GEOMETRIC ANALYSIS SECTIONS 5,6 London School of Geometry and Number Theory 2021

Simon Donaldson¹

¹Department of Mathematics Imperial College

March 9, 2021

Section 5. Calabi-Yau metrics

- The equations we have studied so far in this course have a simple nonlinear structure linear + lower order.
- We have considered situations with a favourable sign.

Recall that if $\mathcal{F} = 0$ is any PDE and *u* is a solution we have a linearised operator $\mathcal{F}(u + tf) = tL(f) + O(t^2)$. The nonlinear PDE is said to be elliptic *at the solution u* if *L* is a linear elliptic operator (of the same order as \mathcal{F}).

For example a Monge-Ampère equation

$$\det\left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right) = 1.$$

The linearised operator is

$$L(f) = \sum U^{ij} \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j}$$

where U^{ij} is the matrix of co-factors of the Hessian u_{ij} of u. This is elliptic if and only of u_{ij} is positive or negative definite: i.e. $\pm u$ is strictly convex.

The nonlinear PDE is not elliptic at a solution like $x_1^2 - x_2^2 - x_3^2$ on **R**³.

In this section we discuss complex Monge-Ampère equations which, in local complex co-ordinates, involve the analogous expression

$$\det\left(\frac{\partial^2 u}{\partial z_a \partial \overline{z}_b}\right).$$

But we consider a global setting, on a compact complex n-manifold M.

Review of some complex geometry.

- A Hermitian metric on *M* corresponds to a positive (1, 1) form ω. The volume form of the metric is ωⁿ/n!.
- The canonical line bundle of *M* is *K_M* = Λⁿ*T***M*, so sections are (*n*, 0) forms.
- Giving a Hermitian metric on the canonical line bundle is equivalent to giving a volume form on *M*.

 A Kähler metric is one with dω = 0. The Kähler metrics in a given cohomology class [ω₀] ∈ H²(M; R) are parametrised by Kähler potentials

$$\omega_{\phi} = \omega_{0} + i\overline{\partial}\partial\phi.$$

- The total volume of *M* with a Kähler metric is determined by the cohomology class.
- We have the Laplacian formula

$$-\frac{1}{2}\Delta f\left(\omega^{n}\right)=n\,i\overline{\partial}\partial f\wedge\omega^{n-1}.$$

The Ricci curvature of a K\u00e4hler metric ω is Hermitian, so can be identified with a (1, 1) form ρ. This is -*i* times the curvature form of the connection on K_M induced by the volume form ωⁿ/n!.

We consider the question of prescribing the volume form of a Kähler metric. (Calabi, 1954.)

Fix a cohomology class $[\omega_0]$ and let *V* be the corresponding total volume. Write $d\mu_0 = \omega_0^n/n!$. Given a positive function *F* with

$$\int_{M} F d\mu_0 = V$$

we want to solve the PDE

$$(\omega_0 + i\overline{\partial}\partial\phi)^n = Fd\mu_0.$$
 (CY)

In local coordinates this has the shape

$$\det\left(g_{ab} + \frac{\partial^2 \phi}{\partial z_a \partial \overline{z}_b}\right) = gF$$

where g_{ab} is the matrix corresponding to ω_0 and g is its determinant.

The main result (Yau's Theorem, 1978) is that there is always a solution ϕ , unique up to a constant.

The most important application is to the case when *M* is a Calabi-Yau manifold, i.e. K_M is trivial so there is a nowhere vanishing holomorphic *n*-form Θ . The curvature associated to a Hermitian metric on K_M with $|\Theta| = 1$ is zero. Regarding this metric on K_M as a volume form and scaling suitably we get a metric in any Kähler class with zero Ricci curvature.

When K_M is a negative or positive line bundle one can seek Kähler-Einstein metrics, with Ricci = λg where $\lambda = \pm 1$. This leads to equations

$$(\omega_0 + i\overline{\partial}\partial\phi)^n = \Gamma_0 e^{\lambda\phi}, \qquad (K\!E\pm)$$

for a positive function Γ_0 determined by ω_0 .

Digression. Geometry of the space of Kähler potentials

Let \mathcal{H} be the set of Kähler potentials { $\phi : \omega_{\phi} > 0$ }.

(If the Kähler class is 2π times an integral class, \mathcal{H} can be identified with a set of metrics on a holomorphic line bundle $L \rightarrow M$.)

Let *H* be the set of positive Hermitian forms on \mathbf{C}^N . This has two natural geometries:

- H is a convex set in the vector space of Hermitian matrices.
- 2 *H* is a symmetric space $GL(N, \mathbb{C})/U(N)$ and splits as a product $H = \mathbb{R} \times H_0$ where the projection to \mathbb{R} is given by log det and $H_0 = SL(N, \mathbb{C})/SU(N)$.

