the
stabilisers of points in H for a ≤ 4.

Exercise. Suppose that Γ is any subgroup of PSL(2,Z) ⊂ PSL(2,R)
(obvious definition). Show that if Γ acts freely on H then the condition (*)
above holds. Deduce that, for a > 4, H/Γa is a Riemann surface.



Chapter 4

Maps between Riemann
surfaces

4.1 General properties

The foundation for this Chapter is provided by two simple Lemmas from
complex analysis.

Lemma 1 Let f be a holomorphic function on an open neighbourhood U of
0 in C with f(0) = 0. Suppose that the derivative f ′(0) does not vanish.
Then there is another open neighbourhood U ′ ⊂ U of 0 such that f is a
homeomorphism from U ′ to its image f(U ′) ⊂ C and the inverse map is also
holomorphic.

The proof of this is very similar to that of Theorem 1. (The Lemma is
an instance of the general “inverse function theorem” while Theorem 1 is an
instance of the general “implicit function theorem”.) Thus we choose a small
disc Dε about 0 and use the fact that the number of roots of f(z) = w in Dε

is given by the contour integral∫
∂Dε

f ′(z)

f(z)− wdz,

provided there are no roots on the boundary ∂Dε. The argument then runs
parallel to that for Theorem 1 and we leave the details to the reader. (The
Lemma can be also be deduced from a slightly more general form of Theorem
1, where we take the function of two variables P (z, w) = f(z)− w. )

37
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Lemma 2 Let f be a holomorphic function on an open neighbourhood U of
0 in C with f(0) = 0, but with f not identically zero. There is a unique
integer k ≥ 1 such that on some smaller neighborhood U ′ of 0 we can find a
holomorphic function g with g′(0) 6= 0 and f(z) = g(z)k on U ′.

To see this we consider the power series expansion of f about 0 and let k
be the order of the first non-zero term:

f(z) = akz
k + ak+1z

k+1 + . . . , ak 6= 0.

Thus
f(z) = akz

k(1 + b1z + b2z
2 + . . .),

where bi = ak+i/ak. If z is sufficiently small there is a well-defined holomor-
phic function

h(z) = (1 + b1z + b2z
2 + . . .)1/k,

(more precisely, we need |∑ biz
i| < 1). Then f(z) = g(z)k where

g(z) = a
1/k
k zh(z),

taking any choice of the root a
1/k
k . The derivative of g at 0 is a

1/k
k , hence

nonzero, so we have established the existence asserted in the Lemma. Unique-
ness of k is also clear. Note that k = 1 if and only if f ′(0) 6= 0 and otherwise
k − 1 is the multiplicity of the zero of f ′ at z = 0.

These simple Lemmas yield a complete local description of holomorphic
maps between Riemann surfaces.

Proposition 3 Let X and Y be connected Riemann surfaces and F : X → Y
a non constant holomorphic map. For each point x in X there is a unique
integer k = kx ≥ 1 such that we can find charts around x in X and F (x)in
Y in which F is represented by the map z 7→ zk.

To spell out in more detail the statement, we mean that there are is a
chart (U, Ũ , ψ) about x ∈ X, with ψ(x) = 0 ∈ Ũ ⊂ C and a chart (V, Ṽ , φ)
about F (x) ∈ Y , with φ(F (x)) = 0 ∈ Ṽ ⊂ C such that the composite
φ ◦ F ◦ ψ−1 is equal to the map z 7→ zk on its domain of definition.

To prove the proposition, we begin by choosing arbitrary charts about
x and F (x). In these charts, F is represented by a holomorphic function,
which we denote by f . We apply Lemmalem:locmodel to write f as gk. Then
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the derivative of g at 0 does not vanish so we can can apply Lemma 1 to
see that, after restricting the domain of definition, g gives a holomorphic
homeomorphism with holomorphic inverse. Thus we can change the chart
about x by composing with g to get a new chart having the desired property.
Again the uniqueness of k = kx is clear.

To get a straightforward global theory it is natural to impose some condi-
tions on the holomorphic maps we wish to study. A good class to work with
is that of proper holomorphic maps. Recall that a map F : S → T between
topological spaces S, T is called proper if for any compact set K ⊂ T the
preimage f−1(K) is also compact. Note that if S itself is compact then any
map F is proper, since F−1(K) is a closed subset of S, hence compact.

Recall also that subset ∆ of topological space S is discrete if for any point
δ ∈ ∆ there is an neighbouhood U of δ in S such that ∆ ∩ U = {δ}.

Proposition 4 Let F : X → Y be a non-constant holomorphic map between
connected Riemann surfaces.

1. Let R ⊂ X be the set of points x where kx > 1, then R is a discrete
subset of X.

2. If F is proper then the image ∆ = F (R) is discrete in Y .

3. If F is proper then for any y in Y the pre-image f−1(y) is a finite
subset of X.

The first item follows from the fact that, in local charts, R is given by the
set of zeros of the derivative–using the standard fact that the zeros of a
nonconstant holomorphic function are discrete. The other two items are
straightforward exercises using the definition of properness.

Suppose, again, that F : X → Y is a proper, non constant holomorphic
map between Riemann surfaces, with Y connected. For each y ∈ Y we define
an integer d(y) by

d(y) =
∑

x∈F−1(y)

kx.

The sum runs over a finite set, by item (3) of the previous Proposition.
Notice that if y /∈ ∆ then d(y) is just the number of points in F−1(y), and in
general we will refer to d(y) as the number of points in f−1(y) counted with
multiplicity.
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Proposition 5 The integer d(y) does not depend on y ∈ Y .

First, observe that this is true in the special case when X = Y = C
and F is the map F (z) = zn for some n ≥ 1. The general case can be
reduced to this using the local description, in Proposition prop:chartmod, of
holomorphic maps. Fix y ∈ Y . We can find charts Ux ⊂ X about each point
x ∈ f−1(y) and a corresponding Vx ⊂ Y about y, with respect to which F is
expressed locally as z 7→ zkx . Let V be the intersection of the Vx; this is an
open neighbouhood of y in Y since there are only finitely many x′s. Using
the properness of F we can arrange that F−1(V ) is contained in the union
of the Ux’s. Thus for another point y′ ∈ V we can study the set F−1(y′)
using the local models. It follows from the special case we began with that
d(y′) = d(y). Thus d(y) is locally constant on Y and hence consntant, since
Y is connected.

The upshot of this is that we have defined an integer invariant, the degree,
of a proper holomorphic map between connected Riemann surfaces. This is
just the integer d(y) for any y in the target space. (In the special case of a
constant map we define the degree to be 0.) While we have defined this in
a holomorphic setting it is in fact essentially a topological invariant: see the
next Chapter.

While the proofs above are not difficult the results give us a striking
corollary. First some terminology. A meromorphic function F on a Riemann
surface is a holomorphic map to the Riemann sphere which is not identi-
cally equal to the ∞. In local charts this agrees with ordinary notion of a
meromorphic function, having a Laurent series

∞∑
i=−n

aiz
i.

The poles of F are just the points in F−1(∞) and if x is a pole its order is
the integer kx.

Corollary 1 Let X be a compact connected Riemann surface. If there is a
meromorphic function on X having exactly one pole, and that pole has order
1, then X is equivalent to the Riemann sphere.
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Let F : X → S2 be the given meromorphic function. It is proper, since
X is compact. The hypotheses imply that the degree of F is 1 (computing
using y = ∞). This means that for any y ∈ S2 there is exactly one point x
in f−1(y) (and kx = 1). Thus F is a bijection. The inverse map is continous
(since the image under F of a closed set in X is compact in S2 and hence
closed), so F is a homeomorphism. It also follows from Lemmalem:invmap
that the inverse map is holomorphic.

4.2 Monodromy and the Riemann Existence

Theorem

4.2.1 Digression in algebraic topology

To take our study further we recall some algebraic topology. Let F : P → Q
be a map between topological spaces.

Definition 5 F is a local homeomorphism if around each point x in P there
is an open neighbourhood U such that F |U is a homeomorphism to its image
in Q

Definition 6 F is a covering map if around each point y ∈ Q there is a
open neighbourhood V such that F−1(V ) is a disjoint union of open sets Uα
in P and F |Uα is a homeomoprhism from Uα to V .

Clearly a covering map is a local homeomorphism but the converse is not
true in general. (Exercise: give an example). However we have

Proposition 6 A proper local homeomorphism is a covering map.

In fact, a proper local homeomorphism is the same as a finite covering
map, where the number of points in f−1(y) is finite for each y ∈ Q.

We need to recall the relation between these notions and the fundamental
group. Let Q be a topological space and q0 ∈ Q a “base point”. The fun-
damental group π1(Q, q0) consists of homotopy classes of loops based at q0.
One often drops the base point from the notation. We give some examples
which will be important for us.

• If Q is C or the disc D then π(Q) is trivial.
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• If Q is the punctured plane C \ {0} then π1(Q) = Z.

• If Q is a multiply punctured plane C \ {z1, . . . , zn} then π1(Q) is the
free group on n generators.

• If Q is the torus T 2 then π(Q) = Z× Z.

• If Q is the standard compact surface of genus g then π1(Q) is a group
with 2g generators a1, b1, . . . ag, bg and a single relation

[a1, b1][a2, b2] . . . [ag, bg] = 1

where [a, b] denotes the commutator aba−1b−1.

The connection between the fundamental group and coverings is the fol-
lowing.

Proposition 7 Let Q be a connected and locally simply connected space and
q0 a base point in Q. There is a one-to-one correspondence between:

• Equivalence classes of coverings F : P → Q where P is connected.

• Conjugacy classes of subgroups of π1(Q, q0)

Some amplification. First, a space Q is “locally path connected” if any
point has a simply connected neighbourhood–but we can ignore this since
the property certainly holds for the Riemann surfaces we shall be concerned
with. Second, coverings F : P → Q and F ′ : P ′ → Q are equivalent
if there is a homeomorphism g : P → P ′ such that F = F ′ ◦ g. Third,
and most important, the correspondence is realised in the following way.
Any map F : P → Q induces a homomorphism of fundamental groups
F∗ : π1(P, p0) → π1(Q,F (p0)). The subgroup corresponding to a covering
F : P → Q is the image of F∗(π(P ), p0) → π1(Q, q0) for any choice of
p0 ∈ F−1(q0). Different choices of p0 change the subgroup by conjugation.

To construct the covering corresponding to a subgroup of π1(Q) we can
begin with the case of the trivial subgroup. The covering G : Q̃→ Q which
corresponds to this is characterised by the property that π1(Q̃) is trivial. As
a set, we define Q̃ to be the pairs (q, A) where q is a point in Q and A is
a homotopy class of paths in Q from q0 to q. Then we define G(q, A) = q.
We refer to standard text books for the details of how to put a topology on
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Q̃ such that G is a covering map. We also have an action of π1(Q, q0) on T̃
given by concatenating a path with a loop based at q0, and

Q = Q̃/π1(Q, q0).

Granted this, for any subgroup H ⊂ π1(Q, q0) we define the associated cov-
ering space SH to be Q̃/H. We then have a factorisation of the universal
covering as

T̃ → SH = T̃ /H → T = T̃ /π1(T, t0).

The basic idea required in the proofs of the assertions above is that of
lifting of paths, and homotopies of paths. Let F : P → Q be any map and
γ : [0, 1] → Q a path. Given a pont p0 ∈ P with F (p0) = γ(0), a lift of γ
starting at p0 is just a path γ̃ : [0, 1]→ P with F ◦ γ̃ = γ and γ̃(0) = p0.

Proposition 8 1. If F : P → Q is a local homeomorphism then a path
lift (with a given initial point) is unique, if it exists. If F is a covering
map then path lifts (with a given initial point) always exist.

2. If F : P → Q is a local homeomorphism and γ0, γ1 are paths in Q
with the same endpoints which are homotopic (rel. end points) through
liftable paths, with lifts γ̃s having the same initial point in P . Then
γ̃s(1) = γ̃0(1) for all s ∈ [0, 1].

4.2.2 Monodromy of covering maps

Now let us return to a proper holomorphic map F : X → Y of connected
Riemann surfaces, with degree d ≥ 1. It follows immediately from Lemma *
that the restriction of F to X \R is a local homeomorphism. This restriction
need not be a proper map, but if we set R+ = F−1(∆) = F−1(F (R)) then
the restriction of F to X \ R+ is proper, as one can easily check from the
definition. So we have a covering map

F : X \R+ → Y \∆,

This is classified by a subgroup H ⊂ π1(Y \∆) (or more precisely a conju-
gacy class of subgroups). There is another way to think about this algebro-
topological data. It follows from the definitions that H has finite index in
π1(Y \∆), indeed the index is just the number of sheets of the cover which
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is the degree d. In general, the subgroups of index d in a group π correspond
to transitive permutation representations

ρ : π → Sd,

where Sd denotes the symmetric group of permutations of {1, . . . , d}. (Here
transitive means taht the image of ρ acts transitively on the set.) Thus in our
situation our proper holomorphic map F yields a transitive representation
ρ : π1(Y \ ∆) → Sd, determined up to conjugacy. This is the monodromy
of the covering and we can give a more intuitive description of it as follows.
Suppose we have a loop γ in Y \ ∆ beginning and ending at y0. We label
the points in the F−1(y0) by 1, . . . , d. Now we move around the loop γ and
“transport” the points, with their labelling, in F−1(γ(t)) continously around
in X to match. When we return to y0 we recover the same set F−1(y0) but
the labelling may have changed. This change is given by a permutation in
Sd which is ρ([γ]), where [γ] denotes the homotopy class of the loop γ.

This point of view is close to that traditionally adopted when introducing
Riemann surfaces: regarding them as formed from sheets over domains in C
joined along “cuts”. For a very simple example, consider the Riemann surface
X defined by the equation w2 = f(z) where

f(z) = (z − z1)(z − z2) . . . (z − z2n),

and with F : X → C the projection to the z factor. Then ∆ = {z1, . . . , z2n}
and π1(C \ ∆) is generated by 2n loops γ1, . . . , γ2n where γi is a standard
loop going once around zi. The degree d is 2 and the representation ρ maps
each generator γi to the non-trivial element of S2( a transposition of the two
objects). In traditional language we make cuts along n disjoint paths joining
z2i−1 to z2i for i = 1, . . . , n. Then we take two copies of the cut plane and
form X \ R by gluing these along the cuts. More generally we can express
the procedure as saying that we make cuts so that ρ becomes trivial on π1 of
the cut plane, then ρ is just the combinatorial data required to specify the
gluing along the cuts.

We summarise our work so far. Starting with a proper, nonconstant,
holomorphic map between connected Riemann surfaces X,Y we get a degree
d, a discrete set ∆ ⊂ Y and a transitive permutation representation] (up
to conjugacy) ρ : π1(Y \ ∆) → Sd. The next result, Riemann’s existence
theorem, shows that we can go in the other direction.
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Theorem 2 Let Y be a connected Riemann surface and ∆ a discrete subset
of Y . Given d ≥ 1 and a transitive permutation representation ρ : π1(Y \
∆)→ Sd there is a connected Riemann surface X and a proper holomorphic
map F : X → Y which realises ρ as its monodromy homomorphism. Morover
X and F are unique up to equivalence.

First, the theory of covering spaces recalled above gives us a covering
map F0 : X0 → Y \∆. It is easy to see that there is a unique way to make
X0 into a Riemann surface such that the map is holomorphic. At the end of
the proof, the Riemann surface X0 will correspond of course to X \ R+, so
what we need to see is how to “fill in ” the points of R+ lying over ∆. Let
y1 be a point of ∆ and choose a small disc D1 in Y about y1, not containing
any other points of ∆. The boundary of the disc D1 defines an element
of π1(Y \ ∆) (or, more precisely a conjugacy class). The homomorphism ρ
maps this to a permutation σ of (1, . . . , d). Now σ may not act transitively
on (1, . . . , d). This coresponds to the fact that F−1

0 (∆ \ {y1} may not be
connected. If we write σ as a product of disjoint cycles then it is easy to see
from the definitions that the cycles naturally correspond to the components
of F−1

0 (∆\{y1}). Thus if Z is one such connected component, corresponding
to a cycle of length d′ the restriction of F0 to Z gives a connected covering
of ∆ \ {y1}, determined by the homomorphism which maps the generator of
π1(∆\{y1}) to the d′ cycle in Sd′ . But we know a covering which realises this
data: if we identify D1 \ {y1} with the standard punctured unit disc D∗ ⊂ C
it is given by the map z 7→ zd

′
from D∗ to D∗. So we conclude that Z is

equivalent as a Riemann surface to D∗ by an isomorphism φ : D∗ → Z say.
We now define a set X+ by

X+ = X0 ∪φ D,
where D is the unit disc in C and the notation means that we identify
z ∈ D∗ ⊂ D with φ(z) ∈ Z ⊂ X0. We make X+ into a Riemann surface
as follows. We take an atlas of charts in X+ to be an atlas for X0 with one
further chart, the inverse of the obvious map from D to X+ arising from the
definition. There is then a unique way to introduce a topology on X+ making
all these charts homomorphisms, but we have to check that this topology is
Hausdorff, i.e. that for any two points a, b in X+ there are disjoint open sets
U, V containing a, b respectively. If a and b lie in the copy of X0 in X+ this
is clear: we just take corresponding open sets in X0. So suppose a lies in X0

and b is the point corresponding to 0 in D. Then F0(a) is not equal to y1 in
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Y so we can find a small neighbourhod N of F0(a) in Y \∆ which is disjoint
from a smaller disc D2 ⊂ D1 containing y1. The open sets F−1

0 (N) and

{0} ∪ φ−1(F−1
0 (D2)),

are disjoint in X+ and contain b, a respectively. This shows that X+ is
indeed a Riemann surface. Moreover the map F0 obviously extends to a
holomorphic map from X+ to Y . (The point of dealing carefully with the
Hausdorff condition here is this. Suppose W is any Riemann surface and
φ : D∗ → W is a holomorphic map. Then we can form the set W ∪φ D∗ as
above and equip it with charts, but in general the resulting space may not
be Hausdorff—it will be fail to be Hausdorff precisely when φ extends to a
holomorphic map from D to W—that is when the “new ” point we are trying
to add in was already there!)

