GEOMETRIC ANALYSIS SECTIONS 5,6
 London School of Geometry and Number Theory 2021

Simon Donaldson ${ }^{1}$
${ }^{1}$ Department of Mathematics Imperial College

March 9, 2021

Section 5. Calabi-Yau metrics

- The equations we have studied so far in this course have a simple nonlinear structure linear + lower order.
- We have considered situations with a favourable sign.

Recall that if $\mathcal{F}=0$ is any PDE and u is a solution we have a linearised operator $\mathcal{F}(u+t f)=t L(f)+O\left(t^{2}\right)$. The nonlinear PDE is said to be elliptic at the solution u if L is a linear elliptic operator (of the same order as \mathcal{F}).

For example a Monge-Ampère equation

$$
\operatorname{det}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)=1
$$

The linearised operator is

$$
L(f)=\sum U^{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

where $U^{i j}$ is the matrix of co-factors of the Hessian $u_{i j}$ of u. This is elliptic if and only of $u_{i j}$ is positive or negative definite: i.e. $\pm u$ is strictly convex.
The nonlinear PDE is not elliptic at a solution like $x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ on \mathbf{R}^{3}.

In this section we discuss complex Monge-Ampère equations which, in local complex co-ordinates, involve the analogous expression

$$
\operatorname{det}\left(\frac{\partial^{2} u}{\partial z_{a} \partial \bar{z}_{b}}\right) .
$$

But we consider a global setting, on a compact complex n-manifold M.

Review of some complex geometry.

- A Hermitian metric on M corresponds to a positive $(1,1)$ form ω. The volume form of the metric is $\omega^{n} / n!$.
- The canonical line bundle of M is $K_{M}=\Lambda^{n} T^{*} M$, so sections are ($n, 0$) forms.
- Giving a Hermitian metric on the canonical line bundle is equivalent to giving a volume form on M.
- A Kähler metric is one with $d \omega=0$. The Kähler metrics in a given cohomology class $\left[\omega_{0}\right] \in H^{2}(M ; \mathbf{R})$ are parametrised by Kähler potentials

$$
\omega_{\phi}=\omega_{0}+i \bar{\partial} \partial \phi
$$

- The total volume of M with a Kähler metric is determined by the cohomology class.
- We have the Laplacian formula

$$
-\frac{1}{2} \Delta f\left(\omega^{n}\right)=n i \bar{\partial} \partial f \wedge \omega^{n-1}
$$

- The Ricci curvature of a Kähler metric ω is Hermitian, so can be identified with a $(1,1)$ form ρ. This is $-i$ times the curvature form of the connection on K_{M} induced by the volume form $\omega^{n} / n!$.

We consider the question of prescribing the volume form of a Kähler metric. (Calabi, 1954.)

Fix a cohomology class $\left[\omega_{0}\right]$ and let V be the corresponding total volume. Write $d \mu_{0}=\omega_{0}^{n} / n!$. Given a positive function F with

$$
\int_{M} F d \mu_{0}=V
$$

we want to solve the PDE

$$
\left(\omega_{0}+i \bar{\partial} \partial \phi\right)^{n}=F d \mu_{0} . \quad(C Y)
$$

In local coordinates this has the shape

$$
\operatorname{det}\left(g_{a b}+\frac{\partial^{2} \phi}{\partial z_{a} \partial \bar{z}_{b}}\right)=g F
$$

where $g_{a b}$ is the matrix corresponding to ω_{0} and g is its determinant.

The main result (Yau's Theorem, 1978) is that there is always a solution ϕ, unique up to a constant.

The most important application is to the case when M is a Calabi-Yau manifold, i.e. K_{M} is trivial so there is a nowhere vanishing holomorphic n-form Θ. The curvature associated to a Hermitian metric on K_{M} with $|\Theta|=1$ is zero. Regarding this metric on K_{M} as a volume form and scaling suitably we get a metric in any Kähler class with zero Ricci curvature.

When K_{M} is a negative or positive line bundle one can seek Kähler-Einstein metrics, with Ricci $=\lambda g$ where $\lambda= \pm 1$. This leads to equations

$$
\left(\omega_{0}+i \bar{\partial} \partial \phi\right)^{n}=\Gamma_{0} e^{\lambda \phi}, \quad(K E \pm)
$$

for a positive function Γ_{0} determined by ω_{0}.

Digression. Geometry of the space of Kähler potentials

Let \mathcal{H} be the set of Kähler potentials $\left\{\phi: \omega_{\phi}>0\right\}$.
(If the Kähler class is 2π times an integral class, \mathcal{H} can be identified with a set of metrics on a holomorphic line bundle $L \rightarrow M$.)
Let H be the set of positive Hermitian forms on \mathbf{C}^{N}. This has two natural geometries:
(1) H is a convex set in the vector space of Hermitian matrices.
(2) H is a symmetric space $G L(N, \mathbf{C}) / U(N)$ and splits as a product $H=\mathbf{R} \times H_{0}$ where the projection to \mathbf{R} is given by log det and $H_{0}=S L(N, \mathbf{C}) / S U(N)$.

