Topology of manifolds: problems

TO BE FORMALLY ASSESSED FOR THE COURSE PLEASE SEND SOLUTIONS (PREFERABLY IN TEX) TO s.donaldson@imperial.ac.uk BY JANUARY 7th. 2013. IT IS NOT INTENDED THAT YOU ANSWER ALL QUESTIONS (SOME ARE OPEN-ENDED). YOU SHOULD CHOOSE SOME WHICH SEEM INTERESTING AND PRACTICAL FOR YOU AND AIM TO PRODUCE A REASONABLE AMOUNT OF WORK.

Question 1. Let M be the 3 -manifold obtained by +3 surgery on the trefoil knot.

- Show that $\pi_{1}(M)$ has a presentation $\left\langle x, y: x^{3}=y^{2}=(x y)^{2}\right\rangle$.
- Let $\Gamma \subset S O(3)$ be the symmetries of a regular tetrahedron, a group of order 12. Let $\tilde{\Gamma}$ be the pre-image of Γ under the double covering $S U(2) \rightarrow$ $S O(3)$. Thus $\tilde{\Gamma}$ has order 24. Construct a homomorphism from $\pi_{1}(M)$ onto $\tilde{\Gamma}$.
- Show that M is diffeomorphic to the quotient $S U(2) / \tilde{\Gamma}=S O(3) / \Gamma$.
(Warning: one has to be careful with signs. The "right-handed" and "left handed" trefoil knots are not equivalent by an orientation-preserving diffeomorphism of S^{3}. I hope this sign (+3) fits with the picture of the trefoil used in the lectures.)

Question 2.

- Let Y be the blow-up of $\mathbf{C P}^{2}$ at a point. Construct a fibration of X with base and fibre S^{2}. By considering the intersection form, or otherwise, show that X is not diffeomorphic to $S^{2} \times S^{2}$.
- Show that the blow-up of $\mathbf{R P}^{2}$ (defined algebraically in the obvious way) at one point is diffeomorphic to the Klein bottle.

Question 3. Let $P_{k}\left(z_{0}, z_{1}, w_{0}, w_{1}, w_{2}\right)$ be a generic complex polynomial which is homogeneous of degree 3 in the w_{i} and of degree k in the z_{i}. (So for example a monomial $z_{0} z_{1} w_{0}^{2} w_{1}$ would qualify as a term in P_{2}.) Show that P_{k} defines a zero set V_{k} in $\mathbf{C P}{ }^{1} \times \mathbf{C P}^{2}$.

- Show that V_{1} is diffeomorphic to $X=\mathbf{C P}{ }^{2} \sharp 9 \overline{\mathbf{C P}}^{2}$.
- Show that V_{k} is diffeomorphic to the fibre sum of k copies of X, as defined in lectures.
- Investigate what happens in the real case.

Question 4.
Suppose M is a manifold and $\alpha \in H^{p}(M), \beta \in H^{q}(M), \gamma \in H^{r}(M)$. We want to consider a situation where the cup products $\alpha \beta$ and $\beta \gamma$ are both zero. We will work with real co-efficients using the de Rham representation of cohomology via differential forms, although this is not essential. So we choose representative differential forms a, b, c for α, β, γ and the hypothesis is that $a b=d \phi$ and $b c=d \psi$ for some forms ϕ, ψ.

- Show that $\phi c+(-1)^{p+1} a \psi$ is a closed form.
- Show that this construction gives a class $\langle\alpha ; \beta ; \gamma\rangle$ in $H^{p+q+r-1}(M) / L$ where $L=\gamma H^{p+q-1}+\alpha H^{q+r-1}$, which depends only on α, β, γ. (This is the "Massey product".)
- Develop a version of this definition, for classes represented by manifolds, using intersection theory.
- Let $M \subset S^{3}$ be the complement of the Borromean link. This is a wellknown link with three components K_{1}, K_{2}, K_{3}. By Alexander Duality H^{1} has rank 3 with 3 generators $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and H^{2} has rank 2 with three generators P_{1}, P_{2}, P_{3} modulo the relation $P_{1}+P_{2}+P_{3}$. Show that $\alpha_{i} \alpha_{j}=0$ and that the Massey product $\left\langle\alpha_{1} ; \alpha_{2} ; \alpha_{3}\right\rangle$ is not zero.

Question 5

- Let $E \rightarrow B$ be a complex vector bundle so it has Chern classes $c_{i}(E)$. Let $E_{\mathbf{R}}$ be the same bundle regarded as a real vector bundle (forgetting the complex structure). Show that $p_{1}\left(E_{\mathbf{R}}\right)=2 c_{2}(E)-c_{1}(E)^{2}$.
- With E and B as above suppose that E has rank n and B is a closed oriented manifold of dimension $2 n$. Show from the definition of the Chern classes that $\left\langle c_{n}(E),[M]\right\rangle$ coincides with the number of zeros of a generic section of E, counted with signs. (In other words $c_{n}(E)$ is the Euler class of $E_{\mathbf{R}}$.)
- Suppose X is a closed oriented 4-manifold with an almost complex structure (i.e. a bundle map $I: T X \rightarrow T X$ with $I^{2}=-1$, compatible with the orientation); so its tangent bundle has a first Chern class $c \in H^{2}(X ; \mathbf{Z})$. Show that $c^{2}=2 \chi(X)+3 \sigma(X)$.

Question 6
Construct a fibration $\mathbf{C P}^{3} \rightarrow S^{4}$ and use this to show that $\mathbf{C P}^{3}$ is an oriented boundary. (Hint: think of S^{4} as $\mathbf{H P}{ }^{1}$.)