We repeat the procedure above for each point of ∆ and for each cycle of
the corresponding monodromy. This gives us a Riemann surface X with a
holomorphic map F to Y and one checks that this map is indeed proper.

4.2.3 Compactifying algebraic curves

This construction has an important application to algebraic curves. Suppose
P (z, w) is a polynomial in two complex variables and consider again the set
X of solutions to the equation P (z, w) = 0 in C2 with the projection map
π : X → C onto the z-factor. Suppose that P is an irreducible polynomial,
i.e. it cannot be written as P = QR for nonconstant polynomials Q,R. Let
S be the set of points in X where both partial derivatives Pz, Pw vanish. We
will show in Chapter 15 that the irreducibility of P implies that there are
only finitely many points in S. The proof of * shows that the complement
X \S is a Riemann surface. Now we let F be the finite subset of C defined by
those values of z for which the term in P of highest degree in w (a polynomial
in z) vanishes. Put

S+ = π−1(π(S) ∪ F ) ⊂ X.

The set S+ is again finite, for there are only finitely many points in π(S)∪F
and if z0 is such a point the set π−1(z0) consists of the roots of the polynomial
equation in P (z0, w) = 0 in the single variable w. This has only many finitely
roots unless the polynomial vanishes identically, which would imply that
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(z − z0) divides P . Now let E be the discrete subset π(S) ∪ F ∪ {∞} of the
Riemann sphere S2. We get a proper holomorphic map

π : X \ S+ → S2 \ E.
Applying the theory above, we have a ramification set ∆ ⊂ S2\E and we can
recoverX\S+ from the monodromy homomorphism ρ : π1(S2\(∆∪E))→ Sd.
On the other hand this data also defines a compact Riemann surface X∗,
containing X \ S+ as a dense open set mapping holomorphically to S2.

Now recall that on the other hand we have a compact set X ⊂ CP2

defined by the homogeneous polynomial corresponding to P . This contains
X and hence X \ S+, again as dense open sets.

Proposition 9 The inclusion of X \S+ in X extends to a holomorphic map
from X∗ to CP2, mapping onto X.

Here a holomorphic map from a Riemann surface to CP2 is defined in
the obvious way as a continous map which is holomorphic with respect to
the three charts Wi ≡ C2 covering CP2.

To prove the Lemma it suffices to work in the affine plane C2. What we
need to show is that when we attach discs to X \ S+ the inclusion of the
punctured disc extends meromorphically over 0. Thus the proposition boils
down to the following.

Lemma 3 Suppose P is an irreducible polynomial in two variables and n is
a positive integer. Suppose f is a holomorphic function on the punctured disc
D \ {0} with P (zn, f(z)) = 0 for all z ∈ D \ {0}. Then f is a meromorphic
function.

The irreduciblity of P implies, as above, that there are only finitely many
roots w1, . . . wN say of the equation P (0, w) = 0. Thus when |z| is small, f(z)
must be close to one of the wi. We recall a result from complex analysis: if
f has an essential singularity at 0 then for all w in C and ε, δ > 0 there is
z with 0 < |z| < δ and |f(z) − w| < ε. This clearly does not hold in our
case, when w is not one of the wi and ε, δ are sufficiently small. Thus f is
meromorphic as asserted.

Given the Lemma, we know that for suitable m, zmf(z) is holomorphic
and non vanishing for small z. Then teh map z 7→ [zn, f(z), 1] from the
punctured disc to CP2 is equal to the map z 7→ [zn+m, zmf(z), zm] and
extends to a holomorphic map of the disc to CP2.
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The conclusion is that we have associated a compact Riemann surface
X∗ to any irreducible polynomial. This is called the “normalisation” of the
projective curve X.

Examples
1. Suppose P is the polynomial w2 − z2(1 − z). Both partial deriva-

tives vanish at the point (0, 0). To help our intuition we can sketch the
corresponding real curve as below.

The origin is a singular point, where two branches of the curve cross.
Following through the constructions one finds that X∗ is equivalent to the
Riemann sphere and the map from X∗ to CP2 is given by τ 7→ [1, 1− τ 2, τ −
τ 3]. (The point at infinity in S2 maps to [0, 0, 1].) Thus we obtain X∗ by
separating the two braches of the curve passing through the origin.

2. Let P be the polynomial w2 − z3. The real curve looks like this:

It has a “cusp” singularity at the origin. Again the normalisation is the
Riemann sphere with the map τ 7→ [1, τ 2, τ 3].

4.2.4 The Riemann surface of a holomorphic function

Throughout this Chapter we have emphasised the case of “proper” maps,
which most naturally arise when one considers algebraic functions. We will
say a little more now about the general case. Suppose F : X → Y is
a holomorphic map between connected Riemann surfaces, without branch
points, and let Ψ : X → C be any holomorphic function. Then F is a
local homeomorphism so given a point x0 ∈ X we can define a holomorphic
function ψ0 = Ψ ◦ F−1

x0
on a neighbourhood of y0 = F (x0) in Y , where

F−1
x0

denotes a local inverse mapping y0 to x0. More generally, given a path
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γ : [0, 1] → Y a lift γ̃ of γ starting at x0 defines an analytic continuation of
ψ0 along γ (as defined in Chapter 1).

The converse to this construction is expressed in the following

Proposition 10 Suppose given a point y0 in a connected Riemann surface
Y and a holomorphic function ψ0 defined on a neighborhood of y0. The there
is a Riemann surface X, a holomorphic map F : X → Y without branch
points mapping, a point x0 in F−1(y0), and a holomorphic function Ψ on X
such that

• ψ0 can be analytically continued along a path γ in Y if and only if γ
has a lift to X starting at x0.

• The analytic continuation of ψ0 along γ has ψ1 equal to Ψ ◦ F−1
γ̃ in a

neighbourhood of γ(1).

The Riemann surface X is the “Riemann surface of the function germ
ψ0” and the data about all possible analytic continuations of ψ0 is encoded
in the holomorphic map F : X → Y .

The construction of the Riemann surface X associated to ψ0 is a variant
of the construction of covering spaces. We define an equivalence realtion
on analytic continuations of ψ0 as follows. Let γ, γ ′ be paths starting at
y0. Recall that analytic continuations are given by one parameter families of
holomorphic functions ψt, ψ

′
t say. We say these are equivalent if γ(1) = γ′(1)

and ψ1 = ψ′(1) on some neighbourhood of this point in Y . Now we define
X to be the set of equivalence classes of analytic continuations of ψ0, with a
map F : X → Y induced by (γt, ψt) 7→ γ(1). We define Ψ : X → C to be
the map induced by (γt, ψt) 7→ ψ1(γ(1)). Then one has to check that there is
a natural (and in fact unique) way to introduce a Riemann surface structure
on X such that F and Ψ are holomorphic and F is a local homeomorphism.
We leave the interested reader to work out the details, or consult suitable
texts.

This construction could be generalised. In one direction we can replace
holomorphic functions by maps to a third Riemann surface Z. This makes
essentially no difference. In the other direction we can sometimes extend
X by including suitable ramification points, as we did in the case of proper
maps.
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Chapter 5

Calculus on surfaces

In this Chapter we develop the theory of differential forms on smooth surfaces
and Riemann surfaces. This will be our main technical tool in the proofs of
the major structural results in the following sections. Most of the material
will be familiar to readers who have taken a standard course on manifold
theory but for those who have not we give a fairly self-contained treatment.

5.1 Smooth surfaces

5.1.1 Cotangent spaces and 1-forms

Lemma 4 Let f be a smooth, real-valued, function define on an open neigh-
bourhood U of 0 in R2 and let γ1 : (−ε1, ε1) → U and γ2 : (−ε2, ε2) → U be
smooth maps (for some ε1, ε2 > 0), with γ1(0) = γ2(0) = 0. Let χ : U → V
be a diffeomorphism to another open set in R2 with χ(0) = 0. Set γ̃i = χ ◦ γi
and f̃ = f ◦ χ−1.

• If both partial derivatives ∂f
∂x1
, ∂f
∂x2

vanish at 0 then the same is true of

f̃ .

• If the derivatives dγi
dt

at 0 ∈ R are equal then the the same is true of γ̃i.

The assertions here follow immediately from the chain rule for partial
derivatives. Now let S be a smooth surface, p be a point in S, f be a smooth
function on S and γi : (−εi, εi)→ S (i = 1, 2) be a pair of smooth paths with
γi(0) = p. We say that f is constant to first order at p if the derivative of

51
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the function representing f in a local co-ordinate chart about p vanishes at
the point corresponding to p. By the first item of the Lemma this notion is
independent of the choice of co-ordinate chart. Similarly, we say that γ1, γ2

are equal to the first order at p if the derivaties of the paths representing
them in a local chart are equal.

Definition 7 • The tangent space TSp of S at p is the set of equivalence
classes of maps γ : (−ε, ε) → S with γ(0) = p under the equivalence
relation γ1 ∼ γ2 if γ1 and γ2 are equal to first order at p.

• The (real) cotangent space T ∗Sp is set of equivalence classes of smooth
functions on an open neighbourhood of p in S under the equivalence
relation f1 ∼ f2 if f1 − f2 is constant to first oder at p.

The cotangent space T ∗Sp has a natural vector space structure induced
from that on the smooth functions on open neighboorhoods of p. From the
definition, if U is an open neighbourhood of p there is a map from C∞(U) to
T ∗Sp which we denote by

f 7→ [df ]p.

Let x1, x2 be local co-ordinates about p. They are smooth functions so we
have elements [dx1]p, [dx2]p ∈ T ∗Sp. If f is any smooth function on a neigh-
bourhood of p we write f = f(x1, x2), making the usual notation supressing
explicit dependence on the co-ordinate charts. Then the reader we readily
verify, from the definition, that

[df ]p =
∂f

∂x1

[dx1]p +
∂f

∂x2

[dx2]p.

One sees from this that [dx1]p, [dx2]p form a basis for the vector space T ∗Sp.
If γ : (−ε, ε) → S is a smooth path with γ(0) = 0 and f is a function
on a neighboourhood of p the composite f ◦ γ is defined, as a real valued
function, on some possibly smaller interval, and one checks that the derivative
is independent of teh choice of f or γ in the equivalence classes defining the
tangent space and cotangent space. Thus this derivative induces a map

TSp × T ∗Sp → R.

Again we leave it to the reader to check that there is a unique vector space
structure on TSp with respect to which this is a bilinear map. In fact the
map induces a duality between TS, T ∗S— there is a canonical isomorphism

T ∗Sp = Hom(TSp,R).



5.1. SMOOTH SURFACES 53

Now define the cotangent bundle T ∗S to be set

T ∗S =
⋃
p∈S

T ∗Sp.

A smooth 1-form α on S is a map α : S → T ∗S with α(p) ∈ T ∗Sp for all
p ∈ S and which varies smoothly with p in the following sense. In local
co-ordinates (x1, x2) about a point p0 we can write

α = α1dx1 + α2dx2,

where α1, α2 are functions of x1, x2, and we have dropped the [ ]p from our
notation. Then we require that α1, alpha2 are smooth functions of the local
co-ordinates. Again one needs to check that this is notion is independent of
the co-ordinate system. We do this in detail because it gives an opportunity
to illustrate how to compute with these forms. Suppose y1, y2 is another
system of local co-ordinates, so x1, x2 are smooth functions of y1, y2 with
partial derivatives ∂xi

∂yj
. Then by the chain rule, applying the definition, we

have

dxi =
∂xi

∂y1

dy1 +
∂xi

∂y2

dy2.

Thus if α is represented locally by α1(x1, x2)dx1 +α2(x1, x2)dx2 in the x1, x2

co-ordinates, it is represented by

α1(x1(y1, y2), x2(y1, y2))

(
∂x1

∂y1

dy1 +
∂x1

∂y2

dy2

)
+α2(x1(y1, y2), x2(y1, y2)

(
∂x2

∂y1

dy1 +
∂x2

∂y2

dy2

)

in the y1, y2 co-ordinates. The co-efficients of dy1, dy2 are obviously smooth
functions of y1, y2, as required. An example of a smooth 1-form is furnished
by the derivative of a function. If f is a function on S then we define a 1-form
df by

df(p) = [df ]p.

In local co-ordinates this is just

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2.

There is another important notion, which leads to the same formula *.
Suppose F : S → Q is a smooth map between surfaces. Then a moments
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thought about the definitions will show the redaer how to define, for any
p ∈ S, natural linear maps

dF : TSp → TQF (p),

dF ∗p : T ∗QF (p) → T ∗Sp,

compatible with the dual pairings between tangent and cotangent spaces.
Suppose α is a smooth 1-form on Q. Then we define the pull-back form
F ∗(α) by

F ∗(α)(p) = dF ∗(α(F (p)).

Then F ∗(α) is a smooth 1-form on S. If now x1, x2 are local co-ordinates
about F (p) in Q and y1, y2 are local co-ordinates about p in S the formula
* gives the local representation of F ∗(α), where F is locally represented by
the functions xi(yj).

We sum up the work so far. Write Ω0
S for the smooth functions on S and

Ω1
S for the smooth 1-forms. Then we have defined

d : Ω0
S → Ω1

S,

with the following properties

• d(fg) = fdg + gdf , where fg denotes the pointwise product;

• if F : S → Q is smooth then d(F ∗f) = F ∗(df), where f ∈ Ω0
Q and

F ∗(f) = f ◦ F .

A difficulty with 1-forms is that they do not perhaps have a very obvious
geometric meaning and it takes time, on first encountering the notion, to
become comfortable working with them. (The dual notion, of a vector field
is probably more intuitively appealing.) One important property is that 1-
forms are the objects which can naturally be integrated over 1-dimensional
sets. There are two slightly different notions here. One is to work with
smooth paths

γ : [0, 1]→ S.

Suppose first that the image of γ lies inside some local co-ordinate system
x1, x2. If α is a 1-form on S we define∫

γ
α =

∫ 1

0
α1
dγ1

dt
+ α2

dγ2

dt
.



5.1. SMOOTH SURFACES 55

Here γ1(t), γ2(t) are the x1 and x2 co-ordinates of the local representation
of γ and α1, α2 are the co-efficients of dx1, dx2 in the local represention of
α. Thus in a less compressed notation in * we would write αi(γ1(t), γ2(t)).
One checks that this is independent of the local co-ordinate system. Thus if
the image of γ does not lie in a single chart one can define the integral by
breaking up [0, 1] into subintervals and proceeding in the obvious way. The
integral has another invariance property. Suppose ψ : [0, 1]→ [0, 1] mapping
0 to 0 and 1 to 1. Then we get another smooth path γ ◦ ψ and∫

γ◦ψ
α =

∫
γ
α.

Essentially this expresses the fact that the integral depends only on the
image of γ. ( A more sophisticated way to fomrulate these definitions is
to introduce the notion of a 1-form on an interval in R—or indeed on any
smooth manifold—and the integral of a 1-form over an interval. Then the
map γ gives a pull-back form γ∗(α) which we integrate over [0, 1].)

Now suppose that C is an oriented embedded curve in a surface S. Then
we can define the integral of α over C by decomposing C into pieces which
can be parametrised by smooth paths as above. All of this is essentially the
same as the definition of contour integrals in elementary complex analysis,
so we will not dwell on the details.

5.1.2 2-forms and integration

Next we want to define smooth 2-forms on a surface. To motivate the defini-
tions here we consider the following question. Given a 1-form α on a surface
S when can it be written as α = df for some function f? Consider first the
case when S is R2, so

α = α1dx1 + α2dx2,

where α1, α2 are arbitrary smooth functions of x1, x2. Writing α = df means
finding a function f with

∂f

∂x1

= α1 ,
∂f

∂x2

= α2.

The symmetry of second partial derivatives means that an obvious necessary
condition is that the function

R =
∂α1

∂x2

− ∂α2

∂x1
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vanishes everywhere. The converse is a classical result (“criterion for an exact
differential”) which the reader has very likely encountered: if R = 0 then we
can find an f . Let us recall the proof. Given α1, α2 we define a functions
f1, f2 by

f2(x1, x2) =
∫ x1

0
α1(t, 0)dt+

∫ x2

0
α2(x1, t)dt;

f1(x1, x2) =
∫ x2

0
α2(0, t)dt+

∫ x1

0
α1(t, x2)dt.

By construction ∂fi
∂xi

= αi. But Stokes’ Theorem, applied to a rectangle V
with vertices at (0, 0), (x1, 0), (0, x2), (x1, x2) shows that

f1(x1, x2)− f2(x1, x2) =
∫
V
R,

so our hypothesis that R = 0 shows that f1 = f2 and the proof is complete.
What we see from this argument in the plane is that the three notions

• The criterion for an exact differential,

• Integration over 2-dimensional regions,

• Stokes Theorem

are tightly bound together, and the definition of a 2-form is framed to allow
us to extend these notions to surfaces.

Let E be a real vector space. We define Λ2E∗ to be the set of bilinear
maps

B : E × E → R.

which are skew-symmetric, B(e, f) = −B(f, e). We define a “wedge product”

∧ : E∗ × E∗ → Λ2E∗,

by
(α ∧ β)(e, f) = α(e)β(f)− β(e)α(f).

So the wedge product is linear in each variable and α ∧ β = −β ∧ α. Now
suppose that E has dimension 2 then (exercise for reader) Λ2E∗ is a 1-
dimensional real vector space and if α1, α2 is a basis for E∗ the wedge product
α1 ∧ α2 furnishes a basis element in Λ2E∗.