The function log det is *concave* on the set of positive Hermitian matrices.

There are detailed analogies between \mathcal{H} and H. We will just consider one part of this story, in which \mathcal{H} appears as a convex subset of $C^{\infty}(M)$. We define a functional I on \mathcal{H} (up to a constant) by its derivative

$$\delta I = \int_M \delta \phi \; d\mu_\phi.$$

It is an exercise to see that there is such a functional. (You can write down an explicit formula.)

This functional *I* is the analogue of the function log det on *H*. One computes that *I* is concave, so the set $\mathcal{K} = \{\phi \in \mathcal{H} : I(\phi) \ge 0\}$ is convex.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6

A volume form $d\nu$ on M defines a linear functional $\nu^*: C^{\infty}(M) \to \mathbf{R};$

$$u^*(f) = \int_M f d
u.$$

Consider the problem of minimising ν^* on the convex set *K*. If we find such a minimum ϕ then μ_{ϕ} is a constant multiple of $d\nu$ and we have solved equation (CY).

End of digression

To solve the equation (CY) we use the continuity method. We consider a 1-parameter family F_s to give equations CY_s for $s \in [0, 1]$.

We have

$$(\omega + ti\overline{\partial}\partial f)^n = \omega^n + int\omega^{n-1} \wedge \overline{\partial}\partial f + O(t^2)$$

The linear term is $-\frac{1}{2}\Delta_{\omega}f \omega^{n}$. It follows that the map taking \mathcal{H} to volume forms of total volume *V* has surjective derivative and this gives openness in our continuity path.

We need *a priori* estimates for a solution ϕ of equation CY, depending only on ω_0 and the right hand side *F*.

Set $\omega = \omega_{\phi}, \eta = \omega_0$ and write:

$$\tau = \mathrm{Tr}_{\omega}\eta \quad \sigma = \mathrm{Tr}_{\eta}\omega.$$

At a point in *M* we can choose standard coordinates

$$\omega_0 = \eta = (1/2) \sum_a dz_a d\overline{z}_a, \omega = (i/2) \sum_a \lambda_a dz_a d\overline{z}_a,$$

with $\lambda_a > 0$.

Then
$$\tau = \sum \lambda_a^{-1}, \sigma = \sum \lambda_a$$
.

The product $\prod \lambda_a$ is the relation of the volume forms, which is prescribed So control of *either* σ , τ gives control of all the eigenvalues λ_a . We seek a maximum principle argument for τ . (The more standard approach considers σ .)

It is a simple general fact that a holomorphic map $f: (M, \omega) \rightarrow (N, \theta)$ between Kähler manifolds is harmonic. This follows from the fact that (in the compact case) we can write the energy as a topological quantity given by a multiple of

$$E=rac{2}{(n-1)!}\int_M f^*(heta)\wedge\omega^{n-1},$$

which depends only on the homotopy class of f. For any map in the homotopy class we get an inequality, so f minimises energy in the homotopy class.

So for $f : (M, \omega) \rightarrow (N, \theta)$ we have the Eells-Sampson formula

$$\Delta_{\omega} |df|^2 = |\nabla df|^2 + \operatorname{Ric}_{\omega} (df^2) - \operatorname{Riem}_{\theta} df^4.$$

If we compute $\Delta \log |df|^2$ we get a term which is dominated by the first term on the RHS above and we find that

$$\Delta_{\omega} \log |df|^2 \geq |df|^{-2} \mathrm{Ric}_{\omega} (df^2) - |df|^{-2} \mathrm{Riem}_{\theta} df^4 \quad (CL).$$

This is known as the Chern-Lu inequality.

Apply this to the identity map from (M, ω) to (M, η) . Then $|df|^2 = \text{Tr}_{\omega}\eta = \tau$. We have

$$\operatorname{Riem}_{\eta} df^4 = R^{\eta}_{ijkl} \omega^{ik} \omega^{jl},$$

which is bounded by $C_1 \tau^2$ for some C_1 .