The function log det is concave on the set of positive Hermitian matrices.

There are detailed analogies between \mathcal{H} and H. We will just consider one part of this story, in which \mathcal{H} appears as a convex subset of $C^{\infty}(M)$. We define a functional I on \mathcal{H} (up to a constant) by its derivative

$$
\delta I=\int_{M} \delta \phi d \mu_{\phi}
$$

It is an exercise to see that there is such a functional. (You can write down an explicit formula.)

This functional I is the analogue of the function \log det on H. One computes that I is concave, so the set $\mathcal{K}=\{\phi \in \mathcal{H}: I(\phi) \geq 0\}$ is convex.

A volume form $d \nu$ on M defines a linear functional $\nu^{*}: C^{\infty}(M) \rightarrow \mathbf{R}$;

$$
\nu^{*}(f)=\int_{M} f d \nu
$$

Consider the problem of minimising ν^{*} on the convex set K. If we find such a minimum ϕ then μ_{ϕ} is a constant multiple of $d \nu$ and we have solved equation (CY).

End of digression

To solve the equation (CY) we use the continuity method. We consider a 1-parameter family F_{s} to give equations $C Y_{s}$ for $s \in[0,1]$.

We have

$$
(\omega+t i \bar{\partial} \partial f)^{n}=\omega^{n}+i n t \omega^{n-1} \wedge \bar{\partial} \partial f+O\left(t^{2}\right)
$$

The linear term is $-\frac{1}{2} \Delta_{\omega} f \omega^{n}$. It follows that the map taking \mathcal{H} to volume forms of total volume V has surjective derivative and this gives openness in our continuity path.

We need a priori estimates for a solution ϕ of equation $C Y$, depending only on ω_{0} and the right hand side F.

Set $\omega=\omega_{\phi}, \eta=\omega_{0}$ and write:

$$
\tau=\operatorname{Tr}_{\omega} \eta \quad \sigma=\operatorname{Tr}_{\eta} \omega
$$

At a point in M we can choose standard coordinates

$$
\omega_{0}=\eta=(1 / 2) \sum_{a} d z_{a} d \bar{z}_{a}, \omega=(i / 2) \sum_{a} \lambda_{a} d z_{a} d \bar{z}_{a}
$$

with $\lambda_{a}>0$.
Then $\tau=\sum \lambda_{a}^{-1}, \sigma=\sum \lambda_{a}$.
The product $\prod \lambda_{a}$ is the rqatio of the volume forms, which is prescribed
So control of either σ, τ gives control of all the eigenvalues λ_{a}.

We seek a maximum principle argument for τ. (The more standard approach considers σ.)

It is a simple general fact that a holomorphic map $f:(M, \omega) \rightarrow(N, \theta)$ between Kähler manifolds is harmonic.
This follows from the fact that (in the compact case) we can write the energy as a topological quantity given by a multiple of

$$
E=\frac{2}{(n-1)!} \int_{M} f^{*}(\theta) \wedge \omega^{n-1}
$$

which depends only on the homotopy class of f. For any map in the homotopy class we get an inequality, so f minimises energy in the homotopy class.

So for $f:(M, \omega) \rightarrow(N, \theta)$ we have the Eells-Sampson formula

$$
\Delta_{\omega}|d f|^{2}=|\nabla d f|^{2}+\operatorname{Ric}_{\omega}\left(d f^{2}\right)-\operatorname{Riem}_{\theta} d f^{4}
$$

If we compute $\Delta \log |d f|^{2}$ we get a term which is dominated by the first term on the RHS above and we find that

$$
\Delta_{\omega} \log |d f|^{2} \geq|d f|^{-2} \operatorname{Ric}_{\omega}\left(d f^{2}\right)-|d f|^{-2} \operatorname{Riem}_{\theta} d f^{4} \quad(C L)
$$

This is known as the Chern-Lu inequality.

Apply this to the identity map from (M, ω) to (M, η). Then $|d f|^{2}=\operatorname{Tr}_{\omega} \eta=\tau$. We have

$$
\operatorname{Riem}_{\eta} d f^{4}=R_{i j k l}^{\eta} \omega^{i k} \omega^{j l}
$$

which is bounded by $C_{1} \tau^{2}$ for some C_{1}.
The Ricci $(1,1)$ form ρ_{ω} is determined by the volume form, which is controlled. So $\rho_{\omega} \geq-C_{2} \eta$ for some C_{2}. We have

$$
\operatorname{Ric}_{\omega}\left(d f^{2}\right)=R_{i j}^{\omega} \omega^{i k} \omega^{j l} \eta_{k l} \geq-C_{2} \eta_{i j} \eta_{k l} \omega^{i k} \omega^{j l} \geq-C_{2} \tau^{2}
$$

So we get

$$
\Delta_{\omega} \log \tau \geq-C \tau
$$

By itself, this is not very helpful. However we have

$$
-\frac{1}{2} \Delta_{\omega} \phi=\operatorname{Tr}_{\omega} \bar{\partial} \partial \phi=\operatorname{Tr}_{\omega}(\omega-\eta)=n-\tau .
$$

So

$$
\Delta_{\omega}(\log \tau+2 K \phi) \geq-K n+(K-C) \tau .
$$

Choose $K=C+1$ and let $p \in M$ be a point where $\log \tau-2 K \phi$ is maximal. The maximum principle gives $\tau(p) \leq K n$.