We apply this algebra to the case when E = TSp, so E∗ = T ∗Sp. Thus
for each point p in a surface S we have a 1-dimensional space Λ2T ∗Sp. If
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x1, x2 are local coordinates around p we get a basis element dx1 ∧ dx2 for
Λ2T ∗Sp. One often omits the wedge product symbol to write this as dx1dx2.
We now proceed as before. We define a smooth 2-form ρ on S to be a map
from S to the union ⋃

p∈S
Λ2T ∗Sp

such that ρ(p) lies in Λ2T ∗Sp and varies smootjly with p in the following
sense. In local co-ordinates we can write

ρ = R(x1, x2)dx1dx2,

and we require that R be a smooth function. Applying the definitions one
finds that in a different system of co-ordinates y1, y2 this same 2-form is
represented by

R(x1(y1, y2), x2(y1, y2))J(y1, y2)dy1dy2),

where

J(y1, y2) =
∂x1

∂y1

∂x2

∂y2

− ∂x1

∂y2

∂x2

∂y1

.

The reader will recognise this as the usual Jacobian: the determinant of
the matrix of partial derivatives ∂yi

∂xj
. Again, this formula can be read in a

different way. If F : S → Q is a smooth map and ρ is a 2-form on Q there
is a natural way to define a pulled back form F ∗(ρ) on S and the formula *
expresses this in local co-ordinates.

We write Ω2
S for the set of 2-forms on a surface S.

Now these 2-forms provide a natural “home” for the expression appearing
in the critrion for an exact differential above. We have

Lemma 5 There is a unique way to define an R-linear map

d : Ω1
S → Ω2

S

such that

• If α1 = α2 on an open set U ⊂ S then dα1 = dα2 over U .

• If f is a function on S then ddf = 0.

• If f is a function on S and α is a 1-form on S then

d(fα) = df ∧ α + fdα.
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To prove this we first check the uniqueness. Suppose that we have an oper-
ator satisfying the conditions of the Lemma. By the first condition we can
calculate dα in local co-ordinates. Then we have

d(α1dx1 + α2dx2) = dα1 ∧ dx1 + dα2 ∧ dx2,

using the second and third conditions (the second condition gives ddxi = 0).
Explicitly

d(α1dx1 + α2dx2) =

(
∂α2

∂x1

− ∂α1

∂x2

)
dx1dx2.

On the other hand, if we take this formula as the definition of dα one can
check that it is independent of the choice of co-ordinate system.

What we see in the course of the proof is that in local co-ordinates dα
is just Rdx1dx2 where R is the function, discussed above, which enters into
the criterion for an exact differential. So we can reformulate that result as
saying that for a 1-form α on the surface S = R2 we can find a function with
α = df if and only if dα = 0.

We now turn to integration. Suppose S is an oriented surface and ρ is a
2-form with compact support and supported in the domain of a co-ordinate
chart on S. Write ρ = R(x1, x2)dx1dx2 in these local co-ordinates. Then
we define the integral of ρ on S by the following, apparently tautological,
formula ∫

S
ρ =

∫
R2 R(x1, x2)dx1dx2,

where on the right hand side we mean the ordinary Lebesgue integral on the
compactly-supported functions on R2. If y1, y2 is another oriented chart then
the Jacobian J relating the two is poistive by definition and the fact that
we get the same value of the integral just expresses the usual transformation
law for multiple integrals. To define the integral more generally we use the
following lemma, which we will also need later.

Lemma 6 Let K be a compact subset of a surface S and let U1, . . . , Un be
open sets in S with K ⊂ U1 ∪ . . . Un. Then there are smooth, non-negative,
functions f1, . . . , fn on S, each of compact support and with the support of fi
contained in Ui, such that f1 + . . .+ fn = 1 on K.

To prove this we begin with the case when n = 1. First consider the very
special case when n = 1, S = U1 is the unit disc in R2 and K is the closed disc
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of radius 1/2. Then we take a non-negative function f(x1, x2) = F (
√
x2

1 + x2
2)

where F is a function of one variable with F (r) = 1 for r ≤ 1/2 and F (r) = 0
for r ≥ 3/4, say.

Now consider the general case when n = 1. For each point p ∈ K we
take a local co-ordinate chart mapping a disc Dp about p to the open unit
disc in R2 and the closure Dp to the closed unit disc in R2. Let 1

2
Dp be

the preimage of the half-sized open disc. We can suppose (scaling the chart)
that the closure of Dp is contained in U1. The set of open discs 1

2
Dp as p

ranges over K forms an open cover of K, so we can find a finite subcover,
corresponding to points p1, . . . , pN say. Then for each j ≤ N we have a
function, gj say, of compact support on Dpj and equal to 1 on the closure of
1
2
Dpj using the very special case above. We extend gj by zero to regard it as

a function on S. Now g =
∑
gj has the following properties

• g ≥ 1 on K, since each point of K lies in at least one disc 1
2
Dpj on

which gj = 1;

• g has compact support contained in U1, since the support of g is the (fi-
nite) union of the supports of the gi which are contained in the compact

discs 1
2
Dpj ⊂ U1.

Now take a smooth non-negative function H of one variable with H(t) = 1
if t ≥ 1 and H(t) = 0 if t ≤ 1/2. Then f1 = H ◦ g has the desired property.
(i.e. f1 = 1 on K and the support of f1 is a compact subset of U1.

Finally we consider the general case, when K ⊂ U1∪ . . .∪Un. Proceeding
just as before we get discs 1

2
Upi ⊂ Upi for i = 1, . . . N where

• K ⊂ 1
2
Up1 ∪ . . . 1

2
UpN

• for each j there is an i(j) such that the closed (compact) disc Dpj is
contained in Ui(j).

Now for i = 1, . . . n, let

Ki =
⋃

i(j)=i

1

2
Dpj .

Ni =
⋃

i(j)=i

Dpj

and
Ji =

⋃
i(j)=i

Dpj .
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Thus the Ki and Ji are compact, Ni is open, we have

Ki ⊂ Ni ⊂ Ji ⊂ Ui

and K ⊂ ⋃
iKi. Applying the discussion above to each Ji ⊂ Ui we find

smooth functions hi on S with hi = 1 on Ji and with hi compactly supported
in Ui. Thus if h =

∑n
i=1 hi we have h ≥ 1 on J1∪ . . .∪Jn. Let N be the open

subset of S
N = N1 ∪ . . . ∪Nn.

Applying the previous case again, we can find a function A of compact sup-
port in N and with A = 1 on K. Thus h ≥ 1 on the support of A so the
ratio A/h extends to a smooth function on S. Finally put

fi =
Ahi

h
.

Then fi has compact support in Ui and
∑
fi = 1 on K since A = 1 there.

Given this Lemma and any 2-form ρ of compact support on an oriented
surface S we proceed as follows. We cover K = supp(ρ) by open sets Ui,
each the domain of a local coordinate chart. By the compactness of K we
may can do this with a finite collection of sets Ui. Then let fi be a system
of functions as in the Lemma. For each i the support of fiρ is contained in
a co-ordinate chart and we can define the integral of fiρ as above. Now we
define ∫

S
ρ =

∑
i

∫
S
fiρ.

Of course this formula must hold true if we are to have an integral with the
obvious linearity properties since

∑
fi = 1 on supp(ρ) implies that

ρ =
∑

fiρ.

Conversely one readily shows that the linearity of the Lebesgue integral im-
plies that that this value of the integral of ρ is independent of the choice of
the functions fi.

While one must be careful to distinguish between 2-forms and functions,
on an oriented surface there is a well-defined notion of a positive 2-form, just
one which is given in local co-ordinates by Rdx1dx2 with R ≥ 0. By the
definition of an oriented surface and the transformation law for 2-forms, this
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is independent of the choice of co-ordinate system. If ρ is a positive 2-form of
compact support then the integral of ρ is positive. With the usual conventions
we can define the integral of any positive 2-form ρ, not necessarily of compact
support, taking values in the extended real numbers R ∪ {+∞}, by∫

X
ρ = sup

∫
X
χρ,

where χ runs over the smooth, compactly supported, functions on X with
0 ≤ χ ≤ 1 everywhere.

Notice that it is not really necessary that the 2-forms we integrate are
smooth. We can define the notion of a continuous 2-form in an obvious
way and the discussion above applies equally well. If ρ is any 2-form we can
define a continuous, positive 2-form |ρ| by the requirement that at each point
|ρ| = ±ρ. Thus for any 2-form ρ whatsoever on a surface S we can define
the integral ∫

S
|ρ|

taking values in [0,∞]. This notion will be a convenience later. By an area
form on an oriented surface S we mean a strictly positive 2-form. If we have
a fixed area form then we can identify the 2-forms on S with functions, and
the notion above becomes the usual notion of integration of functions with
respect to a measure. However there atre certain important reasons why we
do not want to assume that our surface support such area forms (see the
discussion in Chapter 10 below).

The final item is the general form of Stokes’ Theorem.

Proposition 11 If ρ is a compactly supported 1-form on an oriented surface
with boundary S then ∫

∂S
α =

∫
S
dα.

To sum up we now have on any surface:

• Spaces of 0, 1, 2 forms and the exterior derivative

Ω0
S → Ω1

S → Ω2
S.

• The integral
∫
C α of a 1-form S over a curve a curve C in a surface S

the
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• The wedge product Ω1
S × Ω1

S → Ω2
S.

• If S is oriented, the integral
∫
S ρ of a compactly supported 2-form ρ.

• Stokes’ Theorem, as above.

5.2 de Rham cohomology

5.2.1 Definition and examples

Let S be a smooth surface. We define the de Rham cohomology groups
H i(S), for i = 0, 1, 2, to be the cohomology of the sequence

Ω0 → Ω1 → Ω2.

That is
H0(S) = ker(d : Ω0

S → Ω1
S,

H1(S) = ker(d : Ω1
S → Ω2

S)/Im(d : Ω0
S → Ω1

S),

H2(S) = Ω2
S/Im(d : Ω1

S → Ω2
S).

Clearly H0(S) = R, the constant functions, if S is connected. The classical
criterion for an exact differential discussed above amounts to the statement
that if S is diffeomorphic to R2 then H1(S) = 0. It is also clear that, for such
S, the cohomology group H2(S) also vanishes, since any function R(x1, x2)
can be written as ∂α1

∂x2
− ∂α2

∂x1
for some α1, α2. (In fact we can take α2 = 0 and

α1(x1, x2) =
∫ x1

0
R(t, x2)dt.)

Examples
1. Consider the 2-sphere S2. We write this as the union of two open

sets S2 = U ∪ V where U and V are slightly enlarged upper and lower
hemispheres, intersecting in a annulus around the equator. So U and v are
each diffeomorphic to R2. Let α be a 1-form on S2 with dα = 0. Then
by the previous discussion we can find functions fU , FV on U, V respectively
such that dfU , dfV are the restrictions of α to U, V . Thus d(fU − fV ) = 0 on
U ∩ V and, since U ∩ V is connected, this means that fU − fV is constant
on the intersection, say fU − fV = c. There is no loss in supposing that this



5.2. DE RHAM COHOMOLOGY 63

constant is zero, since we can change fU to fU −c without changing dfU . But
if fU = fV on U ∩ V they arise as the restrictions of a function f on S2 to U
and V , and α = df . Hence H1(S2) = 0.

2. Consider the torus T and take standard angular co-ordinates θ, φ ∈
[0, 2π). Let γ1, γ2 ⊂ T be the standard embedded circles corresponding to
θ = 0, φ = 0 respectively. Then the map

α 7→ (
∫
γ1

α,
∫
γ2

α)

induces a linear map from H1(T ) to R2 since the integral of df around the γi
vanishes for any function f on T . The forms dθ and dφ show that this map
is surjective. We claim that the map is also injective, so H1(T ) = R2. For
if α = Pdθ + Qdφ is a closed 1-form with integral 0 around γ2 then for any
fixed φ we have, by Stokes’ Theorem,∫ 2π

0
P (θ, φ)dθ = 0.

This means that the indefinite integral

f(θ, φ) =
∫ θ

0
P (u, φ)du,

defines a smooth function on T with ∂f
∂θ

= P . Thus α̃ = α − df is a closed

1-form of the form Q̃dφ. But the closed condition impllies that Q is constant
and if the integral around γ1 is zero this constant be zero and α = df .

3. Consider the cylinder C = (−1, 1)×S1 and let δ be the circle {0}×S1.
As before, δ defines a linear map from H1(C) to R which is clearly surjective.
To see that this map is also injective we proceed as in the first example,
writing c = U ∪V with open sets U, V diffeomorphic to R2. This time,U ∩V
has two components. If α is a closed 1-form on C then we obtain functions
fU , fV just as in the first example, but we cannot deduce that fU − fV is
constant, although it is constant on each component of U ∩ V . Pick points
p, q on δ in the two components of U ∩ V . Then a moments thought shows
that

(fU − fV )(p)− (fU − fV )(q) = ±
∫
δ
α.

So if the integral of α around δ is zero then fU − fV is constant and we can
proceed as in Example 1.
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3. Consider the standard surface Σ of genus 2 formed from the connected
sum of two copies T, T ′ of the torus. Thus in T we have a pair of standard
loops γ1, γ2 as above, and likewise γ′1, γ

′
2 in T ′. We form the conected sum by

removing two open discs D,D′ from T, T ′ and adding a copy of the cylinder
C. We can suppose that the discs do not meet the circles γi, γ

′
i. Then in an

obvious way we get 4 circles, which we also denote by γi, γ
′
i in Σ. Integration

around these circles defines a linear map from H1(Σ) to R4 and we claim
that this is an isomorphism.

To see that the map is injective we argue as follows. Suppose α is a closed
1-form on Σ and the integral of α around the four loops vanishes. Let δ be
the loop in the cylinder C ⊂ Σ as in Example 3. Then by Stokes’ Theorem,
the integral of α around δ vanishes, since δ is obviously the boundary of a
portion of Σ. By Example 3 we can write the restriction of α to C as dg for
some function g on C. Let P be a smooth function supported in C and equal
to 1 on δ (see the Lemma below). Then α̃ = α − d(Pg) is in the same class
in H1(Σ) as α and α̃ vanishes on a neighbourhood of C. This means that α̃
defines 1-forms β, β ′ on T, T ′ respectively, in an obvious way, vanishing near
the centres of the discs D,D′. The integrals of β, β ′ around the circles in
T, T ′ are still zero so we know that β = df, β ′ = df ′ for some functions f, f ′

on T, T ′ with f, f ′ constant near the centres of the discs. Then the same
argument as before shows that we cannot suppose f, f ′ match up to give a
function f on Σ with df = α̃.

To see that the map is surjective we argue as follows. Given any four real
numbers we can find closed 1-forms β, β ′ on T, T ′ respectively realising these
as their integrals around teh circles. By applying our result for R2 we can
write the restrictions of β, beta′ to neighbourhoods of D,D′ as dg, dg′ for
functiosn g, g′ defined on these neighboorhoods. Arguing as in the previous
paragraph, we find β̃, β̃′ in the same cohomology classes as β, β ′ and vanishing
over these discs. Then β, β ′ define a 1-form α on Σ in an obviuous way, having
the given integrals around the γi, γ

′
i.

5. It should now be clear how to show that for the standard closed
oriented surface Σg of genus g—the connected sum of g copies of the torus–
we have

H1(Σg) = R2g,

the isomorphism being realised by integration over 2g standard circles in Σg.

6. We now take a more abstract point of view. Let S be a connected
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smooth surface and s0 a base point in S. One can show that elements of
π1(S, s0) can be represented by smooth loops γ : [0, 1] → S. For such loops
the integral around γ is defined and induces a map∫

γ
: H1(S)→ R.

This integral depends only on the homotopy class of the loop and is additive
with respect to the product in π1 so we get a linear map

H1(S)→ Hom(π1(S, s0), bR).

This map is an isomorphism, at least if S satsisfies the technical condition
of being “paracompact”.

5.2.2 Cohomology with compact support and Poincaré
duality

There is a variant of the definition of cohomology in which we consider the
forms Ωi,c

S of compact support. Then we define cohomology groups H i,c
S in

just the same fashion. Thus, for example, if S is connected but not compact
then H0,c

S = 0, since the non-zero constants do not have compact support. If
S is oriented, the map from Ω2,c

S to R defined by integration over S induces
a linear map ∫

S
: H2,c

S → R,

since the integral of dα, for α ∈ Ω1,c
S , vanishes by Stokes’ Theorem.

Proposition 12 If S is a connected, oriented, smooth surface then the map∫
S is an isomorphism from H2,c

S to R.

The proof uses Lemmalem:partun, and the following Lemma.

Lemma 7 Proposition * is true for the case when S = R2.

To prove this, suppose ρ = R(x1, x2)dx1dx2 is a 2-form of compact sup-
port on bR2 with integral 0. Choose a function ψ on R of compact support
and with ∫ ∞

−∞
ψ(t)dt = 1.
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Let
r(x1) =

∫ ∞
−∞

R(x1, t)dt.

Now write
R̃(x1, x2) = R(x1, x2)− r(x1)ψ(x2).

So R̃ also has compact support in R2. For each x1 we have∫ ∞
−∞

R̃(x1, t)dt = 0.

Define
P (x1, x2) =

∫ x2

−∞
R̃(x1, t)dt.

Then P has compact support and

∂P

∂x2

= R̃(x1, x2).

Put
Q(x1, x2) = ψ(x2)

∫ x1

−∞
r(t)dt.

Then Q has compact support and

∂Q

∂x1

= ψ(x2)r(x1).

Thus

R =
∂P

∂x2

+
∂Q

∂x1

,

or in other words ρ = dα where α is the compactly supported form

α = −Pdx1 +Qdx2.

We can now dispose of the proof of Proposition *. It is obvious that the
map

∫
is surjective so what we need to show is that if ρ is a 2-form of a

compact support on a connected, oriented, surface and the integral of ρ is
zero then ρ = dα for some α of compact support. Clearly we can choose a
compact connected set K containing the support of ρ and we can cover K
by a finite number of open sets U1, . . . Un, each the image of a disc under a
local chart. We use induction on n. If n = 1 then we are reduced to the
case when the surface is R2 considered above. So suppose n > 1. Write
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V = U2 ∪ . . . ∪ Un, so K is contained in U ∪ V . If either K ∩ U or K ∩ V is
empty then we are done by the inductive hypothesis, so suppose these two
sets are not empty. Then since K is connected there is a point p in K∩U ∩V
and in particular in U ∩ V . Clearly we can choose a 2-form τ with compact
support contained in the open set U ∩ V . Now apply the Lemma to choose
functions f1, f2 supported in U and V respectively and with f1 + f2 = 1 on
K. Then

ρ = f1ρ+ f2ρ,

and f1ρ, f2ρ have compact support in U, V respectively. Let

I =
∫
S
f1ρ = −

∫
S
f2ρ.