The Ricci (1, 1) form ρ_{ω} is determined by the volume form, which is controlled. So $\rho_{\omega} \ge -C_2 \eta$ for some C_2 . We have

$$\operatorname{Ric}_{\omega}(df^2) = R^{\omega}_{ij} \omega^{ik} \omega^{jl} \eta_{kl} \geq -C_2 \eta_{ij} \eta_{kl} \omega^{ik} \omega^{jl} \geq -C_2 \tau^2.$$

So we get

$$\Delta_{\omega} \log \tau \geq -C\tau.$$

By itself, this is not very helpful. However we have

$$-\frac{1}{2}\Delta_{\omega}\phi = \mathrm{Tr}_{\omega}i\overline{\partial}\partial\phi = \mathrm{Tr}_{\omega}(\omega - \eta) = \mathbf{n} - \tau.$$

So

$$\Delta_\omega(\log au + 2K\phi) \geq -Kn + (K - C) au.$$

Choose K = C + 1 and let $p \in M$ be a point where $\log \tau - 2K\phi$ is maximal. The maximum principle gives $\tau(p) \leq Kn$.

Now suppose that we an L^{∞} bound on ϕ :

$$\|\Phi\|_{L^{\infty}} \leq C_4.$$

Then at any point $q \in M$:

$$\left(\log au(m{q})+2m{K}\phi
ight)(m{q})\leq\left(\log au(m{p})+2m{K}\phi
ight)(m{p}),$$

so

$$\log \tau(q) \leq \log \tau(p) + 4KC_4.$$

The conclusion is that, in our continuity path, an L^{∞} bound on ϕ gives a bound

$$C^{-1}\omega_0 \leq \omega_{\phi_s} \leq C\omega_0.$$

The problem is to obtain an L^{∞} bound on ϕ . We fix a normalisation

$$\int_{M}\phi d\mu_{\eta}=0.$$

For simplicity we discuss the case in dimension n = 2.

The Sobolev inequality for $\eta = \omega_0$ is

6

$$\|f\|_{L^4_{\eta}} \leq \kappa \|\nabla f\|_{L^2_{\eta}} + \kappa' \|f|_{L^1_{\eta}}.$$

For functions f of integral zero we can drop the second term on the right hand side.

We have $\omega = \eta + i\overline{\partial}\partial\phi$ so $2(\omega^2 - \eta^2) = 2i\overline{\partial}\partial\phi(\omega + \eta) = -\Delta_{\omega}\phi d\mu_{\omega} - \Delta_{\eta}\phi d\mu_{0}.$ (****) Multiply (*****) by ϕ and integrate over *M*.

Multiply (*****) by ϕ and integrate over M. We get

$$\int_{\mathcal{M}} 2\phi \left(\omega^2 - \eta^2
ight) = \int_{\mathcal{M}} |
abla \phi|^2_\omega \ d\mu_\phi + |
abla \phi|^2_\eta \ d\mu_\eta.$$

Since ω^2 is controlled, the left hand side is bounded by a multiple of the L^1 norm of ϕ , hence by a multiple of the L^4 norm. The right hand side is obviously bounded below by $\|\nabla \phi\|_{L^2}^2$.

Applying the Sobolev inequality for the fixed metric η , using the fact that the integral of ϕ is 0, we get

$$\|\phi\|_{L^4_{\eta}}^2 \leq \operatorname{const.} \|\phi\|_{L^4_{\eta}}.$$

So we have an L^4 bound on ϕ .

Now multiply (*****) by $-\phi^3$ and integrate. We have

$$-\int \phi^3 \Delta \phi = \int \nabla (\phi^3) . \nabla \phi = \int 3\phi^2 |\nabla \phi|^2 = \int \frac{3}{4} |\nabla (\phi^2)|^2$$

Using this we get an L^4 bound on ϕ^2 i.e. an L^8 bound on ϕ .

Continuing in this way, we get bounds on the L^{4k} norm of ϕ for every k,

 $\|\phi\|_{L^{4k}} \leq C_k.$

Keeping careful track of the constants, one finds that the C_k are bounded as $k \to \infty$ and this gives the L^{∞} bound.

IF we have $C^{2,\alpha}$ bounds on ϕ for some $\alpha > 0$, standard PDE theory using the Schauder estimates gives control of all higher derivatives.

The L^{∞} bound on $i\overline{\partial}\partial\phi$ gives $C^{1,\beta}$ estimates for any $\beta < 1$. So there is a gap. This can be handled in two ways.

- A maximum principle argument and a long calculation applied to Δ_ω|∇_η∂∂φ|²_ω.
- A general PDE theory of Evans-Krylov.

Apart from the L^{∞} bound all that we have done can be applied to the Kähler-Einstein equations. In the negative case ($\lambda = -1$) the L^{∞} bound follows from an easy maximum principle argument, similar to the Riemann surface discussion in Section 2. Our equation is

$$(\omega_0 + i\overline{\partial}\partial\phi)^n = \Gamma_0 \mathbf{e}^{-\phi},$$

and at a maximum point of ϕ we have $i\overline{\partial}\partial\phi \ge 0$.