Now suppose that we an L^{∞} bound on ϕ :

$$
\|\Phi\|_{L^{\infty}} \leq C_{4} .
$$

Then at any point $q \in M$:

$$
(\log \tau(q)+2 K \phi)(q) \leq(\log \tau(p)+2 K \phi)(p),
$$

SO

$$
\log \tau(q) \leq \log \tau(p)+4 K C_{4} .
$$

The conclusion is that, in our continuity path, an L^{∞} bound on ϕ gives a bound

$$
C^{-1} \omega_{0} \leq \omega_{\phi_{s}} \leq C \omega_{0} .
$$

The problem is to obtain an L^{∞} bound on ϕ. We fix a normalisation

$$
\int_{M} \phi d \mu_{\eta}=0
$$

For simplicity we discuss the case in dimension $n=2$.
The Sobolev inequality for $\eta=\omega_{0}$ is

$$
\|f\|_{L_{n}^{4}} \leq \kappa\|\nabla f\|_{L_{\eta}^{2}}+\kappa^{\prime} \|\left. f\right|_{L_{n}^{1}} .
$$

For functions f of integral zero we can drop the second term on the right hand side.

We have $\omega=\eta+i \bar{\partial} \partial \phi$ so
$2\left(\omega^{2}-\eta^{2}\right)=2 i \bar{\partial} \partial \phi(\omega+\eta)=-\Delta_{\omega} \phi d \mu_{\omega}-\Delta_{\eta} \phi d \mu_{0} . \quad(* * * * *)$
Multiply (*****) by ϕ and integrate over M.
We get

$$
\int_{M} 2 \phi\left(\omega^{2}-\eta^{2}\right)=\int_{M}|\nabla \phi|_{\omega}^{2} d \mu_{\phi}+|\nabla \phi|_{\eta}^{2} d \mu_{\eta}
$$

Since ω^{2} is controlled, the left hand side is bounded by a multiple of the L^{1} norm of ϕ, hence by a multiple of the L^{4} norm. The right hand side is obviously bounded below by $\|\nabla \phi\|_{L_{\eta}^{2}}^{2}$.

Applying the Sobolev inequality for the fixed metric η, using the fact that the integral of ϕ is 0 , we get

$$
\|\phi\|_{L_{\eta}^{4}}^{2} \leq \text { const. }\|\phi\|_{L_{\eta}^{4}} .
$$

So we have an L^{4} bound on ϕ.

Now multiply (*****) by $-\phi^{3}$ and integrate. We have

$$
-\int \phi^{3} \Delta \phi=\int \nabla\left(\phi^{3}\right) \cdot \nabla \phi=\int 3 \phi^{2}|\nabla \phi|^{2}=\int \frac{3}{4}\left|\nabla\left(\phi^{2}\right)\right|^{2}
$$

Using this we get an L^{4} bound on ϕ^{2} i.e. an L^{8} bound on ϕ.

Continuing in this way, we get bounds on the $L^{4 k}$ norm of ϕ for every k,

$$
\|\phi\|_{L^{4 k}} \leq C_{k} .
$$

Keeping careful track of the constants, one finds that the C_{k} are bounded as $k \rightarrow \infty$ and this gives the L^{∞} bound.

IF we have $C^{2, \alpha}$ bounds on ϕ for some $\alpha>0$, standard PDE theory using the Schauder estimates gives control of all higher derivatives.
The L^{∞} bound on $i \bar{\partial} \partial \phi$ gives $C^{1, \beta}$ estimates for any $\beta<1$. So there is a gap.

This can be handled in two ways.

- A maximum principle argument and a long calculation applied to $\Delta_{\omega}\left|\nabla_{\eta} \bar{\partial} \partial \phi\right|_{\omega}^{2}$.
- A general PDE theory of Evans-Krylov.

Apart from the L^{∞} bound all that we have done can be applied to the Kähler-Einstein equations. In the negative case $(\lambda=-1)$ the L^{∞} bound follows from an easy maximum principle argument, similar to the Riemann surface discussion in Section
2. Our equation is

$$
\left(\omega_{0}+i \bar{\partial} \partial \phi\right)^{n}=\Gamma_{0} e^{-\phi}
$$

and at a maximum point of ϕ we have $i \bar{\partial} \partial \phi \geq 0$.