Then f1ρ − Iτ and f2ρ + Iτ are 2-forms with compact support in U and V
respectively and with integral 0. By the inductive hypthesis we can find a
1-form α of compact support on U with dα = f1ρ− Iτ and likewise a 1-form
β of compact support in V with dβ = f2ρ + Iτ . Then ρ = d(α + beta) and
the proof is complete.

Now let γ be a loop in an oriented surface S. Integration around γ yields
a linear map

Iγ : H1(S)→ R.

On the other hand given any closed 1-form θ of compact support we get a
linear map

Jθ : H1(S)→ R

defined by

Jθ([φ]) =
∫
S
θ ∧ φ.

(By Stokes’ theorem the integral on the right hand side is unchanged if we
take a different representative φ for the same cohomology class.)

Proposition 13 For any loop γ there is a compactly supported form θ such
that Jθ = Iγ.

To prove this we choose a subdivision 0 = t0 < t1 < t2 < . . . < tN = 1 of
the unit interval such that for each i with 0 ≤ i ≤ N−1 there is a co-ordinate
chart Ui (diffeomorphic to a disc) containing γ([ti, ti+1]).Choose. We can also
easily arrange that γ(ti) are distinct except for i = 0 and N . (But see the
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remark at the end of the proof). Now choose small discs Di containing γ(ti)
such that

Di ⊂ Ui−1 ∩ Ui.
and with DN = D0, but with Di∩Dj empty unless {i, j} = {0, N}. Let ρi be
a 2-form supported in the interior of Di with integral 1, and with ρN = ρ0.
Then ρ1−ρ0 is a compactly supported form of integal zero on U0 and we can
find a compactly supported form θ0 on U0 such that

ρ1 − ρ0 = dθ0.

Similarly for i ≤ N − 1 we find θi such that

ρi+1 − ρi = dθi.

Now put
θ = θ0 + θ1 + . . .+ θN−1.

Then
dθ = (ρ1 − ρ0) + (ρ2 − ρ1) + . . .+ (ρN − ρN−1)

and this vanishes since ρN = ρ0. We claim that Jθ = Iγ . For let [φ] be a
class in H1(S) we can choose a representative that vanishes on the discs Dj .
Now on one of the open sets Ui we can write φ = dfj for some function f ,
since Ui is diffeomorphic to a disc and H1(Ui) = 0. Thus∫

S
θiφ =

∫
S
θi ∧ dfi =

∫
S
fi(ρi+1 − ρi).

Now since φ vanishes on all the discs Dj the function fi is constant on Di+1

and Di, which contain the supports of ρi+1, ρi respectively. Thus∫
S
θi ∧ φ = fi(γ(ti+1)− fi(γ(ti).

On thge other hand the integral of φ over the portion of the path parametrised
by the sub-interval [ti+1, ti] is the same, since φ = dfi over the image of the
path. Summing over i finished the proof. (Remark: it is not really necessary
that the points γ(ti) are distinct–all we need do is choose ρi = ρj for any
pair pair with γ(ti) = γ(tj).)

Now the linear map Jθ depends only on the class of θ in H1
c (S). In other

words we have a bilinear pairing

H1
c (S)×H1(S)→ R).
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In particular if S is compact, so H1 and H1
c are the same thing, we have

a bilinear form on H1(S) which is obviously skew-symmetric. Suppose Φ is
any class in H1(S). If Φ is not zero we know that we can find a loop γ such
that Iγ(Φ) is non-zero. By the Proposition above we can find a 1-form θ such
that Jθ(Φ) is non-zero. In other words, this bilinear form is nondegenerate.
Since a vector space which supports a nendegenerate skew symmetric form
must be even dimensional we get

Corollary 2 For any compact oriented surface, the de Rham cohomology
H1(S) is even dimensional.

5.3 Calculus on Riemann surfaces

5.3.1 Decomposition of the 1-forms

Now let X be a Riemann surface, so a fortiori a smooth oriented surface.
Thus for each point p in X we have a tangent space TXp—a 2-dimensional
real vector space. We also have a cotangent space

T ∗Xp = HomR(TX,R),

such that the derivative of any real valued function on X yields an element
of T ∗Xp. We may just as well consider the complex cotangent space

T ∗XC
p = HomR(TX,C),

such that the derivative of any complex valued function on X yields an

element of T ∗XC
p .

By a complex structure on a real vector space V we mean a R linear map
J : V → V with J2 = −1.

Lemma 8 There is a unique way to define a complex structure on TXp such
that the derivative of any holomorphic function, defined on a neighbourhood
of p in X, is complex linear.

This follows immediately from the definition of a holomorphic function.
Now let V be a real vector space and J be a complex structure on V . We

say that an R-linear map A from V to C is complex linear if A(Jv) = iAv
for all v, and complex antilinear if A(Jv) = −iA(v) for all v.
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Lemma 9 Any R-linear map from V to C can be written in a unique way
as a sum of a complex linear and antilinear maps

For the existence we write A = A′ + A′′ where

A′(v) =
1

2
(A(v)− iA(Jv)), A′′(v) =

1

2
(A(v) + iA(Jv)),

and check that A′, A′′ are complex linear and antilinear respectively. Unique-
ness is similarly easy.

Putting this together, we see that we can write the complex cotangent
space as a direct sum

T ∗XC
p = T ∗X ′p ⊕ T ∗X ′′p ,

in such a way that if f is a local holomorphic function then the derivative of
f lies in T ∗X ′p and the derivative of f lies in T ∗X ′′p . Now we can decompose
the complex 1-forms on X into corresponding pieces

Ω1
X,C = Ω1,0

X ⊕ Ω0,1
X ,

where elements of Ω1,0 lie in T ∗X ′p for each p and Ω0,1 is the complex conju-
gate.

We now decompose the exterior derivative operators according to this
decomposition of the forms, so we get a diagram

Ω0

Ω2

Ω1,0

Ω0,1

Let us see this more explicitly, in a complex local co-ordinate z = x+ iy.
Thus x, y are real co-ordinates as considered in the previous section. We have

dz = dx+ idy , dz = dx− idy,
and these form basis elements for T ∗X ′, T ∗X ′′ respectively. So a (1, 0) form
is expressed locally as αdz and a (0, 1) form as βz. for functions α, β. If f is
a complex valued function then

df =
∂f

∂x
dx+

∂f

∂y
dy.
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We write

dx =
1

2
(dz + dz), dy =

1

2i
(dz − dz),

so

df =
1

2
(
∂f

∂x
− i∂f

∂y
)dz +

1

2
(
∂f

∂x
+ i

∂f

∂y
)dz.

This means that

∂f =
∂f

∂z
dz , ∂f =

∂f

∂z
dz,

where we define

∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
) ,

∂f

∂z
=

1

2
(
∂f

∂x
+ i

∂f

∂y
).

The equation ∂f = 0 is, in this local co-ordinate, just the Cauchy-Riemann
equation, as of course it should be since by definition a function is holomor-
phic if and only if ∂f = 0. If f is a holomorphic function then we have, in
local coordinates,

df = ∂f = f ′(z)dz,

where f ′ denotes the usual derivative of complex analysis.
Now consider the operators ∂, ∂ on Ω0,1 and Ω1,0. By following through

the definitions we find that, in our local co-ordinate

∂(Adz) =
∂A

∂z
dzdz = 2i

∂A

∂z
dxdy,

∂(Bdz) =
∂B

∂z
dzdz = −2i

∂B

∂z
dxdy.

Definition 8 A (1, 0)-form β is a holomorphic 1-form if ∂β = 0.

Thus in local co-ordinates a holomorphic 1-form has the shape Bdz where B
is a holomorphic function.

Suppose S ⊂ X is a compact surface with boundary and α is a holomor-
phic 1-form on a neighbourhhod of S. Then α is in particular a closed 1-form
so Stokes’ Theorem gives ∫

∂S
α = 0.

This is one version of Cauchy’s Theorem on a Riemann surface.
We define a meromorphic 1-form α on X in the obvious way: a holomor-

phic 1-form on X\D, where D is a discrete subset of X, which can be written
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locally as f(z)dz where f is a meromorphic function. (Of course ones needs
to check that this is independent of the choice of local chart.) The points
of the minimal such set D are the poles of the meromorphic 1-form. Let p
be such a pole and let C be a small loop in X encircling p. We define the
residue of α at p to be

Resp(α) =
1

2πi

∫
C
α.

Clearly this is the same as writing, in a local co-ordinate z centred at p,

α = f(z)dz,

where f(z) =
∑∞
−k ajz

j is a meromorphic function and taking the usual
residue a−1 of f and one can just as well take this as the definition.

Proposition 14 Suppose α is a meromorphic 1-form on a compact Riemann
surface X. Then the sum of the residues of α, running over all the poles, is
zero.

To see this, we let S be the complement in X of a union of small discs about
the poles and apply Cauchy/Stokes’.

5.3.2 The Laplace operator and harmonic functions

On a Riemann surface we have a natural second order differential operator.
We define

∆ = 2i∂∂ : Ω0 → Ω2.

Then in local co-ordinates

∆f = 2i
1

4

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)
f(dzdz) = −

(
∂2f

∂x2
+
∂2f

∂y2

)
dxdy.

Thus if, in a given local co-ordinate system, we identify the 2-forms with
functions using the area form dxdy the operator ∆ becomes the standard
Laplace operator (up to a sign convention). A function satisfying the differ-
ential equation is called a harmonic function. If f is a holomorphic function
then the real and imaginary parts of f are harmonic since

∂∂(f ± f) = −∂∂f ± ∂(∂f) = 0± 0 = 0.

Conversely we have
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Lemma 10 If φ is a real-valued harmonic function on a neighbourhood N
of a point p in a Riemann surface X then there is an open neighbourhood
U ⊂ N of p and a holomorphic function f on U with φ = <(f).

Being local, this is not really different from the corresponding result for
functions on open sets in C which the reader has very likely encountered in
a standard complex analysis course. However it may be helpful to see how
the proof works in our notation.

Let A be the real 1-form i∂φ+ (i∂φ). Then the hypothesis that ∂∂φ = 0
shows that dA = 0. Thus if U is a small disc about p (or any open set with
H1(U) = 0) we can find a real-valued function ψ with A = dψ. This means
that ∂ψ = −i∂φ and ∂ψ = i∂φ. Then

∂(φ+ iψ) = ∂φ+ i∂ψ = 0.

So we can take f = φ+ iψ.
We will also want to use the “maximum principle” occasionally.

Lemma 11 Suppose φ is a non-constant, real valued, holomorphic function
on a connected open set U in a Riemann surface X. Then for a point x in
U there is a point x′ in U with φ(x′) > φ(x).

This can be seen by writing φ, near to x as the real part of a holomorphic
function and then using the fact that holomorphic functions are open maps.

5.3.3 The Dirichlet norm

Let X be a Riemann surface and α be a (1, 0) form on X. We consider the
2-form iα ∧ α. In a local complex co-ordinate z = x+ iy, if α = pdz then

iα ∧ α = i|p|2dzdz = |p|2dxdy.

So iα ∧ α is a positive 2-form. We define

‖α‖2 =
∫
X
iα ∧ α,

taking values in [0,∞]. Of course, if α has compact support the integral is
finite and defines a norm on the space of compactly supported (1, 0) forms.
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This norm (on the compactly supported forms) is derived from a Hermitian
inner product

〈α, β〉 =
∫
X
iα ∧ β.

If we have an area form ω on X we can define a pointwise norm, the
function characterised by

iα ∧ α = |α|2ω.
Then we can write, tautologically,

‖α‖2 =
∫
X
|α|2ω,

This is perhaps a more familar point of view. However the key point is that
the “L2-norm”on (1, 0) forms is actually independent of the choice of an area
form.

We can identify the real 1-forms with the (1, 0) forms by mapping a real
1-form A to its (1, 0) component A1,0. Thus we define

‖A‖2 = ‖A1,0‖2.

Again this norm is associated to a (real valued) inner product < , > on the
compactly supported real 1-forms

〈A,B〉 = i
∫
X
A0,1 ∧B1,0.

In Chapter 10 we will need the following simple result.

Lemma 12 Let A,B be real 1-forms on a Riemann surface X. Then∫
X
|A ∧B| ≤ ‖A‖‖B‖.

(This needs to be interpreted in the obvious way: if either ‖A‖ or ‖B‖ is
infinite then the statement is vacuous, if both are finite then the left hand
side is also finite and the stated inequality holds.) This is, at bottom, very
elementary. Suppose first that A and B are supported inside some local
coordinate chart. Thus we can write A = Pdz + Pdz,B = Qdz + Qdz, for
complex-valued functions P,Q. Then

A ∧B = (PQ−QP )dzdz = =(PQ)dxdy.
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Thus ∫
X
|A ∧B| =

∫
C
|=(PQ)|dxdy.

By the Cauchy-Schwartz inequality∫
X
|A ∧B| ≤

(∫
C
|P |2

)1/2 (∫
C
|Q|2

)1/2

= ‖A‖‖B‖.
Now suppose that A and B are any forms with compact support, both

supported in some compact set K ⊂ X. It is convenient to explain the proof
by choosing an arbitrary area form ω over a neighbourhood of K. The proof
is then essentially the same. We have, pointwise over K,

|A ∧B| ≤ |A||B|ω
and the proof is just the Cuachy-Schwartz inequality (for the functions |A|, |B|
with respect to the measure defined by ω). In the general case, by the defini-
tuion of the integral it suffices to prove that for any function χ of compact
support with 0 ≤ χ ≤ 1 we have∫

X
χ|A ∧B| ≤ ‖A‖‖B‖.

Since χ|A ∧B| = |(χA) ∧B| and (obviously)

‖χA‖ ≤ ‖A‖
, we can reduce to teh case when A has compact support (replacing A by
χA). Suppose A is supported in a compact set J . Then we can choose a
function η, with 0 ≤ η ≤ 1, equal to 1 on J and with compact support.
Replacing B be ηB, which has compact support, does not change the wedge
product with A, and (obviously) ‖ηB‖ ≤ ‖B‖. Thus we can reduce to the
case of forms of compact support, considered above.

Suppose f and g are real-valued functions, at least one of compact sup-
port, on X. We define the Dirichlet inner product to be

〈f, g〉D = 〈df, dg〉.
Likewise we define the Dirichlet norm by

‖f‖D = ‖df‖,
with our usual conventio that this could be +∞. The following will be crucial
in Chapters 9 and 10.
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Lemma 13 If at least one of f, g have compact support then

〈f, g〉D =
∫
X
g∆f =

∫
X
f∆g.

This really amounts to little more than the elementary identity, for func-
tions f, g (at elast one of compact support) on C,

∫
C
f

(
∂2g

∂x2
+
∂2g

∂y2

)
= −

∫
C

(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y

)
dxdy,

which is derived immediately by integration-by-parts. In our notation, on a
general Riemann surface, the proof becomes

〈f, g〉D = 〈df, dg〉 = i
∫
X
∂f ∧ ∂g = i

∫
X
∂(f∂g)− f∂∂g) =

∫
X
f∆g,

where of course we have used Stokes’ Theorem for the vanishing of the integral
of ∂(f∂g).



Chapter 6

Elliptic functions and integrals

In this Chapter we study Riemann surfaces of genus 1. On the one hand,
the constructions will give an important model for the more general theory
we develop in Part II. On the other hand, the constructions involve classi-
cal topics in mathematics, which relate the abstractions of Riemann surface
theory to their origin in concrete calculus problems.

6.0.4 Elliptic integrals

The problem which gives this subject is the name was that of finding the
arc length between two points on an ellipse. However we will take as our
model problem that of finding the motion of a pendulum under gravity. In
suitable units and in an obvious notation, the motion is defined by the energy
conservation condition:

θ̇2 − cos θ = E,

where E is constant. Thus

θ̇ =
√
E + cos θ,

and

t =
∫

dθ√
E + cos θ

.

So the problem reduces to doing this indefinite integral. Writing u = cos θ
this is transformed into

t =
∫

du√
(E + u)(1− u2)

.

77
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More generally, we may consider ∫
du√
f(u)

where f is any polynomial. In the case when f is quadratic we know how to
perform these integrals in terms of elementary functions, the question is what
kind of functiosn arise for polynomials of higher degree, and particularly for
cubic polynomials such as that arising in the pendulum problem.

We now have the language required to interpret this in a better way.
Suppose f(z) is a polynomial of degree n, with distict roots z1, . . . , zn. Let
X ⊂ C2 be the set of solutions of the equation w2 = f(z). The condition
that f has distinct roots means that the partial derivatives of w2 − f(z) do
not both vanish anywhere on X, so X is a Riemann surface. By construction
we have a pair of holomorphic functions z, w on X with derivatives dz, dw.
Since w2 − f(z) vanishes on X we have an identity

2wdw = f ′(z)dz.

Now dz/w is a holomorphic 1-form away from the points where w = 0.
In punctured neighbourhoods of such points we can write

dz

w
= 2

dw

f ′(z)
,

and f ′(z) does not vanish since f has simple roots. So we conclude that dz/w
extends to a holomorphic 1-form α on X. Moreover we see that α does not
vanish anywhere on X.

To summarise so far: when we write an expression such as∫ z1

z0

dz√
f(z

,

what we shoudl really mean is that we choose a path γ on the Riemann
surface X, running from a point with z = z0 to a point with z = z1 and form∫

γ
α.