In the positive case our continuity path is a family of equations

$$(\omega_0 + i\overline{\partial}\partial\phi)^n = \Gamma_0 \mathbf{e}^{+\mathbf{s}\phi}.$$

Kähler-Einstein metrics do not always exist in the positive case: there are "stability conditions".

For example, it can be shown that for the projective plane blown up at one point a solution in the continuity path exists exactly for s < 6/7 and for the plane blown up in 2 points for s < 21/25.

Section 6. The Yamabe problem

On a compact Riemannian manifold of dimension 2 the integral of the scalar curvature is a topological invariant. In higher dimensions it is the *Einstein-Hilbert functional* on the space of metrics:

$$I(g) = \int_M R_g d\mu_g.$$

Under an infinitesimal change of metric $\delta g = h$ the scalar curvature changes by

$$\delta R = -\Delta H + \nabla^* \nabla^* h - \langle \text{Ricci}, h \rangle = -\Delta H + \sum \nabla_i \nabla_j h_{ij} - R_{ij} h_{ij},$$

where $H = \text{Tr}h = \sum h_{ij}g^{ij}.$

Taking account of the variation of the volume form we get

$$\delta I = \int_{M} -\langle \text{Ricci}, h \rangle + \frac{R}{2}H$$

since the integrals of the first two terms vanish by Stokes' Theorem.

If dim M = n it is clear that $I(\alpha^2 g) = \alpha^{n-2}I(g)$. If we consider *I* as a functional on metrics of total volume 1 the Euler-Lagrange equation is

$$\operatorname{Ricci}_{g} + \frac{1}{2}R_{g} = (\lambda/2)g,$$

with a Lagrange multiplier λ . This is equivalent to the *Einstein* equation

$$\operatorname{Ricci}_{g} = \lambda' g$$

with $\lambda' = \lambda/(n-2)$.

In this section we consider the functional *I* on a fixed conformal class of metrics.

The Euler-Lagrange equation is then that the scalar curvature be constant.

The Yamabe problem is to prove that there is always a solution of this equation. More precisely:

In any conformal class there is a metric which minimises I over the conformal metrics of volume 1.

This result follows from contributions by many people (Yamabe, Trudinger, Aubin, Schoen, ...).

We call such a metric a Yamabe minimser.

For simplicity (mainly) we take n = 3.

It is convenient to parametrise a conformal class by $\tilde{g} = u^4 g$. Then one finds that

$$R_{\tilde{g}}=u^{-5}\left(-8\Delta_{g}u+R_{g}u\right),$$

so, taking account of the change in volume form by a factor u^6 ,

$$I(\tilde{g}) = \int_M u(-8\Delta_g u + R_g u) \ d\mu_g = \int_M 8|\nabla u|^2 + Ru^2 d\mu.$$

The volume constraint is that the integral of u^6 is 1.

(Note: In general dimension *n* we use $u^{4/(n-2)}g$ and the formulae involve different factors.)

The Euler-Lagrange equation is

$$-8\Delta u + Ru = \lambda u^5.$$

Note that $\lambda = I(\tilde{g})$.

This is an example of a conformally invariant variational problem, similar to harmonic maps of surface.

It involves the borderline Sobolev embedding: in dimension 3,

$$L_1^2 \rightarrow L^6$$
,

but the inclusion is not compact.

Let *H* be the completion of compactly supported functions on \mathbf{R}^3 in the norm $\|\nabla f\|_{L^2}$. Let μ_0 be the best constant in the inequality

$$\mu_0 \left(\int_{\mathbf{R}^3} f^6 \right)^{1/3} \le \|
abla f \|_{L^2}^2.$$
 (*)

The sphere S^3 is the conformal compactification of \mathbb{R}^3 . Working with the Euclidean metric as our reference metric one see that the Yamabe problem for this conformal class is equivalent to minimising $\|\nabla f\|_{L^2}$ over functions f on \mathbb{R}^3 with the integral of f^6 equal to 1 and asymptotic to

const.
$$(1 + r^2)^{-1/2}$$

at infinity.

This is equivalent to finding a function realising equality in (*).

It can be shown that such a minimiser exists and corresponds to a round metric on S^3 .

One can use a symmetrisation argument to reduce to functions f(r) and get down to a calculus of variations argument in one dimension.

For a general compact Riemannian 3-manifold (M, g) of volume 1, let μ_g be the infimum of $I(\tilde{g})/8$ over conformal metrics of volume 1.

This is the best constant in the inequality:

$$\mu_g \left(\int_M u^6\right)^{1/3} \leq \int_M |\nabla u|^2 + (R/8)u^2$$

It is clear that $\mu_g > -\infty$.