In the positive case our continuity path is a family of equations

$$
\left(\omega_{0}+i \bar{\partial} \partial \phi\right)^{n}=\Gamma_{0} e^{+s \phi} .
$$

Kähler-Einstein metrics do not always exist in the positive case: there are "stability conditions".

For example, it can be shown that for the projective plane blown up at one point a solution in the continuity path exists exactly for $s<6 / 7$ and for the plane blown up in 2 points for $s<21 / 25$.

Section 6. The Yamabe problem

On a compact Riemannian manifold of dimension 2 the integral of the scalar curvature is a topological invariant. In higher dimensions it is the Einstein-Hilbert functional on the space of metrics:

$$
I(g)=\int_{M} R_{g} d \mu_{g} .
$$

Under an infinitesimal change of metric $\delta g=h$ the scalar curvature changes by
$\delta R=-\Delta H+\nabla^{*} \nabla^{*} h-\langle\operatorname{Ricci}, h\rangle=-\Delta H+\sum \nabla_{i} \nabla_{j} h_{i j}-R_{i j} h_{i j}$,
where $H=\operatorname{Tr} h=\sum h_{i j} g^{i j}$.
Taking account of the variation of the volume form we get

$$
\delta I=\int_{M}-\langle\text { Ricci, } h\rangle+\frac{R}{2} H
$$

since the integrals of the first two terms vanish by Stokes' Theorem.

If $\operatorname{dim} M=n$ it is clear that $I\left(\alpha^{2} g\right)=\alpha^{n-2} I(g)$.
If we consider I as a functional on metrics of total volume 1 the Euler-Lagrange equation is

$$
\operatorname{Ricci}_{g}+\frac{1}{2} R_{g}=(\lambda / 2) g
$$

with a Lagrange multiplier λ. This is equivalent to the Einstein equation

$$
\operatorname{Ricci}_{g}=\lambda^{\prime} g
$$

with $\lambda^{\prime}=\lambda /(n-2)$.

In this section we consider the functional I on a fixed conformal class of metrics.

The Euler-Lagrange equation is then that the scalar curvature be constant.

The Yamabe problem is to prove that there is always a solution of this equation. More precisely: In any conformal class there is a metric which minimises I over the conformal metrics of volume 1.
This result follows from contributions by many people (Yamabe, Trudinger, Aubin, Schoen, ...).
We call such a metric a Yamabe minimser.

For simplicity (mainly) we take $n=3$.
It is convenient to parametrise a conformal class by $\tilde{g}=u^{4} g$.
Then one finds that

$$
R_{\tilde{g}}=u^{-5}\left(-8 \Delta_{g} u+R_{g} u\right)
$$

so, taking account of the change in volume form by a factor u^{6},

$$
I(\tilde{g})=\int_{M} u\left(-8 \Delta_{g} u+R_{g} u\right) d \mu_{g}=\int_{M} 8|\nabla u|^{2}+R u^{2} d \mu
$$

The volume constraint is that the integral of u^{6} is 1 .
(Note: In general dimension n we use $u^{4 /(n-2)} g$ and the formulae involve different factors.)

The Euler-Lagrange equation is

$$
-8 \Delta u+R u=\lambda u^{5}
$$

Note that $\lambda=I(\tilde{g})$.

This is an example of a conformally invariant variational problem, similar to harmonic maps of surface.

It involves the borderline Sobolev embedding: in dimension 3,

$$
L_{1}^{2} \rightarrow L^{6}
$$

but the inclusion is not compact.

Let H be the completion of compactly supported functions on \mathbf{R}^{3} in the norm $\|\nabla f\|_{L^{2}}$. Let μ_{0} be the best constant in the inequality

$$
\mu_{0}\left(\int_{\mathbf{R}^{3}} f^{6}\right)^{1 / 3} \leq\|\nabla f\|_{L^{2}}^{2} . \quad(*)
$$

The sphere S^{3} is the conformal compactification of \mathbf{R}^{3}.
Working with the Euclidean metric as our reference metric one see that the Yamabe problem for this conformal class is equivalent to minimising $\|\nabla f\|_{L^{2}}$ over functions f on \mathbf{R}^{3} with the integral of f^{6} equal to 1 and asymptotic to

$$
\text { const. }\left(1+r^{2}\right)^{-1 / 2}
$$

at infinity.
This is equivalent to finding a function realising equality in (*).
It can be shown that such a minimiser exists and corresponds to a round metric on S^{3}.

One can use a symmetrisation argument to reduce to functions $f(r)$ and get down to a calculus of variations argument in one dimension.

For a general compact Riemannian 3-manifold (M, g) of volume 1 , let μ_{g} be the infimum of $I(\tilde{g}) / 8$ over conformal metrics of volume 1 .
This is the best constant in the inequality:

$$
\mu_{g}\left(\int_{M} u^{6}\right)^{1 / 3} \leq \int_{M}|\nabla u|^{2}+(R / 8) u^{2}
$$

It is clear that $\mu_{g}>-\infty$.

There are two main steps in the proof of the existence of a Yamabe minimiser.