Now recall that we defined a compactification X∗ of X. We want to
consider the extension of α to X∗. This is a good exercise in the theory
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developed in Chapter 2. We consider two cases, depending on whether n is
odd or even. To construct X∗ we need to examine the monodromy of the
covering around a large circle in C (corresponding to a small circle around
∞ ∈ S2). The monodromy lies in the group S2 of permutations of the two
sheets. Clearly if n is even the monodromy is trivial and if n is odd it is the
nontrivial element of S2. Consider the odd case. We form X∗ by attaching
a single disc to X, adjoining one extra point P say. If

f(z) = zn + a1z
n−1 + . . .+ an,

then in terms of a standard co-ordinate τ on the disc

z = τ−2, w =
√
f(z) = τ−n

√
1 + a1τ 2 . . .+ anτ 2n,

where the square root is well-defined for small τ . Then we have

dz

w
=

(
−2

dτ

τ 3

)(
τn√

1 + a1τ 2 + . . .

)
=

−2√
1 + a1τ 2 + . . .

τn−3dτ.

So we conclude that, if n is odd, α extends to a meromorphic 1-form on X∗

and that:

• If n = 1, α has a pole of order 2 at the point P ;

• if n = 3 then α is holomorphic near P and does not vanish at P ;

• If n > 3 then α is holomorphic near P and has a zero of order n− 3 at
P .

The even case is similar. Now we adjoin two extra points P+, P− say to form
X∗ and the reader can check, as above, that α is meromorphic on X∗ with

• If n = 2 then α has simple poles at P±;

• If n = 4 then α is holomorphic near P± and does not vanish at P±;

• if n > 4 then α is holomorphic near P± and has zeros of order (n−4)/2
at P±.

We want to focus attention on the cases when n = 3 or 4 so α is holomor-
phic on X∗ and does not vanish anywhere. In fact there is no real disticntion
between n = 3, 4 since we can transform one case to the other by a Mobius
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transformation of the Riemann sphere: in either case X∗ is a double cover
of the sphere with four brach points and the distinction is just whether we
choose ∞ to be a branch point (n = 3) or not (n = 4). We change point of
view slightly and prove a general classification theorem.

Theorem 3 Let X be a compact Riemann surface and let α be a holomor-
phic 1-form on X with no zeros. Then there is a lattice Λ ⊂ C and an
isomorphism ι : C/Λ → X such that π∗ι∗(α) = du, where u is the identity
function on C and π : C→ C/Λ is the projection map.

First we sketch the idea of the proof, which is quite simple. We try to
define an indefinite integral of the holomorphic 1-form α. We can perform
the integral along a path in X but the value depends on the end points since
we have a choice of homotopy class of paths. This indeterminacy means that
the indefinite integral is not defined as a C-valued function but it is defined
as a map to C/Λ for a suitable Λ and this map is the inverse of the desired
isomorphism ι.

Now for the detailed proof. Consider the univeral cover p : X̃ → X. The
lift p∗(α) is a holomorphic 1-form on X̃ and, since X̃ is simply connected
the integral of p∗(α) along paths depends only on the endpoints. So we get
a holomorphic map F : X̃ → C with dF = p∗(α). Since α has no zeros the
map F is a local homeomorphism. We claim that F is in fact a covering
map. For each point x ∈ X we can find a radius r > 0 and an injective
holomorphic map jx : Dr → X where Dr is the r-disc {u : |u| < r} in C such
that jx(0) = x and j∗x(du) = α. That is, jx is the inverse of a locally-defined
indefinite integral of α. Since x is compact we can, by a simple argument,
find a single r which works for all x ∈ X. Now suppose x̃ is a point in X̃.
Since the disc is simply connected we can lift jp(x̃) to get an injective map

j̃x̃ : Dr → X̃,

with j̃x̃(0) = x̃ and j̃∗x̃(du) = p∗(α). Let ∆x̃ be the image under j̃x̃ of the disc
Dr/2 of radius r/2. Then by construction F (∆x̃) is the r/2-disc DF (x̃),r/2 in

C centred on F (x̃). Now we observe that, for x̃, ỹ ∈ X̃,

ỹ ∈ ∆x̃ ⇔ x̃ ∈ ∆ỹ.

For if ỹ is in ∆x̃, so ỹ = j̃x̃(v) say for some |v| < r/2 then the whole set ∆ỹ

can be described as
j̃x̃({w : |v − w| < r/2}),
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and this obviously contains j̃x̃(0) = x̃. Now let z be any point in C and
consider the disc Dr/2,z of radius r/2 centred on z. Suppose ỹ is a point of
F−1(Dr/2,z). Then z lies in the r/2 disc centred on F (ỹ) so there is a point
x̃ in ∆ỹ with F (x̃) = z. Equally, by the remark above ỹ lies in ∆x̃ where
F (x̃) = z. So we have

F−1(Dr/2,z) =
⋃

x̃∈F−1(z)

∆x̃.

Suppose that x̃1 and x̃2 are two points in F−1(z) and that ∆x̃1 ∩∆x̃2 is not
empty. Then there is a point ỹ in the intersection. Then by the remark above
x̃1, x̃2 both lie in ∆ỹ but this is a contradiction to the fact that F is injective
on ∆ỹ. So we conclude that the union above is a disjoint union, hence F is
indeed a covering map.

Now since C is simply connected it has no non-trivial connected coverings
and we conclude that F is an isomorphism from X̃ to C. But we know that
X is the quotient of X̃ by an action of π1(X) on X̃. So we conclude that X is
isomorphic to the quotient of C by a group of holomorphic automorphisms.
By the classification of these quotients we see that the only posibility is that
X = C/Λ for some lattice Λ. The identification of the form α follows from
the construction.

To sum up: if f is a cubic polynomial with distinct roots and X∗ is the
compact Riemann surface associated to the equation w2 = f(z) then there
is a lattice Λ ⊂ C and an isomorphism

ι : C/Λ→ X∗.

This can also be regarded as a Λ-periodic map from C to X∗ which can be
written as a pair of meromorphic functions z(u), w(u) on C with

w(u)2 = f(z(u)).

The map has the property that it pulls the holomorphic form dz/w =

dz/
√
f(z) back to the constant form du on C, or equivalently

dz

du
= w =

√
f(z).



82 CHAPTER 6. ELLIPTIC FUNCTIONS AND INTEGRALS

6.0.5 The Weierstrasse function

We now make a fresh start with a lattice Λ in C. We ask the question: can
we find a meromorphic function on C/Λ? Since C/Λ is compact there are
no non-trivial holomorphic functions, so we need to allow poles. Moreover,
since C/Λ is not homeomorphic to the Riemann sphere we must have more
than one simple pole (or a multiple pole) by Corollary *. We can see this
more directly as follows. Let P be a parallelogram forming the standard fun-
damental domain and let Γ be the boundary of P . A meromorphic function
F on C/Λ yields a doubly periodic meromorphic function F̃ on C. There is
no loss in supposing that the no pole of F̃ lies on Γ. Then Cauchy’s Theorem
implies that ∫

Γ
F̃ du

is the sum of the residues of the poles in P . But the double periodicity means
that the integrals around opposite of Γ cancel so we see that the sum of these
residues is zero. In particular we cannot have a single, simple pole.

Following the considerations above we seek a meromorphic function with
one double pole, and we obtain this through the famous Weierstrasse con-
struction. We define ℘ = ℘Λ on C by

℘(u) =
1

u2
+

∑
λ∈Λ\{0}

(
1

(u− λ)2
− 1

λ2

)
.

For any u in C\Λ the sum on the right hand side of this expression converges.
For when |λ| is large (and u is fixed)

1

(u− λ)2
− 1

u2
= O(|λ|−3),

We can compare the sum, over large λ in the lattice, with the double integral∫
|λ|>1
|λ|−3dpdq,

where λ = p+ iq, to see that the sum converges absolutely. It follows easily
that the formula above defines a Λ-periodic meromorphic function on C with
double poles at the points of Λ and no other poles. This then descends to
yield a meromorphic function, which we still call ℘, on C/Λ with one double
pole. Note from the form of the construction that ℘ is an even function:
℘(−u) = ℘(u).
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Now ℘ has a Laurent expansion about 0:

℘(u) =
1

u2
+ 0 + au2 + bu4 + . . . ,

where the vanishing of the coefficient of u0 follows from the shape of the
construction. This gives

℘′′(u) =
6

u4
+ 2a+ . . . ,

so
℘′′ − 6℘2 = −10a+ . . . ,

is a holomorphic Λ-periodic function, hence constant. Thus ℘′′ − 6℘2 = 10a.
We can rewrite this identity as

d

du

(
℘′2
)

=
d

du

(
4℘3 − 20a℘

)
so ℘′2 = 4℘3−20a℘+a′, say, with a′ another constant. Adopting conventional
notation, ℘ satisfies an equation

d℘

du

2

= 4℘3 − g2℘− g3,

for certain constants g2, g3 depending on the lattice.
Exercise Show that

g2 = 60
∑
λ∈Λ′

λ−4

g3 = 160
∑
λ∈Λ′

λ−6

where Λ′ denotes Λ \ {0}.
Now this just expresses the fact that C/Λ arises as the Riemann surface

associated to an equation w2 = f(z) for cubic f so our conclusion is that the
classes of Riemann surfaces obtained in these two ways are identical. Re-
turning finally to our starting point we see that the solution of the pendulum
equation can be written as

θ = cos−1(℘Λ(t+ t0)),

for a suitable lattice Λ.

Exercise. Show that the lattice Λ associated to the pendulum equation
is rectangular, generated by 1 and iq for some q > 0, and that for the physical
solutions the imaginary part of the constant of integration t0 must be q/2.
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Chapter 7

Applications of the Euler
characteristic

We have seen that the genus of a compact oriented smooth surface S can be
defined as one half the dimension of the de Rham cohomology group H1(S).
There are many other possibilities. In particular another way of defining the
genus, in some respects more elementary, uses the Euler characteristic. This
can be done via triangulations of the surface. We do not want to take the
time to develop the theory of triangulations in detail but we will describe this
approach slightly informally here and then develop some applications. The
reader with a suitable background in topology will know how to make the dis-
cussion more rigorous and in any case we will be able to derive the corollaries
as simple consequences of the more advanced theory (the Riemann-Roch for-
mula) later. Howver we give this more elementary discusion now, since we do
not want the reader to gain the impression that these essentially topological
results depend essentially on the rather deeper analysis in Part III.

7.1 The Euler characteristic and meromor-

phic forms

7.1.1 Topology

Suppose we have a surface, posibly with boundary, which is triangulated in
the manner indicated.
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Then the Euler characteristic of the triangulation is defined to be

χ = V − E + F

where V,E, F are the number of vertices, edges and faces respectively. The
first basic fact is that number is independent of the choice of triangulation,
hence defines an integer χ(S) the Euler characteristic of S. It is not hard
to check, for example by defining explicit triangulations, that for the model
surfaces

χ(Σg,r) = 2− 2g − r, χ(Ξh,r) = 2− h− r.
We can define the genus of a closed oriented surface by g = 1 − χ(S)

2
and of

course the next thing we need to know is that this coincides with our previous
definition. If we are willing to accept the classification of surfaces of course
there is no need to have any theory here, since we just need to check for
the model surfaces. But is preferable from many points of view (for example,
extensions to higher dimensions) to understand the result independent of the
clasification of surfaces. In any case, let us assume it from now on.

Now suppose S is a compact oriented surface and that α is a real 1-form
on S. Suppose that the set ∆ ⊂ S where α vanishes is discrete. Given any
point p of ∆ we choose local co-ordinates centred on p and represent α locally
as

α = α1dx1 + alpha2dx2.

Our hypothesis asserts that for small r the only zero of the vector-valued
function (α1, α2) on the closed r-disc about the origin is at the origin itself.
Thus the restriction of this function to a circle of radius r gives a map from
the circle to R2 \ {0} which has an integer winding number. It not hard
to check that this is indpendent of teh choice of r and the local co-ordinate
system. We define the multiplicity mp(α) of the zero p of α to be this winding
number.

Proposition 15 In the situation above∑
p∈∆

mp(α) = −χ(S).
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We sometimes call the sum on the left hand side of this formula the “number
of zeros of α(counted with multiplicity)”. Of course there are many different
ways of building up this theory. For example if one shows that the sum
of zeros (counted with multiplicity) is independent of teh choice of α then
one can use it to define the Euler characteristic, and hence the genus. To
relate this to the count in the definition by triangulations one can consider a
standard 1-form on a triangle given by df where f is the function indicated
by the following picture.

If we have a triangulation of S then we can define a 1-form on S which
restricts to this model on each triangle. There is then one zero for each
vertex, one for each edge and one for each face: the multiplicities are all +1
for the first and third case and −1 for the second. So the “count” of zeros
gives precisely the count of vertices, edges and faces, with the right signs. In
any case what we will assume known is that Proposition * holds true for any
smooth 1-form α with discrete zero-set and where χ(S) = 2− 2g with g the
genus defined in Chapter *.

7.1.2 Meromorphic forms

Now suppose that X is a compact Riemann surface and that α is a holomor-
phic 1-form on X, not identically zero. We associate to this the real 1-form
A = α + α In a local co-ordinate z we write α = f(z)dz; the zeros of A are
the zeros of f hence discrete. Moreover the multiplicity of a zero is a positive
integer, equal to the multiplicity of the zero of f in the usual sense. Hence
in this case Proposition * says that the total number of zeros counted with
these positive multiplicities, is 2g − 2. In particular if g = 0 there can be
no such α and if g = 1, the situation considered in the previous Chapter, a
non-trivial holomorphic form is nowhere vanishing.

We can extend this discussion to meromorphic 1-forms. To do this we fix
an area form ω on X. This means that we can define a Hermitian metric on
T ∗X ′:

ξ ∧ ξ = |ξ|2ω.
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Suppose α is a meromorphic 1-form on X. Choose a real-valued function p
on R with p(t) = 1 for small t and p(t) = t−1 for large t. Now define

α̃ = p(|α|2α,

away from the poles of α and α̃ = 0 at the poles of α. Locally, around a pole
of α, we have

α̃ =
1

|f(z)|2f(z)Rdz = f(z)Rdz

where R is a smooth strictly positive function. Thus tilde α is smooth and
its zero set is the union of the zeros and poles of α. It is clear that the zeros
of α̃ corresponding to the poles of α have multiplicity equal to minus the
order of the pole. Thus we have

Proposition 16 If α is a nontrivial meromorphic 1-form on a compact Rie-
mann surface X then the number of zeros of α minus the number of poles of
α, counted with multiplicity is equal to 2g − 2.

7.2 Applications

7.2.1 The Riemann-Hurwitz formula

Suppose that f : X → Y is a nonconstant holomorphic map between con-
nected compact Riemann surfaces. In Chapter 4 we have associated a multi-
plicity kx to each point of X, equal to 1 except for a finite set of ramification
points. We define the total ramification index to be

Rf =
∑
x∈X

kx − 1.

So this is really a finite sum. We have also defined the degree d ≥ 1 of the
map.The following result, the Riemann Hurwitz formula, is very useful for
calculations

Proposition 17 The genus gXof X and the genus gY of Y are related

2− 2gY = d(2− 2gX)−Rf .
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One way of proving, which we sketch, is to show (or assume depending on
taste) that there is a triangulation of Y such that each branch point of f
is a vertex. Then the triangulation can be “lifted” to a triangulation of Y .
Each face or edge of the triangulation of Y gives rise to d faces or edges of
the triangulation of X. Likewise each vertex of the triangulation of X which
is not branch point gives rise to d vertices in the triangulation of X. On the
other hand a branch point y in Y gives rise to only

d− ∑
x∈f−1(y)

(kx − 1)

vertices in the triangulation of X and so the formula follows from the counting
formulae for the Euler characteristics.

We can give another proof if we suppose that there is a meromorphic 1
form β on Y . (In Part II we shall see that these always exist.) Then f ∗(β)
is a meromorphic 1 form on X. A pole or zero of β which is not a branch
point gives rise to d poles or zeros of f∗(β) on X with same multiplicity. On
the other hand suppose that x is a ramification point so in local co-ordinates
the map f can be represented as z 7→ w = zk, where k = kx > 1. If β is the
given in the w co-ordinate by g(w)dw for some meromorphic g the pull-back
f ∗(β) is

kzk−1g(zk)dz.

If g has a zero of order l ∈ Z (where a negative value of l indiactes a pole
in the obvious way) then zk−1g(zk) has a zero of order kl + k − 1. So the
contribution to the count of zeros/poles of f ∗(β) from the points x in f−1(y)
is ∑

x∈f−1(y)

(kxl + kx − 1) = dl +
∑

x∈f−1(y)

(kx − 1),

since we know that
d =

∑
x∈f−1(y)

(kx − 1).

Then applying * to β and f ∗(β) we obtain the Riemann-Hurwitz formula.

7.2.2 The degree-genus formula

Now suppose that X is a smooth complex curve of degree d in CP2. Recall
that this means that X is defined by a homogeneous polynomial p(Z0, Z1, Z2)
and that not all of the partial derivatives ∂p

∂Zi
vanish at any point of X.
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Proposition 18 The genus of X is given by

gX =
1

2
(d− 1)(d− 2).

For example we have already seen that when d = 1 or 2 the Riemann
surface X is equivalent to the Riemann sphere (genus 0), and when d = 3 to
a complex torus C/Λ (genus 1). Notice that this shows that some compact
Riemann surfaces cannot be realised as smooth curves in CP2, since not all
integers can be expressed as (d− 1)(d− 2)/2.

There are various ways of obtaining the formula in the Proposition. We
will establish the result by contructing a meromorphic form on X and count-
ing the poles and zeros. Suppose for simplicity that the curve X meets the
line at infinity in d distinct points. (It is easy to show that this can be ar-
ranged by a suitable linear transformation of the Zi.) Let P (z, w) be the
polynomial in 2 variables defining the corresponding affine curve X0. We fol-
low the same construction that we used, in a special case, in Chapter 5. Thus
dz, dw represent holomorphic 1-forms on X0 and the identity P (z, w) = 0 on
X0 yields

Pzdz + Pwdw = 0.

At points where Pz, Pw are both non-zero we have

dz

Pw
= −dw

Pz
.