There are two main steps in the proof of the existence of a Yamabe minimiser.

- Show that if μ_g < μ₀ then there is a smooth minimiser in the conformal class.
- Show that µ_g ≤ µ₀ with equality if and only g is a round metric on S³.

The first step uses arguments which apply to many other problems.

We will focus on the proof of a slightly weaker statement. Theorem $\ensuremath{\mathsf{A}}$

Suppose that for $s \in [0, 1]$, we have a 1-parameter family of metrics g_s with $\mu_{g_s} < \mu_0$. If a Yamabe minimiser exists in the conformal class of g_0 then the same is true for all s.

As usual, the proof has an openness part and a closedness part. We will concentrate on the closedness.

This uses the important idea of a "small energy" estimate.

Proposition 1

Suppose that (M, g) is a Riemannian 3-manifold F is a function on M and $\lambda \in \mathbf{R}$.

There are ϵ_0 , ρ_0 , C (depending on g, F and λ) such that if a positive function u satisfies the equation $-\Delta u = \lambda u^5 - Fu$ on M and if B is a ball with centre p of radius $\rho \leq \rho_0$ such that

$$\int_{B} u^{6} = \epsilon \leq \epsilon_{0}$$

then $|u| \leq C\epsilon^{1/6}\rho^{-1/2}$ on the $\rho/2$ ball centred at p.

For simplicity we suppose that the metric is Euclidean on *B*, so that *B* is the ρ -ball in **R**³, and that $F = 0, \lambda = 1$.

If *u* satisfies $-\Delta u = u^5$ and we set $\tilde{u}(x) = \nu^{1/2} u(\nu x)$ for some ν then \tilde{u} satisfies the same equation and

$$\int_{\nu^{-1}B}\tilde{u}^6=\int_B u^6.$$

Thus we can suppose that $\rho = 1$ and *B* is the unit ball in \mathbb{R}^3 .

Let $M = \max_{x \in B} u(x)D(x)^{1/2}$ where D(x) is the distance to the boundary of B.

Let x_0 be a point where the maximum is attained and $\nu = (1/2)D(x_0)$. Let $\psi : \mathbf{R}^3 \to \mathbf{R}^3$ be the obvious scaling map taking the unit ball to the ball of radius ν centred at x_0 .

Define the function *U* on the unit ball by $U(y) = \nu^{1/2} u(\psi(y))$.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6

Then *U* has the following properties:

The last property follows from the choice of x_0

If *f* is function on the unit ball *B* with $\Delta f \ge 0$ then the mean value formula shows that *f*(0) is at most the average of *f* over *B*.

Set
$$f = u + \frac{2^{5/2}}{3}M^5r^2$$
.

Then by (1) and (4) we have $\Delta f \ge 0$ and we deduce, using (2), that

$$U(0) \leq C_1 M^5 + C_2 \epsilon^{1/6}$$

for computable constants C_1 , C_2 . So, using (3), we have

$$M \leq C_1 M^5 + C_2 \epsilon^{1/6}.$$

If ϵ is small (depending on C_1, C_2) the solutions of this inequality fall into disjoint sets:

- "small" with $M \leq C \epsilon^{1/6}$;
- "large" with $M \ge C' \sim C_1^{-1/4} > 0$.

This determines ϵ_0 .

We can apply the whole argument starting with the ball ηB in place of *B*, for $\eta < 1$. So we set

$$M(\eta) = \max_{x \in \eta B} u(x) D_{\eta}(x)^{1/2}$$

where D_{η} is the distance to the boundary of ηB .

We get either
$$M(\eta) \leq C\epsilon^{1/6}$$
 or $M(\eta) \geq C'$.

Clearly when η is sufficiently small the first alternative holds and by continuity it must be true for all $\eta \leq 1$.

This proves Proposition 1.

Once we are in the "small energy" regime on a ρ -ball as in Proposition 1 we get elliptic estimates on all derivatives of *u* in the interior, depending on ρ .

Proposition 2

Suppose that $\mu_g = \mu_0 - K^{-1}$ for K > 0.

For any $\epsilon > 0$ there is a computable $\delta > 0$, depending on K, g, ϵ , such that if u s a Yamabe minimiser for g then the integral of u^6 over any δ -ball is less than ϵ .

Together with Proposition 1 and the remarks above, this implies the closedness part of Theorem. A.

Since we will be working in a small neighbourhood Ω of a point there is no real loss in supporting that the metric *g* is Euclidean in this neighbourhood.

The function *u* satisfies the equation $-\Delta u = \mu u^5$ for $\mu = \mu_g$.

Let χ be any function of compact support in Ω .