- Show that if $\mu_{g}<\mu_{0}$ then there is a smooth minimiser in the conformal class.
- Show that $\mu_{g} \leq \mu_{0}$ with equality if and only g is a round metric on S^{3}.

The first step uses arguments which apply to many other problems.

We will focus on the proof of a slightly weaker statement. Theorem A
Suppose that for $s \in[0,1]$, we have a 1-parameter family of metrics g_{s} with $\mu_{g_{s}}<\mu_{0}$. If a Yamabe minimiser exists in the conformal class of g_{0} then the same is true for all s.

As usual, the proof has an openness part and a closedness part. We will concentrate on the closedness.

This uses the important idea of a "small energy" estimate.

Proposition 1

Suppose that (M, g) is a Riemannian 3-manifold F is a function on M and $\lambda \in \mathbf{R}$.
There are $\epsilon_{0}, \rho_{0}, C$ (depending on g, F and λ) such that if a positive function u satisfies the equation $-\Delta u=\lambda u^{5}-F u$ on M and if B is a ball with centre p of radius $\rho \leq \rho_{0}$ such that

$$
\int_{B} u^{6}=\epsilon \leq \epsilon_{0}
$$

then $|u| \leq C \epsilon^{1 / 6} \rho^{-1 / 2}$ on the $\rho / 2$ ball centred at p.

For simplicity we suppose that the metric is Euclidean on B, so that B is the ρ-ball in \mathbf{R}^{3}, and that $F=0, \lambda=1$.

If u satisfies $-\Delta u=u^{5}$ and we set $\tilde{u}(x)=\nu^{1 / 2} u(\nu x)$ for some ν then \tilde{u} satisfies the same equation and

$$
\int_{\nu^{-1} B} \tilde{u}^{6}=\int_{B} u^{6} .
$$

Thus we can suppose that $\rho=1$ and B is the unit ball in \mathbf{R}^{3}.

Let $M=\max _{x \in B} u(x) D(x)^{1 / 2}$ where $D(x)$ is the distance to the boundary of B.

Let x_{0} be a point where the maximum is attained and $\nu=(1 / 2) D\left(x_{0}\right)$.
Let $\psi: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the obvious scaling map taking the unit ball to the ball of radius ν centred at x_{0}.

Define the function U on the unit ball by $U(y)=\nu^{1 / 2} u(\psi(y))$.

Then U has the following properties:
(1) $-\Delta U=U^{5}$;
(2) $\int_{B} U^{6}=\epsilon$;
(3) $U(0)=2^{-1 / 2} M$;
(4) $U \leq M$ on B.

The last property follows from the choice of x_{0}

If f is function on the unit ball B with $\Delta f \geq 0$ then the mean value formula shows that $f(0)$ is at most the average of f over B.

Set $f=u+\frac{2^{5 / 2}}{3} M^{5} r^{2}$.
Then by (1) and (4) we have $\Delta f \geq 0$ and we deduce, using (2), that

$$
U(0) \leq C_{1} M^{5}+C_{2} \epsilon^{1 / 6}
$$

for computable constants C_{1}, C_{2}. So, using (3), we have

$$
M \leq C_{1} M^{5}+C_{2} \epsilon^{1 / 6}
$$

If ϵ is small (depending on C_{1}, C_{2}) the solutions of this inequality fall into disjoint sets:

- "small" with $M \leq C \epsilon^{1 / 6}$;
- "large" with $M \geq C^{\prime} \sim C_{1}^{-1 / 4}>0$.

This determines ϵ_{0}.

We can apply the whole argument starting with the ball ηB in place of B, for $\eta<1$. So we set

$$
M(\eta)=\max _{x \in \eta B} u(x) D_{\eta}(x)^{1 / 2}
$$

where D_{η} is the distance to the boundary of ηB.
We get either $M(\eta) \leq C \epsilon^{1 / 6}$ or $M(\eta) \geq C^{\prime}$.
Clearly when η is sufficiently small the first alternative holds and by continuity it must be true for all $\eta \leq 1$.

This proves Proposition 1.

Once we are in the "small energy" regime on a ρ-ball as in Proposition 1 we get elliptic estimates on all derivatives of u in the interior, depending on ρ.

Proposition 2

Suppose that $\mu_{g}=\mu_{0}-K^{-1}$ for $K>0$.
For any $\epsilon>0$ there is a computable $\delta>0$, depending on K, g, ϵ, such that if uis a Yamabe minimiser for g then the integral of u^{6} over any δ-ball is less than ϵ.

Together with Proposition 1 and the remarks above, this implies the closedness part of Theorem. A.