Since, by hypothesis, there are no points on X0 where Pz, Pw both vanish
we obtain a non-vanishing holomorphic 1-form θ on X0 equal to dz/Pw or
−dw/Pz at the points where these are defined. We have to check that θ is
a meromorphic 1-form on X, i.e. that it has at worst poles at the d points
of intersection with the line at infinity, and then count the zeros or poles at
these points.

7.2.3 Real structures and Harnack’s bound

In Chapter 2 we discussed nonorientable surfaces, indeed this was the most
interesting case from the point of view of the classification theorem, but since
then they have dropped out of the picture, mainly because any Riemann
surface is oriented. However non-orientable surfaces do arise naturally in
certain questions, as we will now illustrate.
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In Chapter 3 we have defined the notion of holomorphic maps between
Riemann surfaces. One can just as well define antiholomorphic maps: given
in local complex coordinates by antiholomorphic functions (a function f on
an open set in C is antiholomorphic if f is holomorphic. The composite of
antiholomorphic maps is holomorphic and the composite of a holomorphic
map and an antiholomorphic map is antiholomorphic. We say that a real
structure on a Riemann surface X is an antiholomrphic map σ : X → X with
σ◦σ equal to the identity. The real points XR of such a pair (X, σ) are defined
to be the fixed points of σ. For example the maps σ0, σ1 : C \ {0} → C \ {0}
given by

σ0(z) = z , σ1(z) = −1/z,

are two different real structures on C \ {0}. The real points being the real
axis in one case and the empty set in the other. Each of these extends to
a real structure on the Riemann sphere and S2

R is a copy of a circle in one
case and empty in the other.

Proposition 19 Let (X, σ) be a Riemann surface with a real structure and
x be a point of XR ⊂ X. There is a local holomorphic co-ordinate z around
x in which σ is given by the map z 7→ z.

The proof is an exercise for the reader.
If (X, σ) is a surface with a real structure we can form the quotient space

X/σ. Using the proposition above it is not hard to show

Proposition 20 The space X/σ is a surface with boundary, where the bound-
ary of X/σ can be identified with XR.

(More precisely we should say that X/σ can be endowed with structure of
a surface with boundary.) The quotient X/σ may be orientable or non-
orientable and the boundary may or may not be empty. For example with
the two real structures σ0, σ1 on S2 above S2/σ0 is a disc and S2/σ1 is the
real projective plane RP2.

Now suppose that X is a compact connected Riemann surface with a real
structure σ. Then X/σ is a compact connected surface with boundary. We
have

Proposition 21 The Euler characteristics of X and X/σ satisfy

χ(X) = 2χ(X/σ).
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Just as with the Riemann-Hurwitz formula various proofs are possible.
In terms of triangulations, if we choose a triangulation of X/σ we can lift to
a triangulation of X. Then to each face of X/σ correspond two faces of X
and likewise to each vertex and edge which do not lie in the boundary. On
the other hand each edge and vertex in the boundary of X/σ correspond to
just one edge or vertex in X. But each component of the boundary of X/σ
is a circle, so clearly the numbers of edges and vertices in the boundary are
equal. Then the result follows from simple counting.

Now for any surface with boundary Y with r boundary components we
have

χ(Y ) ≤ 2− r,
with equality in the case when Y is a sphere with r discs removed. If we
accept the classification of surfaces we can read this assertion off from that:
an independent proof is also possible of course. In any case we obtain the
conclusion

Proposition 22 Let X be a compact connected Riemann surface of genus
g. If σ is a real structure on X then the number of components of XR is at
most g + 1.

This follows immediately from the discussion above, since if r is the number
of components of XR we have

1− g =
1

2
χ(X) = χ(X/σ) ≤ 2− r

since r is also the number of boundary components of X/σ.
Equality holds in the case when σ is the reflection map acting on the

standard picture of a surface of genus g, and the quotient is a sphere with
g + 1 discs removed.

.
To give a concrete application of this, suppose that P is a polynomial in

two variables with real co-efficients. Then, regarded as a complex polynomial,
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P defines an affine curve in C2 and a projective curve X in CP2. Suppose for
simplicity that these are smooth. Complex conjugation of the co-ordinates
induces a real structure on X and the set XR just corresponds to the points
of the corresponding real projective curve in RP2. So we have Harnack’s
bound

Proposition 23 Let p be a homogeneous polynomial with real co-efficients
and degree d in three variables with the property that the corresponding com-
plex projective curve is smooth. Let Γ ⊂ RP2 be the real projective curve de-
fined by p. Then the number of components of Γ is at most 1

2
(d−1)(d−2)+1.

(It is not hard to remove the hypothesis on the smoothness of the complex
projective curve.)

7.2.4 Modular curves

In Chapter 3 we introduced the modular curves Xa, the quotients of the
upper half plane by the group Γa. From the definition it was not clear how
to say much about these. We will now see how to understand the topology
of these Riemann surfaces, for simplicity we restrict to the case when a is
prime.

Proposition 24 If p is a prime number, not equal to 2, then there is a
compact Riemann surface Xp of genus

g = 1 +

(
(p− 6)(p2 − 1)

24

)

with a subset ∆ ⊂ Xa containing (p2−1)/2 points, such that Xp is equivalent
to the complement Xp \∆.
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Part III

Deeper Theory

95





Chapter 8

Meromorphic functions and the
Main Theorem for compact
Riemann surfaces

This Section does not contain much technical content but is crucial in ex-
plaining our strategy for proving the fundamental structural results about
Riemann surfaces. For motivation, we can review the discussion of surfaces
of genus 1 in the previous section. Suppose we have a general compact Rie-
mann surface X of genus 1. We can show that X is equivalent to one of the
family of surfaces studied in the previous Chapter if we can show either:

• That there is a meromorphic function with a double pole (or two single
poles) on X. This then represents X as a two sheeted cover of the
Riemann sphere with four branch points.

or

• That there is a nowhere-vanishing holomorphic 1-form on X. Then we
can apply Theorem * to see that X is a complex torus C/Λ.

This motivates our task, which is to get a good understanding of the ex-
istence of meromorphic functions, holomorphic 1-forms and the relationship
between these for general compact Riemann surfaces.

Recall that on any Riemann surface X we have the “square” of differential
operators *. We define complex vector spaces

H0,0
X = Ker∂ : Ω0 → Ω0,1.
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H1,0
X = Ker∂ : Ω1,0 → Ω2.

H0,1
X = Coker∂ : Ω0 → Ω0,1.

H1,1
X = Coker∂ : Ω1,0 → Ω2.

Thus H0,0
X , H1,0

X are the spaces of holomorphic functions and holomorphic 1-
forms respectively. The significance of the other groups is not so clear. What
we want to do now is to explain how H0,1

X arises naturally when one attempts
to construct meromorphic functions.

Let p be a point in X. We ask the question: is there a meromorphic
function on X with a simple pole at p and no other poles? Let z be a local
co-ordinate centred on p. Thus 1

z
can be regarded as a meromorphic function

on some open neighbourhood U of p. We introduce a cut-off function β; a
smooth function supported in U and equal to 1 near p. Then β 1

z
can be

thought of as a function on X \ p, extending by zero outside U . Finding
a meromorphic function with a pole at p is equivalent to finding a smooth
function g on X such that g + β 1

z
is holomorphic on X \ p. Now

A = ∂(β
1

z
) = (∂β)

1

z

has compact support in X \ {p} since β equals 1 near p. So we can regard
A as a (0, 1) form on X, extending by zero over p. Thus our problem is
equivalent to solving the equation

∂g = −A
for the given element A of Ω0,1

X and the unknown g ∈ Ω0
X . By definition, a

solution exists if and only if the class [A] in the quotient H0,1
X = Coker∂ =

Ω0,1/Im∂ is zero. In particular, a solution will exist if H0,1
X = 0. Even if a

solution does not exist, the class [A] is, up to multiplication by a non-zero
scalar, a well-defined element of H0,1

X associated to the point p in X. For
if φ is any smooth function on X \ {p} which restricts to a meromorphic
function with a pole at p on some neighbourhood of p then for a suitable
choice of λ ∈ C the difference φ − λβ 1

z
extends to a smooth function on X

(holomorphic near p) so

[∂φ] = λ[A] ∈ H0,1
X .

Now suppose that we have d distinct points p1, . . . pd in X. We ask if
we can find a meromorphic, but not holomorphic, function on X with poles
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at some, or all, of the pi and no other poles. We follow through the same
procedure as before, choosing local co-ordinates around the pi to get (0, 1)
forms Ai, which we can take to be supported in small disjoint annuli around
the pi if we like. The same argument as before shows that we can find the
desired meromorphic function if there are scalars λi, not all zero, such that

λ1[A1] + . . .+ λd[Ad] = 0 ∈ H0,1
X .

Given such a linear relation we get a meromorphic function with poles at the
points pj for which λj 6= 0. In particular we have

Proposition 25 Suppose H0,1
X has finite dimension h. Then given any h+1

points p1, . . . , ph on X there is a non-holomorphic meromorphic function on
X with simple poles at some subset of the p1, . . . , ph.

This is just because there must be a non-trivial linear relation between any
h+ 1 elements of H0,1

X .
The discussion aboves shows how we can cast our problem in terms of the

spaces H0,1
X but it does not by itself get as very far. To go further we need

some much deeper input and we will formulate this in terms of the following
“Main Theorem for compact Riemann surfaces” (not standard terminology):

Theorem 4 Let X be a compact connected Riemann surface and let ρ be a
2-form on X. there is a solution f to the equation ∆f = ρ if and only the
integral of ρ over X is zero.

We will give a proof of this Theorem in the next section, but let us see some
consequences first.

8.1 Consequences of the main theorem

The relation between the “Dolbeault cohomology” H i,j and the de Rham
cohomology H i can be summarised as follows We have the following natural
maps

• A map σ : H1,0 → H0,1 induced by α 7→ α.

• A bilinear map

B : H1,0 ×H0,1 → C,
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defined by

B(α, [θ]) =
∫
X
α ∧ θ.

(This is well defined since changing the representative θ to θ + ∂f
changes the integral by∫

X
α ∧ ∂f = −

∫
X
∂(fα),

which vanishes by Stokes’ Theorem.)

• A map i : H1,0 → H1 defined by mapping a holomorphic (hence closed)
1-form to its cohomology class.

• A map ν : H1,1 → H2 defined to be the natural map indced from the
inclusion Im : ∂ : Ω0,1 → Ω2 ⊂ Im : d : Ω1 → Ω2,

Theorem 5 Let X be a compact connected Riemann surface.

1. The map σ induces an isomorphism from H1,0 to H0,1.

2. The pairing B induces an isomorphism H0,1 ∼= (H1,0)∗.

3. The map H1,0 ⊕H0,1 → H1 defined by

(α, θ) 7→ i(α) + i(σ−1(θ))

is an isomorphism.

4. The map ν : H1,1 → H2 is an isomorphism.

The proofs are entirely straightforward applications of the main theorem.
To show that σ is surjective we start with any class [θ] in H0,1. We want
to find a representative θ′ = θ + ∂f such that ∂θ = 0. For this means that
α = overlineθ′ is a holomorphic 1-form and [θ] = −σ(α). Thus we want to
solve the equation

∂∂f = −∂θ.
Since ∂∂ = 1

2
i∆ the main theorem tells us that we can solve this equation

provided the integral of ∂θ vanishes, but this is so by Stokes’ theorem.
Now the composite of the map i with the bilinear pairing B is up to factor

the Hermitian form
〈α, β〉 =

∫
X
α ∧ alpha
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which we know is positive definite. It follows that the map i must be injective
and in turn that B is a dual pairing. We leave the other parts as an exercise
for the reader.

We see in particular from the Corollary that both H1,0, H0,1 are complex
vector spaces of dimension g. Thus the genus, which was initially a topolog-
ical invariant appears also as teh crucial numerical invariant of the complex
geometry of a Riemann surface.

We can give some simple consequences of the above.

Corollary 3 Any compact Riemann surface X with H1(X) = 0 is equivalent
to the Riemann sphere.

Corollary 4 Any compact Riemann surface with g = 1 is equivalent to a
torus C/Λ.

Corollary 5 Let X be a compact riemann surface of genus g and let p1, . . . , pg
be distinct points on X. Then there is a non-constant meromorphic function
on X with poles at some subset of the pi.
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Chapter 9

Proof of the Main Theorem

9.1 Discussion and motivation

We will now embark on the proof of our main analytical result, thm:mainthm
for compact Riemann surface. Before getting to work we give some prelim-
inary discussion. The Theorem really consists of the three statements, on a
compact connected Riemann surface X,

• If there is a solution to the equation ∆φ = ρ then the integral of ρ is
zero.

• If there is a solution it is unique up to the addition of a constant.

• Conversely if ρ is a form of integral 0 we can find a solution φ.

The first and second of these three statements are very easy to prove, so
the real content is the third statement. The first statement follows immedi-
ately from Stokes’ Theorem, since for any φ,∫

X
∆φ = 2i

∫
X
∂∂φ = 2i

∫
X
d(∂φ) = 0.

The second statement is equivalent to the assertion that the only har-
monic functions—solutions of the equation ∆f = 0—are the constants. One
can see this in two ways: either by the maximum principle for harmonic func-
tions or by considering the Dirichlet integral. For the first one considers a
point in X where f is maximal, which exists by the compactness assumption,
and applies the maximum principle at that point. For the second one writes∫

X
|df |2 =

∫
X
f∆f = 0,

103



104 CHAPTER 9. PROOF OF THE MAIN THEOREM

when ∆f = 0. Thus df vanishes everywhere on X and f is a constant. These
two proofs of the uniqueness are both very simple but the two approaches
are manifestations of two different approaches—via the maximum principle or
Dirichlet integral— which can be taken to the whole theory. To illustrate this
consider a problem which is closely related to that considered our Theorem,
the solution of the Dirichlet boundary value problem. Here we consider a
bounded domain Ω ⊂ C with smooth boundary ∂Ω and a given function g
on the boundary. The problem is to solve the equation ∆φ = 0 in Ω with
the boundary condition that φ has a continuous extension to Ω, equal to g
on the boundary. Supposing that a solution φ exists one can show that it is
characterised by two different extremal properties.

1. For each x in Ω,

φ(x) = min{ψ(x) : ψ|∂Ω = g,∆ψ ≥ 0}.

2. The function φ minimises
∫

Ω |∇ψ|2 over all functions ψ on Ω with
ψ|∂Ω = g.

Conversely, one can prove the existence of a solution φ by showing that such
extremal functions exist. Both of these approaches have their own merits and
generalise in different ways. The line we will take in the proof of the Main
Theorem, and the further results in the next Chapter, will follow the Dirichlet
integral approach, closest to the heuristic arguments originally employed by
Riemann.

The equation ∆φ = ρ is, in local co-ordinates, the Poisson equation
which may be familiar from potential theory in Rn. In this vein, one can
obtain some physical intuition into why the main theorem should be true,
as follows. In this discussion we will anticipate a result proved in Chapter
13, that an oriented surface in R3 is naturally a Riemann surface. Suppose
the Riemann surface X arises this way. We get a standard area form on
X, so we can identify the 2-forms and the functions. Think of this surface
in R3 as being made of a thin metal sheet and the function φ as being the
temperature distribution over the sheet. The function ρ represents some
externally imposed source or removal of heat, varying over the surface. Then
the Poisson equation ∆φ = ρ is the equation for a steady-state temperature
distribution, and the content of our Theorem is that if the integral of ρ is
zero—so there is no overall gain or loss of heat—then such a temperature
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distribution exists. One can also think about this in terms of the time-
dependent heat equation

∂φ

∂t
= ρ−∆φ.

Here φ is now a function on X×[0,∞) while we still suppose that ρ is constant
in time. One can prove analytically, in line with ones physical intuition, that
if the integral of ρ is zero then for any initial temperature distribution this
heat equation has a solution which converges as t→∞ to a solution of . the
Poisson equation.

One case in which the Theorem can be proved easily is that of a torus.
Suppose for example that X is the quotient of C by the “square” lattice
2πZ ⊕ 2πiZ. We take standard real angular co-ordinates θ1, θ2 on X and
identify functions with 2-forms in the obvious way. Any smooth function on
X can be written as a c=double Fourier series

f =
∑
n,m

fnme
inθ1+imθ2 .

The Laplacian of such a function is

∆f =
∑

(n2 +m2)fn,me
inθ1+imθ2 ,

and the integral of f , with respect to the standard area form, is 4π2f00. Thus
if ρ has integral zero we can write down the solution to the Poisso equation
in the form

φ =
∑

(m,n) 6=(0,0)

1

m2 + n2
ρmne

imθ1+nθ2 ,

where ρmn are the Fourier coefficients ofρ.
As a final remark, it is worth pointing out that our Theorem fits into a

wider setting of elliptic differential operators on compact manifolds. We do
not pause to explain what is meant by an elliptic operator: suffice it to say
that this is a class of linear differential operators which includes the Laplace
operator ∆ as a particular case. If L is any linear differential operator over
a compact manifold, and if we choose appropriate volume forms etc., there
is a formal adjoint operator L∗, characterised by the fact that for any f, g

〈Lf, g〉 = 〈f,L∗g〉,
where 〈 , 〉 denotes the L2 inner product. Then the main result is that if L
is elliptic one can solve the equation

Lφ = ρ
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if and only if ρ is orthogonal, in the L2 sense, to the kernel of L∗. In the
Riemann surface situation of Theorem *, if we choose a an area form on the
surface to identify functions and 2-forms the formal adjoint of the Laplacian
is the same operator, ∆∗ = ∆, so the kernel of ∆∗ consists of the constant
functions and the condition that ρ be orthogonal to this kernel is just that
the integral of ρ is zero.

9.2 The Riesz representation theorem

We will now begin the proof. As we have said above, our approach will hinge
on the Dirichlet integral and an efficient way to build this in to the argument
uses the language of Hilbert spaces. Recall that we have defined the Dirichlet
norm and inner product on functions on X. The norm and inner product
are unchanged if we modify our functions by the additions of constants. We
let C∞(X)/R be the vector space obtained by dividing out by the constant
functions, so the norm and inner product descend to this quotient. Then we
have

Proposition 26 The Dirichlet norm and inner product make C∞(X)/R
into a pre-Hilbert space.