Multiply the equation by $\chi^2 u$ and integrate by parts to get

$$\int \nabla(\chi^2 u) \cdot \nabla u = \mu \int \chi^2 u^6.$$

We have

$$\nabla(\chi^2 u) \cdot \nabla u = |\nabla(\chi u)|^2 - |\nabla\chi|^2 u^2.$$

So

$$\int |\nabla(\chi u)|^2 = \mu \int \chi^2 u^6 + \int |\nabla \chi|^2 u^2.$$

Applying the Euclidean Sobolev inequality to χu we get

$$\mu_0 \|\chi u\|_{L^6}^2 \le \mu \int \chi^2 u^6 + \int |\nabla \chi|^2.$$

We estimate the two terms on the RHS using Hölder's inequality with exponents 3, 3/2 to get

$$\mu_0 \|\chi u\|_{L^6}^2 \le \mu \|\chi u\|_{L^6}^2 \|u\|_{L^6}^4 + \|\nabla \chi\|_{L^3}^2 \|u\|_{L^6}^2.$$

Recall that u is normalised so that the integral of u^6 is 1. Thus we have

$$(\mu_0 - \mu) \| \chi u \|_{L^6}^2 \le \| \nabla \chi \|_{L^3}^2$$

SO

$$\|\chi u\|_{L^6}^2 \leq K \|\nabla \chi\|_{L^3}^2.$$

Important fact; Exercise

For any given $\sigma > 0$ we can find $\delta < \delta'$ so that for each point $p \in M$ there is a cut-off function χ supported in the δ' neighbourhood of p, equal to 1 on the δ -neighbourhood of p and with $\|\nabla \chi\|_{L^3} \leq \sigma$.

This is a reflection of the *failure* of the Sobolev embedding $L_1^6 \rightarrow L^\infty$ in dimension 3.

This completes the proof of Proposition 2.

Leaving aside the openness in Theorem A for the moment, we return to discuss the variational problem of finding a Yamabe minimiser.

For p < 6 consider the modified problem of minimising

٠

$$\int |\nabla u|^2 + R/8u^2,$$

subject to the constraint $\int u^{p} = 1$.

The compact inclusion $L_1^2 \to L^p$ means that a minimising sequence u_i can be chosen to converge to a limit u_∞ in L^p . We can also suppose that it converges *weakly* in L_1^2 . *i.e.* $u_{p,\infty} \in L_1^2$ and for any test function ψ

$$\langle \nabla \psi, \nabla u_i \rangle \to \langle \nabla \psi, \nabla u_{\rho,\infty}.$$

This implies that $u_{\rho,\infty}$ is a weak solution of the Euler-Lagrange equation and a bootstrapping argument shows that it is smooth.

Assuming that $\mu_g < \mu_0$ a modification of the arguments above gives *a priori* estimates on all derivatives of $u_{p,\infty}$, independent of *p*.

Taking the limit as $p \rightarrow 6$ gives a minimiser for the original problem.

If we try to use this minimising argument directly in the critical case p = 6 we can still choose a weakly convergent minimising sequence but the weak limit could be zero.

Go back to the openness problem in Theorem A.

This is a *Digression* from our main thread in this section.

Openness is straightforward, using the implicit function theorem, provided that for a minimiser \tilde{g} the Laplace operator does not have an eigenvalue $-(1/2)R_{\tilde{g}}$.

To handle the general case we can use the method of "reduction to finite dimensions", similar to a discussion in Section 4. Suppose that $\mu_g < \mu_0$ and *g* is a Yamabe minimiser. The arguments above show that the space *K* corresponding to volume 1 minimisers in the conformal class of *g* is compact. We regard *K* as a subset of the space \mathcal{U} of positive functions *u* with L^6 norm 1 Using the same idea as for "Kuranishi models" we can construct a compact finite dimensional manifold Σ with boundary and an immersive embedding $\iota : \Sigma \to \mathcal{U}$ such that $K = \iota(\underline{K})$ where \underline{K} lies in the interior of Σ .

We make the construction so that for each $\sigma \in \Sigma$ we have a finite-codimension submanifold $N_{\sigma} \subset \mathcal{U}$ through $\iota(\sigma)$ and the tangent space of N_{σ} at $\iota(\sigma)$ is complementary to the tangent space of $\iota(\Sigma)$.

The subset *K* is the minimising set of the functional *I* on \mathcal{U} with minimal value 8μ on *K*.

We make the construction so that $\iota(\sigma)$ is a nondegenerate minimum of the restriction of *I* to N_{σ} .

We have a finite-dimensional reduction of the functional to a function $\underline{I} = I \circ \iota$ on Σ and \underline{K} is the set of minima of \underline{I} .