Since we will be working in a small neighbourhood Ω of a point there is no real loss in supporting that the metric g is Euclidean in this neighbourhood.
The function u satisfies the equation $-\Delta u=\mu u^{5}$ for $\mu=\mu_{g}$.
Let χ be any function of compact support in Ω.
Multiply the equation by $\chi^{2} u$ and integrate by parts to get

$$
\int \nabla\left(\chi^{2} u\right) \cdot \nabla u=\mu \int \chi^{2} u^{6} .
$$

We have

$$
\nabla\left(\chi^{2} u\right) \cdot \nabla u=|\nabla(\chi u)|^{2}-|\nabla \chi|^{2} u^{2}
$$

So

$$
\int|\nabla(\chi u)|^{2}=\mu \int \chi^{2} u^{6}+\int|\nabla \chi|^{2} u^{2}
$$

Applying the Euclidean Sobolev inequality to χu we get

$$
\mu_{0}\|\chi u\|_{L^{6}}^{2} \leq \mu \int \chi^{2} u^{6}+\int|\nabla \chi|^{2}
$$

We estimate the two terms on the RHS using Hölder's inequality with exponents $3,3 / 2$ to get

$$
\mu_{0}\|\chi u\|_{L^{6}}^{2} \leq \mu\|\chi u\|_{L^{6}}^{2}\|u\|_{L^{6}}^{4}+\|\nabla \chi\|_{L^{3}}^{2}\|u\|_{L^{6}}^{2}
$$

Recall that u is normalised so that the integral of u^{6} is 1 . Thus we have

$$
\left(\mu_{0}-\mu\right)\|\chi u\|_{L^{6}}^{2} \leq\|\nabla \chi\|_{L^{3}}^{2}
$$

so

$$
\|\chi u\|_{L^{6}}^{2} \leq K\|\nabla \chi\|_{L^{3}}^{2} .
$$

Important fact; Exercise

For any given $\sigma>0$ we can find $\delta<\delta^{\prime}$ so that for each point $p \in M$ there is a cut-off function χ supported in the δ^{\prime} neighbourhood of p, equal to 1 on the δ-neighbourhood of p and with $\|\nabla \chi\|_{L^{3}} \leq \sigma$.

This is a reflection of the failure of the Sobolev embedding $L_{1}^{6} \rightarrow L^{\infty}$ in dimension 3.

This completes the proof of Proposition 2.

Leaving aside the openness in Theorem A for the moment, we return to discuss the variational problem of finding a Yamabe minimiser.

For $p<6$ consider the modified problem of minimising

$$
\int|\nabla u|^{2}+R / 8 u^{2}
$$

subject to the constraint $\int u^{p}=1$.

The compact inclusion $L_{1}^{2} \rightarrow L^{p}$ means that a minimising sequence u_{i} can be chosen to converge to a limit u_{∞} in L^{p}. We can also suppose that it converges weakly in L_{1}^{2}.
i.e. $u_{p, \infty} \in L_{1}^{2}$ and for any test function ψ

$$
\left\langle\nabla \psi, \nabla u_{i}\right\rangle \rightarrow\left\langle\nabla \psi, \nabla u_{p, \infty} .\right.
$$

This implies that $u_{p, \infty}$ is a weak solution of the Euler-Lagrange equation and a bootstrapping argument shows that it is smooth.

Assuming that $\mu_{g}<\mu_{0}$ a modification of the arguments above gives a priori estimates on all derivatives of $u_{p, \infty}$, independent of p.

Taking the limit as $p \rightarrow 6$ gives a minimiser for the original problem.

If we try to use this minimising argument directly in the critical case $p=6$ we can still choose a weakly convergent minimising sequence but the weak limit could be zero.

Go back to the openness problem in Theorem A.
This is a Digression from our main thread in this section.
Openness is straightforward, using the implicit function theorem, provided that for a minimiser \tilde{g} the Laplace operator does not have an eigenvalue $-(1 / 2) R_{\tilde{g}}$.

To handle the general case we can use the method of "reduction to finite dimensions", similar to a discussion in Section 4.

Suppose that $\mu_{g}<\mu_{0}$ and g is a Yamabe minimiser.
The arguments above show that the space K corresponding to volume 1 minimisers in the conformal class of g is compact. We regard K as a subset of the space \mathcal{U} of positive functions u with L^{6} norm 1

Using the same idea as for "Kuranishi models" we can construct a compact finite dimensional manifold Σ with boundary and an immersive embedding $\iota: \Sigma \rightarrow \mathcal{U}$ such that $K=\iota(\underline{K})$ where \underline{K} lies in the interior of Σ.

We make the construction so that for each $\sigma \in \Sigma$ we have a finite-codimension submanifold $N_{\sigma} \subset \mathcal{U}$ through $\iota(\sigma)$ and the tangent space of N_{σ} at $\iota(\sigma)$ is complementary to the tangent space of $\iota(\Sigma)$.

The subset K is the minimising set of the functional I on \mathcal{U} with minimal value 8μ on K.

We make the construction so that $\iota(\sigma)$ is a nondegenerate minimum of the restriction of $/$ to N_{σ}.

We have a finite-dimensional reduction of the functional to a function $\underline{I}=I \circ \iota$ on Σ and \underline{K} is the set of minima of \underline{I}.