(Our notation will sometimes blur the distinction between a function on
X and the equivalence class in C∞(X)/R which it represents. Note that if
we fix a metric, i.e. area form, on X we can identify C∞(X)/R with the
space of functions on X of integral zero.)

Now suppose that ρ is a 2-form on X. For any functions φ, ψ on X we
have∫
X
ψ(ρ−∆φ) =

∫
X
ψρ−

∫
X
ψ∆φ =

∫
X
ψρ−

∫
X
∇φ.∇ψ =

∫
X
ψρ− 〈φ, ψ〉D.

By a simple, standard, argument the equation ∆φ = ρ is equivalent to the
condition that for all functions ψ we have∫

X
ψ(ρ−∆φ) = 0.

Thus the content of
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Theorem 6 :mainthm can be reformulated as the assertion that, when
∫
X ρ =

0 there is a function φ such that∫
X
ψρ = 〈ψ, φ〉D,

for all ψ ∈ C∞(X). To write this more compactly, define

ρ̂(ψ) =
∫
X
ρψ.

Then, if the integral of ρ is zero, this induces a linear map

ρ̂ : C∞(X)/R→ R,

and our problem is to find a φ such that

ρ̂(ψ) = 〈ψ, φ〉D
for all ψ.

In this formulation, our problem falls into the class covered by the well-
known Riesz representation theorem from Hilbert space theory.

Theorem 7 Let H be a real Hilbert space and σ : H → R be abounded linear
map (so there is a constant C such that |σ(x)| ≤ C‖x‖ for all x ∈ H). Then
there is a z ∈ H such that

σ(x) = 〈z, x〉,
for all x in H.

For a proof see almost any elementary functional analysis text book
With all this background in place, we can see that the proof of * divides

into two parts. First, we want to put ourself into the position where we
can apply the Riesz represention theorem and for this we need a Hilbert
space. Thus we let H be the abstract completion of our pre-Hilbert space
C∞(X)/R, under the Dirichlet norm ‖ ‖D. A point of H is an equivalence
class of Cauchy sequences (ψi) in C∞(X)/R under the equivalence relation
(ψi) ∼ (ψ′i) if ‖ψi − ψ′i‖D → 0. The crucial thing we need now is

Theorem 8 The functional ρ̂ : C∞(X)/R→ R is bounded: there is a con-
stant C such that |ρ̂(ψ)| ≤ C‖ψ‖D for all ψ in C∞(X)/R.
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Assuming this for the moment, it follows that ρ̂ extends to a bounded
linear map from H to R (which we still denote by ρ̂. (The proof is just to
observe that for any Cauchy sequence (ψi) in C∞(X)/R the sequence ρ̂(φi)
is Cauchy in R so we can define the extension of ρ̂ by taking the limit.) So
we can apply the Riesz representation theorem and we conclude that there
is a φ in the completion H with ρ̂(ψ) = 〈φ, ψ〉D for all ψ. An object of this
type is called a weak solution to our problem and the other part of the proof
of Theorem * is to establish

Theorem 9 If ρ is a smooth 2-form on X of integral zero then a weak so-
lution φ in H of * is smooth, i.e. lies in the subset C∞(X)/R of H.

9.3 The heart of the proof

The foundation of our proof of Theorem * will be a result from calculus of
two real variables. Suppose Ω is a bounded, convex, open set in R2. (For
our applications it suffices to consder the case of a circular disc). Let A be
the area of Ω and d be its diameter.

Theorem 10 Let ψ be a smooth function on an open set containing the
closure Ω and let ψ denote the average

ψ =
1

A

∫
Ω
ψdµ,

where dµ is the standard Lebesgue measure on R2. Then for x ∈ Ω we have

|ψ(x)− ψ| ≤ d2

2A

∫
Ω

1

|x− y| |∇ψ(y)|dµy.

(Here the notation is supposed to indicate that the variable of integration on
the right hand side is y ∈ Ω.)

To prove this there is no loss in supposing that the point x is the origin
in R2 (applying a translation in R2) and that ψ(0) is zero (changing ψ by
addition of a constant). We work in standard polar co-ordinates (r, θ) on the
plane. Thus we can write

ψ =
1

A

∫ 2π

0

∫ R(θ)

0
ψ(r, θ)rdrdθ,
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where R(θ) is the length of the portion of the ray at angle θ lying in Ω.
(Here we use the fact that Ω is convex.) Now if we introduce another radial
variable ρ we can write, for each (r, θ)

ψ(r, θ) =
∫ r

0

∂ψ

∂ρ
dρ,

using the fact that ψ vanishes at the origin. So now we have

ψ =
1

A

∫ 2π

0

∫ R(θ)

0

∫ r

ρ=0
ρ
∂ψ

∂ρ
r
∂ψ

∂ρ
dρdrdθ.

We interchange the order of the r and ρ integrals, so

ψ =
1

A

∫ 2π

0

∫ R(θ)

ρ=0

(∫ R(θ)

r=ρ
rdr

)
∂ψ

∂ρ
drdθ.

The innermost integral is

∫ R(θ)

r=ρ
rdr =

1

2
(R(θ)2 − r2)

which is positive and no larger than R(θ)2

2
, while, by definition, R(θ) ≤ d.

Thus

|ψ| ≤ d2

2A

∫ 2π

0

∫ R(theta)

0

1

ρ
|∂ψ
∂ρ
|ρdρdθ.

The modulus of the radial derivative ∂ψ
∂ρ

is at most that of the full derivative
∇ψ, so switching back to a co- ordinate free notation we have

|ψ| ≤ d2

2A

∫
Ω

1

|y| |∇ψy|dµy,

as required.

Corollary 6 Under the hypotheses above

∫
Ω
|ψ(x)− ψ|2dµx ≤ d2π

2A

∫
Ω
|∇ψ|2dµ.
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To prove this, and for later use, we recall the notion of the convolution of
functions on R2. The convolution of functions f, g is defined by

(f ∗ g)(x) =
∫

R2
f(y)g(x− y)dµy,

The operation * is commutative and associative and if ‖ ‖T is any translation-
invariant norm on functions on R2 we have

‖f ∗ g|T ≤ ‖f‖L1‖g‖T ,
where ‖f‖L1 is the usual L1 norm

‖f‖L1 =
∫
R2
|f |dµ.

In particular this holds when ‖ ‖T is the L2 norm

‖g‖2
L2 =

∫
R2
|g|2dµ.

(Strictly we should specify what class of functions we are considering in the
definition of the convolution, but this will be clear in the different contexts
as they arise.)

To prove the corollary, we define

K(x) =
d2

2A

1

|x| for |x| < d,

and K(x) = 0 if |x| ≥ d. This has a singularity at the origin but is neverthe-
less an integrable function and

‖K‖L1 = 2π
d2

2A

∫ d

0
dr =

d3π

A
.

Define a function g on R2 by

g(y) = |∇ψ|2(y),

if y ∈ Ω and g(y) = 0 if y /∈ Ω. Then K ∗ g is a positive function on R2 and
Theorem * asserts that for all x ∈ Ω,

|ψ(x)− ψ| ≤ |(K ∗ g)(x).
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It follows that∫
Ω
|ψ(x)− ψ|2dµx ≤ ‖K ∗ g‖2

L2 ≤ ‖K‖2
L1‖g‖2

L2 ≤
(
d3π

A

)2

‖∇ψ‖2
L2 ,

as asserted.
We can now prove *. We begin with the case when ρ is supported in

a single coordinate chart in our Riemann surface, which we identify with a
bounded convex set Ω in C = R2. Working in this local coordinate system
we use the Lebesgue area form to identify functions and 2-forms, so ρ can be
regarded as a function of integral zero supported on Ω. Likewise, a function
ψ on X can be regarded as defining a function, which we also call ψ, on a
neighbourhood of Ω in C and we can write

ρ̂(ψ) =
∫

Ω
ρψdµ.

Now since the integral of ρ is zero we also have

ρ̂(ψ) =
∫

Ω
ρ(ψ − ψ)dµ,

and by the Cauchy-Schwartz inequality

|
∫

Ω
ρ(ψ − ψ)dµ| ≤ ‖ρ‖L2(Ω)‖ψ − ψ‖L2(Ω).

Using * we then deduce that

|ρ̂(ψ)| ≤ C‖∇ψ‖L2(Ω),

where C = d3πA‖ρ‖L2(Ω). Finally

‖∇ψ‖L2(Ω) ≤ ‖∇ψ‖L2(X) = ‖ψ‖D
which completes the proof of * in this case.

To treat a general 2-form ρ on X, of integral zero, we recall from * that
integration over X defines an isomorphism from H2(X) to R, so we can
write ρ = dθ for some 1-form θ on X. We fix a cover of X by a finite number
of coordinate charts Uα ⊂ X of the kind considered above, and choose a
partition of unity χα subordinate to this cover. Put ρα = d(χαθ). Then each
ρα is supported in the corresponding coordinate chart Uα and∫

X
ρα =

∫
X
d(chiαθ) = 0
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On the other hand

ρ = dθ = d((
∑

χα)θ) =
∑

ρα.

Our previous argument shows that each of the linear maps ρ̂α is bounded
and so ρ̂ =

∑
ρ̂α is also (as a finite sum of bounded linear maps).

9.4 Weyl’s Lemma

Suppose that φ is an element of H which is a weak solution to our problem
in the sense explained above. That is, we have a sequence of functions φi on
X which is Cauchy with respect the Dirichlet norm and, for any ψ

〈φi, ψ〉 → ρ̂(ψ),

as i tends to infinity. We want to see first that we can identify the abstract
object φ with a function (up to a constant) on X, where initially this function
will just be locally in L2 (i.e. represented by an L2 function, in the ordinary
sense, in any local co-ordinate chart). To do this we consider first any fixed
co-ordinate chart, identified with Ω ⊂ C, as above. We can suppose, after
changing the φi by the addition of suitable constants, that the integrals of
the φi over Ω vanish and then, by cor:poinc, we have

‖φi − φj‖L2(Ω) ≤ C‖φi − φj‖D.
Hence φi gives a Cauchy sequence in L2(Ω) which converges to an L2 limit by
the completeness of L2. We claim now that this same sequence φi converges
localy in L2 over all of X. We will give the argument in a form which will
work equally well in the generalisation considered in the next Chapter. Let
A be the set of points x in X with the property that there is a co-ordinate
chart around x in which φi converges to φ in L2. Then A is non-empty by
the preceding discussion and A is open in X from the nature of its definition.
Since X is connected, the complement of A is not open, so either A = X or
there is a point y which is in the closure of A but not in A. But in the latter
case we could find a coordinate neighbourhood Ω′ about y and a sequence of
real numbers c′i such that φi − ’̧i converges in L2 over Ω′. But now there is
a point x in A ∩ Ω′ and on a small neighbourhood of x both φi and φi − c′i
converge in L2. This means that c′i tends to 0 as i→∞, so in fact y is in A
after all, a contradiction.
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To sum up we now have a function φ on X which is locally in L2 and
which is a weak solution to the equation ∆φ = ρ. We need to show that φ
is smooth. Since smoothness is a local property we can fix attention on a
single co-ordinate chart. What we need is a version of “Weyl’s lemma”

Proposition 27 Let Ω be a bounded open set in C and ρ be a smooth 2-form
on Ω. Suppose is an L2 function on Ω with the property that for any smooth
function χ of compact support in Ω∫

Ω
∆χφ =

∫
Ω
χρ.

Then φ is smooth and satisfies the equation ∆φ = ρ.

The proof will involve a number of steps. The first step is to reduce to the
case when ρ is zero. Since smoothness is a local property it suffices to prove
that φ is smooth over any given interior set Ω′, where we suppose that the ε
neighbourhood of Ω′ is contained in Ω. Then we can choose a ρ′ equal to ρ on
a neighboorhoos of the closure of Ω′ and of compact support in Ω. Suppose
we can find some smooth solution φ′ of the equation ∆φ′ = ρ′ over Ω. Then
ψ = φ− φ′ will be a weak solution of the equation ∆ψ = 0 on Ω′. If we can
prove that ψ is smooth then so will φ be.

To find the smooth solution ψ′ we use the “Newton potential” in two
dimensions:

K(x) =
1

2π
log |x|.

Of course this is not defined at x = 0 but K is well-defined as a locally
integrable function on C. For any smooth function f of compact support in
C the convolution

K ∗ f(x) =
∫
K(y)f(x− y)dµy,

is defined and K ∗ f is smooth.

Lemma 14 • If σ has compact support in C then K ∗ (∆σ) = σ.

• If f has compact support then ∆(K ∗ f) = f .

This Lemma essentially expresses the stadard fact that convolution with K
furnishes an inverse to the Laplace operator. To prove the first assertion we
may, by translation invariance, calculate at the point x = 0. Then

(K ∗∆σ)(0) =
∫ 1

2π
log(|y vert)(∆σ)ydµy.
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Now ∆ log |y vert vanishes on C \ {0}. We write the integral as the limit
as δ tends to zero of the integral over the set where |y| ≥ δ.We then use
Green’s identity to write this as a boundary integral and then take the limit
as δ tends to zero. The argument is rather stabdard so we do not give more
details.

For the second part we write

(K ∗ f)(x) =
∫
K(y)f(x− y)dµy.

When we take the Laplacian with respect to x there is no problem in moving
the differential operator inside the integral, since f is smooth and x does not
appear inside the argument of K. Thus

∆(K ∗ f) =
∫
K(y)∆xf(x− y)dµy,

where the notation means that we take the Laplcian with respect to x. But
this is just the same as K ∗∆f , which is equal to f by the first part.

We have now reduced to the case when ρ = 0 so, changing notation, let
us suppose that φ is a weak solution of ∆φ = 0 on Ω and seek to prove
that φ is smooth on the interior domain Ω′, with the ε-neighbourhood of
Ω′ contained in Ω. The argument now exploits the mean value property
of smooth harmonic functions. This says that if ψ is a smooth harmonic
function on a neighbourhood of a closed disc then the value of ψ at the
centre of the disc is equal to the average value on the circle boundary. Fix
a smooth function β on R with β(r) constant for small r and vanishing for
r ≥ ε and such that

2π
∫ ∞

0
rβ(r)dr = 1.

Now let B be the function B(z) = β(|z|) on C. Then B is smooth and has
integral 1 over C (with respect to ordinary Lebesgue measure). Suppose first
that ψ is a smooth harmonic function on a neighbourhood of the closed ε-disc
centred at the origin. Then we have∫

C
B(−z)ψ(z)dµz =

∫ ∞
0

∫ 2π

0
rβ(r)ψ(r, θ)dθdr = 2πψ(0)

∫ ∞
0

rβ(r)dr = 1

where we have switched to polar coordinates and used the mean value prop-
erty ∫ 2π

0
ψ(r, θ)dθ = ψ(0).
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Now the integral above is just that defining the convolution B ∗ ψ at 0. By
translation invariance we obtain the following

Proposition 28 Let ψ be a smooth function on C and suppose that ∆ψ is
supported in a compact set J ⊂ C. Then B ∗ ψ − ψ vanishes outside the
ε-neighbourhood of J .

We see in particular from this that if our function φ on Ω is smooth we must
have B ∗φ = φ in Ω′. Conversely, for any L2 function φ the convolution B ∗φ
is smooth. So proving the smoothness of φ in Ω′ is equivalent to establishing
the identity B ∗ φ = φ in Omega′. To do this we proceed as follows. It
suffices to show that for any smooth test function χ of compact support in
Ω′ we have

〈χ, φ− B ∗ φ〉 = 0,

where we are writing 〈 , 〉 for the usual “inner product”

〈f, g〉 =
∫
fgdµ.

We use the fact that for any functions f, g, h in a suitable class

〈f, g ∗ h〉 = 〈g ∗ f, h〉.
This follows by straightforward re-arrangements of the integrals. We will
not bother to spell out conditions on the functions involved, since it will the
validity of the identity will be fairly obvious in our applications below.

Put h = K ∗ (χ − B ∗ χ) = K ∗ χ − B ∗K ∗ χ. Now K ∗ χ is a smooth
function on C and ∆K ∗χ = χ by the Lemma above. Thus ∆K ∗χ vanishes
outside the support of χ, and hence by the Proposition above B∗K ∗χ equals
K ∗χ outside the ε-neighbourhood of the support of χ. Thus h has compact
support contained in Ω. So we can use h as a test function in the hypothesis
that ∆φ = 0 weakly, i.e. we have

〈∆h, φ〉 = 0.

But ∆h = ∆K ∗ (χ−B ∗ χ) = χ−B ∗ χ by the Lemma above (since χ and
B ∗ χ have compact support). So we see that

〈χ− B ∗ χ, φ〉 = 0.

But applying the identity above again this gives

〈χ, φ− B ∗ φ〉 = 0,

as desired.
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Chapter 10

The Uniformisation Theorem

10.1 Statement

In this chapter we prove

Theorem 11 Let X be a connected, simply connected, non-compact Rie-
mann surface. Then X is equivalent to either C or the upper half-plane
H.

Corollary 7 Any connected Riemann surface is equivalent to one of

• The Riemann sphere S2;

• C or C/Z = C \ {0} or C/Λ for some lattice Λ;

• A quotient H/Γ where Γ ⊂ PSL(2,R) is a discrete subgroup acting
freely on H,

The Corollary follows because any Riemann surface is a quotient of its
universal cover by an action of its fundamental group, and we have seen that
the only compact simply connected Riemann surface is the Riemann sphere.

Our proof of thm:unif will follow the same general pattern as the one we
have already given to classify compact simply connected Riemann surface,
but the noncompactness will require some extra steps. Most of our work goes
into the proof of an analogue of the “Main Theorem”. To state this, recall
that if φ is real-valued function on a non-compact space X and c is a real
number we say that φ tends to c at infinity in X if for all ε > 0 there is a
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compact subset K of X such that |φ(x) − c| < ε if x is not in K. We say
that φ tends to +∞ at infinity in X if for all A ∈ R there is an compact set
K ⊂ X such that φ(x) > A if x is not in K (and we say that φ tends to −∞
at infinity in X if −φ tends to +∞).