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6

The crucial point is that there is some $\delta > 0$ so that $\underline{I} \ge 8\mu + \delta$ on $\partial \Sigma$.

Suppose that we make some small perturbation of our functional *I* to I'.

The nondegeneracy condition means that for each σ there is a unique nearby minimum of I' on N_{σ} (using the implicit function theorem in the standard way).

This defines a perturbed map $\iota' : \Sigma \to \mathcal{U}$ and hence a perturbed function $\underline{I}' = I' \circ \iota'$ on Σ .

Minima of I' on \mathcal{U} correspond to minima of \underline{I}' on Σ , provided that the latter do not occur on the boundary.

By compactness, there is at least one minimiser of \underline{I}' on the compact manifold-with-boundary Σ .

The "crucial point" implies that that, for sufficiently small perturbations, the minimisers are not on the boundary of Σ .

So we get a minimiser of the perturbed functional I'.

End of digression

Theorem B

Any compact Riemannian 3-manifold (M, g) has $\mu_g \leq \mu_0$ with equality if and only if (M, g) is conformal to the standard sphere. The fact that $\mu_g \leq \mu_0$ is relatively easy.

Suppose first that g is Euclidean in a small neighbourhood of a point p.

Recall that inversion $x \mapsto x/|x|^2$ is a conformal map on $R^3 \setminus \{0\}$.

Using this, it is clear that we can find a conformally equivalent metric \hat{g} on $\hat{M} = M \setminus \{p\}$ which is complete and Euclidean outside a compact set.

We can arrange that $(\hat{M} \setminus K, \hat{g})$ is isometric to the complement $\mathbf{R}^3 \setminus \frac{1}{2}B$, for a suitable compact set $K \subset \hat{M}$.

Let g^S be the standard round metric on S^3 of volume 1 and fix a point $q \in S^3$.

For small ρ , conformally deform g^{S} slightly in an $O(\rho)$ neighbourhood of q to get a metric g_{ρ}^{S} which contains an isometric copy B_{ρ} of the Euclidean ρ -ball.

Let *J* be the 1/8 the integral of the scalar curvature of \hat{g} . Scale \hat{g} to $\hat{g}_{\rho} = \rho^2 \hat{g}$. Then

$$\int_{\hat{M}} R_{\hat{g}_{\rho}} = 8\rho J.$$

The metrics \hat{g}_{ρ} and g_{ρ}^{S} can be glued isometrically along an annular region isometric to a neighbourhood of ∂B_{ρ} . This gives a metric g_{ρ}^{\sharp} on M, conformal to g. The volume is $1 + O(\rho^{3})$ and the integral of the scalar curvature is $8\mu_{0} + O(\rho)$.

Letting $\rho \rightarrow 0$ shows that $\mu_g \leq \mu_0$.

If g is not Euclidean near p we get a small extra error in the gluing construction but the same argument works.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 5,6

There is a similar discussion for the harmonic maps energy functional E in dimension (of the domain) 2.

For example, consider a flat torus T^2 and maps $f : T^2 \rightarrow S^2$ of degree d > 0.

If ω is the area form on S^2 of total area 1 we have

$$\int_{\mathcal{T}^2} f^*(\omega) = \boldsymbol{d}.$$

On the other hand there is a pointwise inequality

$$|f^*(\omega)| \leq rac{1}{2}|df|^2 d\mu_T,$$

So $E(f) \ge d$. Equality holds if and only if *f* is holomorphic.

A similar construction to that above shows that for any *d* the infimum of the energy functional is *d*. ("Glue" a constant map on T^2 minus a small disc to a degree *d* holomorphic map from S^2 to S^2 .)

When d = 1 there is no holomorphic map, so the infimum is not attained.

A minimising sequence will develop a "bubble".

The essence of the Yamabe problem is to show that the analogous phenomenon does not occur.

For our discussion of Theorem B we continue to **ASSUME** that g is Euclidean in a neighbourhood of some point $p \in M$ Suppose we have a conformal metric \hat{g} on \hat{M} with scalar curvature $\hat{R} \leq 0$ and not identically zero and which is *asymptotically Euclidean* in the sense that outside a compact set the manifold is identified with the complement of a ball in \mathbb{R}^3 and

$$\hat{g}_{ij} = (1+\phi)\delta_{ij}$$

where ϕ is $O(r^{-2})$, with corresponding estimates for derivatives. In particular the scalar curvature \hat{R} is $O(r^{-4})$.

Choose a large number *L* and flatten \hat{g} in the annulus of size O(L) to get a metric \hat{g}_L That is, multiply ϕ by a suitable cut-off function.