Question 7

Let T be the tangent bundle of $\mathbf{C P}{ }^{n}, H \rightarrow \mathbf{C P}{ }^{n}$ the dual of the tautological bundle and $\underline{\mathbf{C}}^{q}$ the trivial bundle of rank q. Establish an isomorphism

$$
T \oplus \underline{\mathbf{C}}^{1}=H \otimes \underline{\mathbf{C}}^{n+1}
$$

Hence show that $\sum c_{i}(T)=(1+h)^{n+1}$, where $h=c_{1}(H) \in H^{2}\left(\mathbf{C P}^{2}\right)$ Use this to calculate the Pontrayagin classes of $\mathbf{C P}{ }^{n}$ and thus to verify the Hirzebruch formula for $\mathbf{C P}^{4}, \mathbf{C P}{ }^{2} \times \mathbf{C P}^{2}$.

Question 8

Use a similar approach to the previous question to show that if T is the tangent bundle of $\mathbf{H P}^{n}$ then

$$
\sum p_{i}(T)=(1+u)^{2 n+2} /(1+4 u)
$$

where $u \in H^{4}\left(\mathbf{H P}^{n}\right)$ is a standard generator. Calculate the Hirzebruch polynomial L_{3} and verify the signature theorem for $\mathbf{H P}{ }^{3}$.

Question 9.
By considering the sphere S^{n} as embedded in \mathbf{R}^{n+k}, construct a homomor$\operatorname{phism} J: \pi_{n}(S O(k)) \rightarrow \pi_{n+k}\left(S^{k}\right)$.

Question 10.
Let M^{n} be a compact manifold with trivial tangent bundle.

- Show that the manifolds underlying the groups $U(d), S O(d)$ have trivial tangent bundles.
- Show that M can be embedded in \mathbf{R}^{n+k} for large k with trivial normal bundle.
- Show that a choice of trivialisation of $T M$ yields a well defined element of the stable homotopy group $\pi_{n+k}\left(S^{k}\right) \quad k \gg 0$.

Question 11.

Rohlin's Theorem (in not the most general form) states that if X is a closed oriented simply connected 4 -manifold such that $\alpha . \alpha$ is even for every $\alpha \in H_{2}(X ; \mathbf{Z})$ then the signature $\sigma(X)$ is divisible by 16 .

Suppose that there is a smooth embedded 2 -sphere Σ representing the class $3 h \in H_{2}\left(\mathbf{C P}^{2}\right)$ (where h is the standard generator, the class of a projective line). Show that one could then define an embedded 2 sphere $\tilde{\Sigma}$ in $Y=\mathbf{C} \mathbf{P}^{2} \sharp 10 \overline{\mathbf{C P}}^{2}$ such that $\alpha^{2}=\tilde{\Sigma} . \alpha$ modulo 2 , for any class $\alpha \in H_{2}(Y ; \mathbf{Z})$ and $\tilde{\Sigma} . \tilde{\Sigma}=-1$. Show that in that case $Y=X \sharp\left(\overline{\mathbf{C P}}^{2}\right)$ for a simply connected 4 -manifold X and use Rohlin's Theorem to obtain a contradiction to the existence of such a surface Σ.

Question 12. Let $K \subset S^{3}$ be a knot and N a tubular neighbourhood. The knot is called a fibred knot if there is a fibration $S^{3} \backslash N \rightarrow S^{1}$ with connected fibre F which restricts on $\partial N=T^{2}$ to a standard fibration $T^{2} \rightarrow S^{1}$. In this situation we have a monodromy $\mu: F \rightarrow F$. This has an action $\mu_{*}: H_{1}(F) \rightarrow H_{1}(F)$. Set $P(t)=\operatorname{det}\left(\mu_{*}-t 1\right)$.

- Show that $P(t)$ has even degree $2 g$ and the co-efficients p_{i} satisfy $p_{2 g-i}=$ p_{i}. The Laurent polynomial $\Delta(t)=t^{-g} P(t)$ is the normalised Alexander polynomial of K.
- Show that for any coprime p, q the p, q torus knot

$$
K_{p, q}=\left\{(z, w) \in S^{3} \subset \mathbf{C}^{2}: z^{p}=w^{q}\right\}
$$

is a fibred knot.

- When $p=2, q=3$ (so the knot is the trefoil) compute g, the action μ_{*} and the Alexander polynomial.
- More ambitiously, you could try to do the same for general p, q.

Question 13.
Let X_{0}, X_{1} be simply connected oriented 4-manifolds and W be an h-cobordism from X_{0} to X_{1}. Suppose that there is a Morse function f on W with critical points of indices 2,3 only. Suppose that for each critical point x of index 2 we have $f(x)<1 / 2$ and for each critical point y of index 3 we have $f(y)>1 / 2$.

- Show that the number of critical points of index 3 is the same as the number of index 2 .
- Show that there are integers a, b such that $X_{0} \sharp a \mathbf{C P}{ }^{2} \sharp b \overline{\mathbf{C P}}^{2}$ is diffeomorphic to $X_{1} \sharp a \mathbf{C} \mathbf{P}^{2} \sharp b \overline{\mathbf{C P}}^{2}$.
- In fact if X_{i} have the same intersection form the hypotheses above are met. In particular we can take X_{0} to be the K3 surface X and $X_{1}=X_{K}$ to be the manifold obtained using Fintushel-Stern knot surgery based on a knot $K \subset S^{3}$. An interesting (ambitious) project would be to find what numbers a, b are required above. There may well be research papers which consider this.