The crucial point is that there is some $\delta>0$ so that $\underline{I} \geq 8 \mu+\delta$ on $\partial \Sigma$.

Suppose that we make some small perturbation of our functional $/$ to l '.

The nondegeneracy condition means that for each σ there is a unique nearby minimum of I^{\prime} on N_{σ} (using the implicit function theorem in the standard way).

This defines a perturbed map $\iota^{\prime}: \Sigma \rightarrow \mathcal{U}$ and hence a perturbed function $\underline{I}^{\prime}=I^{\prime} \circ \iota^{\prime}$ on Σ.

Minima of I^{\prime} on \mathcal{U} correspond to minima of \underline{l}^{\prime} on Σ, provided that the latter do not occur on the boundary.

By compactness, there is at least one minimiser of \underline{l}^{\prime} on the compact manifold-with-boundary Σ.

The "crucial point" implies that that, for sufficiently small perturbations, the minimisers are not on the boundary of Σ.

So we get a minimiser of the perturbed functional I^{\prime}.
End of digression

Theorem B

Any compact Riemannian 3-manifold (M, g) has $\mu_{g} \leq \mu_{0}$ with equality if and only if (M, g) is conformal to the standard sphere. The fact that $\mu_{g} \leq \mu_{0}$ is relatively easy.

Suppose first that g is Euclidean in a small neighbourhood of a point p.

Recall that inversion $x \mapsto x /|x|^{2}$ is a conformal map on $R^{3} \backslash\{0\}$.
Using this, it is clear that we can find a conformally equivalent metric \hat{g} on $\hat{M}=M \backslash\{p\}$ which is complete and Euclidean outside a compact set.
We can arrange that ($\hat{M} \backslash K, \hat{g}$) is isometric to the complement $\mathbf{R}^{3} \backslash \frac{1}{2} B$, for a suitable compact set $K \subset \hat{M}$.

Let g^{S} be the standard round metric on S^{3} of volume 1 and fix a point $q \in S^{3}$.
For small ρ, conformally deform g^{S} slightly in an $O(\rho)$ neighbourhood of q to get a metric g_{ρ}^{S} which contains an isometric copy B_{ρ} of the Euclidean ρ-ball.

Let J be the $1 / 8$ the integral of the scalar curvature of \hat{g}. Scale \hat{g} to $\hat{g}_{\rho}=\rho^{2} \hat{g}$.
Then

$$
\int_{\hat{M}} R_{\hat{g}_{\rho}}=8 \rho J
$$

The metrics \hat{g}_{ρ} and g_{ρ}^{S} can be glued isometrically along an annular region isometric to a neighbourhood of ∂B_{ρ}.
This gives a metric g_{ρ}^{\sharp} on M, conformal to g.
The volume is $1+O\left(\rho^{3}\right)$ and the integral of the scalar curvature is $8 \mu_{0}+O(\rho)$.

Letting $\rho \rightarrow 0$ shows that $\mu_{g} \leq \mu_{0}$.
If g is not Euclidean near p we get a small extra error in the gluing construction but the same argument works.

There is a similar discussion for the harmonic maps energy functional E in dimension (of the domain) 2 .

For example, consider a flat torus T^{2} and maps $f: T^{2} \rightarrow S^{2}$ of degree $d>0$.

If ω is the area form on S^{2} of total area 1 we have

$$
\int_{T^{2}} f^{*}(\omega)=d
$$

On the other hand there is a pointwise inequality

$$
\left|f^{*}(\omega)\right| \leq \frac{1}{2}|d f|^{2} d \mu_{T},
$$

So $E(f) \geq d$. Equality holds if and only if f is holomorphic.

A similar construction to that above shows that for any d the infimum of the energy functional is d. ("Glue" a constant map on T^{2} minus a small disc to a degree d holomorphic map from S^{2} to S^{2}.)

When $d=1$ there is no holomorphic map, so the infimum is not attained.

A minimising sequence will develop a "bubble".

The essence of the Yamabe problem is to show that the analogous phenomenon does not occur.

For our discussion of Theorem B we continue to ASSUME that g is Euclidean in a neighbourhood of some point $p \in M$ Suppose we have a conformal metric \hat{g} on \hat{M} with scalar curvature $\hat{R} \leq 0$ and not identically zero and which is asymptotically Euclidean in the sense that outside a compact set the manifold is identified with the complement of a ball in \mathbf{R}^{3} and

$$
\hat{g}_{i j}=(1+\phi) \delta_{i j}
$$

where ϕ is $O\left(r^{-2}\right)$, with corresponding estimates for derivatives. In particular the scalar curvature \hat{R} is $O\left(r^{-4}\right)$.

Choose a large number L and flatten \hat{g} in the annulus of size $O(L)$ to get a metric \hat{g}_{L} That is, multiply ϕ by a suitable cut-off function.