The change in the scalar curvature is $O(L^{-4})$ over the annulus of volume $O(L^3)$ so the change in the integral of the scalar curvature is $O(L^{-1})$ which tends to zero as $L \to \infty$. So we can fix *L* such that $I(\hat{g}_L) < 0$. Then the same gluing construction as before shows that $\mu_g < \mu_0$. To find a suitable metric \hat{g} we use the Dirac operator.

Any oriented Riemannian 3-manifold (M, g) admits a spin structure and hence $D : \Gamma(S) \rightarrow \Gamma(S)$.

If $g' = u^4 g$ is a conformal metric we get a spin structure for g' with the same bundle *S* but multiply the structure map $T^*M \rightarrow \text{End}S$ by u^{-2} .

Important fact The Dirac operator is conformally invariant, in the sense that

$$D's = u^{-4}D(u^2s).$$

In general, suppose that $\mathcal{D} : \Gamma(E) \to \Gamma(F)$ is an elliptic operator of order *r* between sections of Hermitian bundles over a compact *n*-manifold *X*. Let $p \in X$ and $\alpha \in F_p^*$. This defines a distribution, a linear map from $\Gamma(F)$ to **C**. We can consider solutions *s* of the equation $\mathcal{D}s = \delta_{\alpha}$. Such a section satisfies Ds = 0 on $X \setminus \{p\}$ and has a "pole" at *p*. For r < n the order of growth of *s* is d^{r-n} where *d* is the

distance to p.

In the case of the $\overline{\partial}$ -operator on a Riemann surface we get meromorphic functions.

The general theory says that if the kernel of the adjoint operator \mathcal{D}^* is trivial then such a solution exists, for any p, α .

Note that a constant spinor field on \mathbb{R}^3 goes over under inversion to a spinor field on \mathbb{R}^3 with a pole at 0.

To get quickly to the main point note that on a 3-manifold the Dirac operator is self adjoint and we expect that for typical metrics the kernel is trivial.

Also the spin bundle *S* has real rank 4 so generic sections have no zeros.

So **ASSUME** for the moment that $\ker D_g = 0$ and solve the equation $Ds = \delta_{\alpha}$ for some α at $p \in M$.

ASSUME also that this *s* does not vanish anywhere on $M \setminus \{p\}$.

We have

$$|s|^2 = Cd^{-4} + O(d^{-2})$$
 (***)

near *p* for some $C \neq 0$.

Let g' be the conformal metric u^4g with $u = |s|^{1/2}$ so $s' = u^{-2}s$ satisfies D's' = 0 and by construction |s'| = 1 everywhere. The asymptotics (***) show that g' is asymptotically Euclidean in the sense we considered above.

The Lichnerowicz formula gives

$$\Delta' |s'|^2 = |\nabla' s'|^2 + R' |s'|^2$$

But the left hand side is zero so $R' \leq 0$ and if R' = 0 everywhere $\nabla' s' = 0$.

If $\nabla' s' = 0$ it is easy to show that g' is the Euclidean metric on \mathbb{R}^3 .

(The group SU(2) acts freely on the unit sphere in \mathbf{C}^2 so the "holonomy" is trivial.)

This completes the proof of Theorem B, under the three **ASSUMPTIONS**.

1. The assumption that s has no zeros Take $u_{\epsilon} = F_{\epsilon}(|s|)$ for a suitable family of positive functions $F_{\epsilon}(t)$ approximating $t^{1/2}$.

Calculations show that the contribution to the integral of the scalar curvature from such a change goes to zero as $\epsilon \to 0$. So the only problem could be when $\nabla' s' = 0$ outside the zero set of *s*.

A maximum principle argument shows that this cannot happen.

2. The assumption that $\ker D = 0$.

Suppose that *s* is a non-trivial element of the kernel. If *s* has no zeros we consider the same conformal deformation to get a metric with scalar curvature ≤ 0 which shows that $\mu_g \leq 0$ and hence $\mu_g < \mu_0$.

If s has zeros we argue as in (1) above.

3. The assumption that g is Euclidean in the neighbourhood of some point.

We can make the same constructions but now we have a slightly deformed metric on S^3 . Calculations show that this is $O(\rho^2)$ and so does not affect the argument.

Higher dimensions

The same argument works in dimension n for spin manifolds which are (conformally) Euclidean in some neighbourhood. In general:

- For manifolds which are not conformally Euclidean in any neighbourhood one has to take account of the slightly deformed metric on *S*^{*n*}.
- For a conformally flat manifold *M* there is a problem if *M* is not spin. The discussion is related to the "Positive Mass Theorem".