Theorem 12 Let X be a connected, simply-connected, non-compact Rie-
mann surface. Then if ρ is a (real) 2-form of compact support on X with∫
X ρ = 0 there is a (real valued) function φ on X with ∆φ = ρ and such that
φ tends to 0 at infinity in X.

We now show that thm:potdecay implies thm:unif. Choose a point p ∈ X
and a local complex co-ordinate z around p. Using the same notation as in
Section 5, we put

A = ∂(
β

z
)

where β is a cut-off function, so A is a (0, 1)-form supported in an annulus
around p. We put ρ = ∂A, so ρ is a complex-valued 2-form with integral
zero, by Stokes’ Theorem. By the result (applied to the real and imaginary
parts of ρ) we can find a complex-valued function g with ∂∂g = ρ, and with
the real and imaginary parts of g tending to 0 at infinity in X. Now let a be
the real 1-form

a = (A− ∂g) + (A− ∂g).

By construction ∂(A − ∂f) = 0 and this means that da = 0. So, since
H1(X) = 0, there is a real-valued function ψ with a = dψ. This means that
A = ∂g + ∂ψ. Hence

∂(
β

z
− (g + ψ)) = 0

on X \ {p}. Hence f = g+ψ is a meromorphic function on X with a simple
pole at p and the imaginary part of f tends to zero at infinity in X, since ψ
is real. (Strictly the imaginary part of f is not a function on X since f has
a pole, but the meaning should be clear—to be precise we could say that the
imaginary part of f tends to 0 at infinity on X \D where D is an open disc
about p.)

The meromorphic function f is a holomorphic map from X to the Rie-
mann sphere S2 = C∪{∞}. Let H+, H− denote the (open) upper and lower
half-planes in C. Let X± be the preimages f−1(H± in X. So X+ and X−
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are open subsets of X and X+ ∪X− is dense in X, since f is an open map.
The restrictions of f gives holomorphic maps

f± : X± → H±.

We claim that f+ and f− are proper maps. For if B is a compact subset of
H+, say, there is an ε > 0 such that =(z) > ε for all z in B. The fact that
the imaginary part of f tends to zero at infinity implies that f−1(B) is a
compact subset of X, but this is the same as f−1

+ (B) ⊂ X+.
We know that f yields a local homeomorphism from a neighbourhod of

p in X to a neighbourhood of ∞ in S2. What we see first from this is that
X+, X− are both non-empty. So we have degrees d+, d− ≥ 1 of f+, f−. We
claim that d+ = d− = 1. To see this we apply the condition that =(f) tends
to zero at infinity to find a compact set K in X such that =(f)(x) < 1 if x
is not in K. Suppose the degree of f+ is at least 2. Then for each integer
n ≥ 1 we can find a pair of points xn, x̃n ∈ X+ such that f(xn) = f(x̃n) = in
and either xn, x̃n are distinct or xn = x̃n and the derivative of f vanishes at
xn. The choice of K means that xn, x̃n lie in this compact set, so we can
find a subsequence {n′} such that xn′ and x̃n′ converge to limits x, x̃. Since
the points in, regarded as points of the Riemann sphere, converge to ∞, we
must have f(x) = f(x̃) = ∞ and since f has just one pole we must have
x = x̃ = p. But now we get a contradiction to the fact that f is a local
homeomorphism, with non-vanishing derivative, on a neighbourhhod of p.

So now we know that f maps X± bijectively to H± in C. We claim next
that f is an injection from X to S2. For if x1, x2 are distinct points of X
with f(x1) = f(x2) = Z ∈ S2 we can find disjoint open discs D1, D2 about
x1, x2 and a neighbourhood N of Z ∈ S2 such f(D1), f(D2) each contain N .
Now pick a point Z ′ in N ∩ H+. There are distinct points x′1, x

′
2 in D1, D2

which map to Z ′ and this contradicts the fact that f is injective on X+.
Now we know that f maps X injectively to an open subset U of the

Riemann sphere, containing H+ ∪H− ∪ {infty}. That is

U = S2 \ I
for some compact subset I of R. Thus f yields an equivalence between X
and this subset U . If I has more than one component then π1(U) is non
trivial which would contradict the fact that X is simply connected. So we
conclude that either

1. I is proper closed interval [a, b] for a < b, or,
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2. I is a single point in R.

This completes the proof, since in the first case it is easy to write down a
holomorphic equivalence between S2 \ [a, b] and the upper half plane and
in the second case it is obvious that the complement of any point in the
Riemann sphere is equivalent to C.

10.2 Proof of the analogue of the Main The-

orem

10.2.1 Set-up

We now turn to the proof of thm:potdec. In the proof we will make use of
two facts which we state now.

Proposition 29 Let X be a connected, simply connected, non-compact sur-
face. Then for any compact set K ⊂ X the complement X \K has exactly
one connected component whose closure is not compact.

(Remark: one says that a surface which satisfies the condition in the second
sentence of this Proposition has “only one end”. Thus the statement is that
a simply connected surface has only one end.)

Our second fact involves calculus on surfaces. Recall from Chapter 5 the
notion of the “modulus” |ρ| of a 2-form.

Proposition 30 Let S be a smooth oriented surface and let F : S → R2 be
a smooth map. Then for any compact set K in S

µ(F (K)) ≤
∫
S
|F ∗(dx1dx2)|,

where x1, x2 are standard co-ordinates on R2 and µ denotes Lebesgue measure
on R2.

(Of course we need to know here that F (K) is a Lebesgue measureable
subset of R2 but this follows from general facts that will be discussed later.)

We hope that each of prop:oneend and prop:areabound are, in different
ways, intuitively plausible, at least, and we postpone the proofs so that we
can get on with the main argument.
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To prove thm:potdecay we adopt the same strategy as for the proof of
the “Main Theorem” in the compact case. There is one crucial additional
step required (in subsection (10.2.3) below) but to set this stage for this we
will need to prove a number of elementary, but slightly delicate, preliminary
results (in subsection (10.2.2)).

First, just as before we can reduce to the case when the 2-form ρ is
supported in a co-ordinate disc D about p (this occurs anyway for our appli-
cation). We consider the vector space Ω0

c of compactly supported real valued
functions on X with the Dirichlet norm

‖f‖2
D = i

∫
∂f ∧ ∂f.

Notice that this is now a genuine norm, since the constant functions do not
have compact support. The proof that the functional ρ̂ is bounded goes
through just as before. We let be the completion of Ω0

c under this norm
and the Riesz representation theorem gives an element ψ say of H such that
ρ̂(f) = 〈f, ψ〉D. Just as before we can find a sequence fi in Ω0

c converging to
ψ in H and a sequence of constants ci ∈ R such that ψi = fi + ci converges
in L2 over some co-ordinate disc. Again, the same argument as before shows
that fi+ci converges in L2 over any co-ordinate disc. We should note however
that ψi need not have compact support. The same argument as before shows
that ψ is smooth and satisfies the desired equation ∆φ = ρ. What we achieve
at this stage in the argument is summarised by the following Proposition.

Proposition 31 Let ρ be a 2-form of integral 0 supported in a co-ordinate
disc D. There is a smooth function φ on X which satisfies the equation
∆φ = ρ, and a sequence φi of smooth functions on X which have the following
properties

1. There are real numbers ci and compact sets Bi ⊂ X such that φi = ci
outside Bi.

2. For any 1-form α of compact support on X the norms ‖(φ−φi)α‖ tend
to zero as i tends to infinity.

3. The norms ‖dφ− dφi)‖ tend to zero as i tends to infinity.
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What should be clear now is that the only essentially new thing required
to prove thm:potdecay is to arrange that φ tends to zero at infinity in X.
Of course it is equally good to arrange that φ tends to a finite constant c
at infinity, since we can replace φ by φ − c. Notice here that there is an
exceptional case when the derivative of φ vanishes outside a compact set.
In that case prop:oneend implies immediately that φ tends to a constant at
infinity and we are done. So we can suppose that the derivative of φ does
not vanish on any open set in X \ supp(ρ).

We also note here

Lemma 15 label:compeq Let J be any compact set in X. There is a sequence
φi satisfying the conditions of prop:summup and with φi = φ on J .

To see this let χ be a smooth function of compact support, equal to 1 on
J . Given φi and φ as in prop:summup, we define

φ′i = χφ+ (1− χ)φi = φi + χ(φ− φi).
Thus f ′i = φ′i − ci have compact support, since φi = φ′i outside the fixed
compact set supp(χ) and φ′i = φ on Γ. We have

dφ′i − dφi = χ(dφ− dφi) + (dχ)(φ− φi),
and it follows that

‖f ′i − fi‖D → 0

as i → ∞. This means that the sequence φ′i has the same properties (as
required in prop:summup) as φi.

10.2.2 Classification of behaviour at infinity

We begin with an elementary Lemma, which applies to functions on any
non-compact space.

Lemma 16 Suppose φ is a continous function on X then one of the following
four statements holds

1. There is a constant c ∈ R such that φ tends to c at infinity in X;

2. φ tends to +∞ at infinity in X;

3. φ tends to −∞ in X;
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4. There are real numbers α, β with α < β such that φ−1((−∞, α]) and
φ−1([β,∞) are both noncompact subsets of X.

To prove this, let

A− = {t ∈ R : φ−1(−∞, t] iscompact}.
Clearly if t− is in A− then any t < t− is also in A−. Symmetrically, put

A+ = {t ∈ R : φ−1[t,∞) iscompact}.
Then for any elements t± ∈ A± we must have t− < t+ otherwise φ−1(R) = X
would be compact, a contradiction.

Define c− = supA− and c+ = inf A+ with the convention that c− = −∞
if A− is empty and c+ = +∞ if A+ is empty. Thus, with obvious conventions
involving ±∞, we have c− ≤ c+.

Suppose c− = c+ is a finite value c ∈ R. Then for any ε > 0 we have
c± ε ∈ A± so φ−1(−∞, c− ε] and φ−1[c+ ε,∞) are compact and |φ− c| ≤ ε
outside the union of these two compact sets, which is compact. Thus φ tends
to c at infinity in X. Likewise if c− = c+ = ±∞ we find that φ tends to ±∞
at infinity in X.

Suppose c− < c+. Then we can find real numbers α, β with c− < α <
β < c+ and by definition φ−1(−∞, α] and φ−1([β,∞) are noncompact.

Now in our situation if φ tends to any real number c at infinity we can
replace φ by φ− c to get a solution to our problem. Thus our task is to rule
out the other three possibilities in Lemma *.

Lemma 17 The function φ does not tend to +∞ at infinity in X.

Suppose it did and let C be the maximum value of φ on the compact set
supp(ρ). Then the set K = φ−1(−∞, C + 1] is compact. The points in
K \ supp(ρ) where the derivative of φ vanishes form a discrete set (since
a harmonic function is locally the real part of a holomorphic function). It
follows that we can find some t0 ∈ (1/2, 1) such that the derivative of φ
does not vanish on φ−1(t0) (since we only need to avoid a finite number of
points). Then K0 = φ−1(−∞, C + t0] is a compact surface with boundary in
X, containing the support of ρ in its interior. Now, by Stokes Theorem,∫

K0

∆φ =
∫
∂K0

dφ.
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On the one hand the integral on the left is zero (since it equals the integral
of ρ) and on the other hand the boundary integral on the right is strictly
positive since the derivative of φ does not vanish.

Of course the same argument shows that φ does not tend to −∞, so our
task is to rule out the fourth possibility in Lemma *.

For α ∈ R we write Yα = φ−1(∞, α].

Lemma 18 Any compact connected component of Yα intersects supp(ρ).

This is a simple consequence of the maximum principle. Suppose Z is a
compact connected component which does not meet supp(ρ). There is a
point x in Z which minimises φ over Z and then the maximum principle
implies that this can only happen if the derivative of φ vanishes near x,
contrary to our assumption.

Remark One can also argue as follows. Suppose for simplicity that Z
has a smooth boundary then∫

Z
∂φ ∧ ∂φ =

∫
∂Z

(φ− α)∂φ = 0.

It is not hard to handle the case when the boundary of Z is not smooth, but
the maximum principle argument is easier here.

Lemma 19 For any point q in Yα which is not in supp(ρ) and any neigh-
bourhood N of q there is an open disc Dq centred on q and contained in N
such that Yα ∩Dq is path-connected.

This is rather obvious. We write the function φ− α as the real part of a
holomorphic function in a neighbourhood of q. Then this function is given
in a suitable holomorphic co-ordinate as zk and the set

{z ∈ C : |z| < 1 : <(zk) ≤ 0}

is path connected.

Proposition 32 Suppose Yα is not compact. Then there is non-compact
path-connected subset of Yα.
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Let D′ ⊂ D be an open interior disc whose closure lies in D and such
that D′ contains the support of ρ. In our local coordinate about p we can
take D to correspond to |z| < 1 and D′ to |z| < r, for some finxed r < 1.
Let C be the circle corresponding to |zvert = (1 + r)/2. It follows from
lem:obvious that we write the intersection Yα ∩ C as the union of finitely
many pieces C1, . . . CN say such that any two points in the same Cj can be
joined by a path in Yα \ D′. (We cover the compact set Yα ∩ C by finitely
many small discs of the form Dq considered in the Lemma.) Now consider the
path connected components of Yα \D′. Notice that by lem:obvious these are
the same as the connected components. If one of these is components is non-
compact we are done. So suppose all these components are compact. Since
D′ has compact closure and Yα is not compact, there must be infinitely many
different compact components of Yα \ D′. The circle C divides X into two
connected components one of which is a disc D′′ containing p. Any compact
component of Yα \D′ must either intersect the circle C or lie entirely within
the disc D′′, for otherwise it lies in X \D′′ and gives a compact component
of Yα which does not meet supp(ρ). Contradicting Lemma *. The union of
the components lying in D′′ is contained in a compact set—the closed disc
D′′. So there must be infinitely many different components which intersect
C. But two of these must meet the same subset Cj and hence we get a
contradiction since the points in Cj can be joined by paths in Yα \D′.

Putting together our results from this subsection we have

Proposition 33 Either φ tends to a finite limit at infinity in X, or there
are real numbers α < β and non compact, closed, path connected subsets
Zα, Zβ ⊂ X such that φ(x) ≤ α for x ∈ Zα and φ(x) ≥ β for x ∈ Zβ.

10.2.3 The main argument

Our task now is to show that the second alternative of prop:summupmore
does not occur, so we suppose it does and argue for a contradiction. Fix
points xα ∈ Zα, xβ ∈ Zβ and a compact path-connected set Γ containing xα
and xβ (for example the image of some path between the two points. By
lem:compeq there is no loss of generality in supposing that φi = φ on Γ.

Our preparations are now complete. For each i neither of the noncompact
sets Zα, Zβ can be contained in the compact set supp(fi). Moreover they must
intersect a noncompact component of X \supp(fi) and by prop:oneend there
is only one such component. Thus there is a path in X \ supp(fi) joining
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point yα of Zα to a point yβ of Zβ. Let γi : [0, 1]→ X be a loop in X starting
and ending at xα of the following form:

• On the interval 0 ≤ t ≤ 1/4, γi traces out a path from xα to xβ in the
set Γ.

• On the interval 1/4 ≤ t ≤ 1/2, γi traces out a path in Zβ from xβ to
yβ.

• On the interval 1/2 ≤ t ≤ 3/4, γi traces out a path in X \supp(ρ) from
yβ to yα.

• On the interval 3/4 ≤ t ≤ 1, γi traces out a path in Zα from yα to xα.

Since X is simply connected this loop is contractible, so we can find a
compact set Ki ⊂ X, containing the image of γi, such that γi is contractible
in Ki.

Now consider the smooth map F : X \R2 defined by

F (x) = (φ(x), φi(x)).

Then the composite F ◦ γ is a loop in R2 with the properties that

• For 0 ≤ t ≤ 1/4, F ◦ γ maps into the diagonal {(x, x)} in R2.

• For 1/4 ≤ t ≤ 1/2, F ◦ γ maps into the half plane {(x1, x2) : x1 ≥ β}.
• For 1/2 ≤ t ≤ 3/4, F ◦ γ maps into the horzontal line {(xi, ci)}.
• For 3/4 ≤ t ≤ 1, F ◦ γ maps into the half-plane {x1, x2) : x1 ≤ α}.
Let Z be the subset of R2 given by

Z = {(x1, x2) : α < x1 < β,min(x1, ci) < x2 < max(x1, ci).

There are possible pictures for Z, depending whether c lies between α and
β , above β or below α. Howver it is elementary to see that in any case the
area satisfies

µ(Z) ≥ 1

4
(β − α)2.

The conditions on our loop F ◦ γ imply that it does not meet Z. Now we
have
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Lemma 20 If P is any point of S the winding number of F ◦ γ around P is
equal to ±1.

This is straightforward algebraic topology.

Corollary 8 F maps the compact set K ⊂ X onto Z.

This follows because if P is not in the image F (K) the composite of F with a
contraction of γ would give a contraction of F ◦ γ in R2 \ {P}, contradicting
the homotopy invariance of the winding number.

Now we can apply prop:areabound to deduce that the integral of the
modulus of the form F ∗i (dx1dx2) must be at least 1

4
(β2−α2) = δ say. Writing

F ∗i (dx1dx2) = dφ ∧ dφi
we can state a conclusion to our preceding arguments as follows.

Corollary 9 If φ does not tend to a finite limit at infinity in X, then there
is some δ > 0 such that for each i∫

X
|dφ ∧ dφi| ≥ δ.

Now we write
dφ ∧ dφi = (dφ− dφi) ∧ dφi

and apply Lemma * from Chapter 5 to get∫
X
|dφ ∧ dφi| ≤ ‖dφ− dφi‖‖‖dφi‖,

but this tends to zero by cor:summup and we have the desired contradiction.