The change in the scalar curvature is $O\left(L^{-4}\right)$ over the annulus of volume $O\left(L^{3}\right)$ so the change in the integral of the scalar curvature is $O\left(L^{-1}\right)$ which tends to zero as $L \rightarrow \infty$.
So we can fix L such that $I\left(\hat{g}_{L}\right)<0$.
Then the same gluing construction as before shows that $\mu_{g}<\mu_{0}$.

To find a suitable metric \hat{g} we use the Dirac operator.
Any oriented Riemannian 3-manifold (M, g) admits a spin structure and hence $D: \Gamma(S) \rightarrow \Gamma(S)$.

If $g^{\prime}=u^{4} g$ is a conformal metric we get a spin structure for g^{\prime} with the same bundle S but multiply the structure map $T^{*} M \rightarrow \operatorname{End} S$ by u^{-2}.

Important fact The Dirac operator is conformally invariant, in the sense that

$$
D^{\prime} s=u^{-4} D\left(u^{2} s\right) .
$$

In general, suppose that $\mathcal{D}: \Gamma(E) \rightarrow \Gamma(F)$ is an elliptic operator of order r between sections of Hermitian bundles over a compact n-manifold X. Let $p \in X$ and $\alpha \in F_{p}^{*}$. This defines a distribution, a linear map from $\Gamma(F)$ to \mathbf{C}. We can consider solutions s of the equation $\mathcal{D} s=\delta_{\alpha}$. Such a section satisfies $D s=0$ on $X \backslash\{p\}$ and has a "pole" at p.
For $r<n$ the order of growth of s is d^{r-n} where d is the distance to p.
In the case of the $\bar{\partial}$-operator on a Riemann surface we get meromorphic functions.
The general theory says that if the kernel of the adjoint operator \mathcal{D}^{*} is trivial then such a solution exists, for any p, α.

Note that a constant spinor field on \mathbf{R}^{3} goes over under inversion to a spinor field on \mathbf{R}^{3} with a pole at 0 .

To get quickly to the main point note that on a 3-manifold the Dirac operator is self adjoint and we expect that for typical metrics the kernel is trivial.
Also the spin bundle S has real rank 4 so generic sections have no zeros.
So ASSUME for the moment that $\operatorname{ker} D_{g}=0$ and solve the equation $D s=\delta_{\alpha}$ for some α at $p \in M$. ASSUME also that this s does not vanish anywhere on $M \backslash\{p\}$.

We have

$$
|s|^{2}=C d^{-4}+O\left(d^{-2}\right) \quad(* * *)
$$

near p for some $C \neq 0$.

Let g^{\prime} be the conformal metric $u^{4} g$ with $u=|s|^{1 / 2}$ so $s^{\prime}=u^{-2} s$ satisfies $D^{\prime} s^{\prime}=0$ and by construction $\left|s^{\prime}\right|=1$ everywhere. The asymptotics (***) show that g^{\prime} is asymptotically Euclidean in the sense we considered above.
The Lichnerowicz formula gives

$$
\Delta^{\prime}\left|s^{\prime}\right|^{2}=\left|\nabla^{\prime} s^{\prime}\right|^{2}+R^{\prime}\left|s^{\prime}\right|^{2}
$$

But the left hand side is zero so $R^{\prime} \leq 0$ and if $R^{\prime}=0$ everywhere $\nabla^{\prime} s^{\prime}=0$.
If $\nabla^{\prime} s^{\prime}=0$ it is easy to show that g^{\prime} is the Euclidean metric on R^{3}.
(The group $S U(2)$ acts freely on the unit sphere in \mathbf{C}^{2} so the "holonomy" is trivial.)

This completes the proof of Theorem B, under the three ASSUMPTIONS.

1. The assumption that s has no zeros

Take $u_{\epsilon}=F_{\epsilon}(|s|)$ for a suitable family of positive functions $F_{\epsilon}(t)$ approximating $t^{1 / 2}$.

Calculations show that the contribution to the integral of the scalar curvature from such a change goes to zero as $\epsilon \rightarrow 0$. So the only problem could be when $\nabla^{\prime} s^{\prime}=0$ outside the zero set of s.
A maximum principle argument shows that this cannot happen.
2. The assumption that $\operatorname{ker} D=0$.

Suppose that s is a non-trivial element of the kernel. If s has no zeros we consider the same conformal deformation to get a metric with scalar curvature ≤ 0 which shows that $\mu_{g} \leq 0$ and hence $\mu_{g}<\mu_{0}$.

If s has zeros we argue as in (1) above.
3. The assumption that g is Euclidean in the neighbourhood of some point.
We can make the same constructions but now we have a slightly deformed metric on S^{3}. Calculations show that this is $O\left(\rho^{2}\right)$ and so does not affect the argument.

Higher dimensions

The same argument works in dimension n for spin manifolds which are (conformally) Euclidean in some neighbourhood. In general:

- For manifolds which are not conformally Euclidean in any neighbourhood one has to take account of the slightly deformed metric on S^{n}.
- For a conformally flat manifold M there is a problem if M is not spin. The discussion is related to the "Positive Mass Theorem".

