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“GEOMETRIC ANALYSIS”:

Study of partial differential equations (usually elliptic or
parabolic) related to differential geometry on manifolds.
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The course will focus on examples, mainly from Riemannian
Geometry and Gauge theory.
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Outline plan:
1 Short review of background theory.
2 The equation of constant Gauss curvature on surfaces and

the vortex equation.
3 The theorem of Eells and Sampson on harmonic maps to

spaces of negative curvature and applications to Hitchin’s
equation.

4 The Seiberg-Witten equation on symplectic 4-manifolds.
5 The Yamabe problem for constant scalar curvature metrics.
6 Yau’s solution of the Calabi conjecture in complex

differential geometry.
7 Perelman’s monotonicity formula for Ricci flow.
8 Adiabatic approximations, such as the result of Dostoglou

and Salamon relating Yang-Mills instantons to holomorphic
maps
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We may not get to all of these topics, and the level of detail will
be variable.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 1,2



Some books:

T. Aubin Nonlinear Analysis on manifolds: Monge-Ampère
equations; Nonlinear problems in Riemannian geometry.

J. Jost Geometric analysis and Riemannian geometry.

R. Schoen and S-T Yau Lectures on differential geometry.
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SECTION 1. REVIEW OF SOME BACKGROUND.
Linear elliptic equations.

Let D be a linear elliptic operator of order r over a compact
manifold M so

D : Γ(E) → Γ(F )

for vector bundles E , F over M.

Fundamental example: the Laplace operator on functions on a
Riemannian manifold.
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Δu = div gradu

Δu = −d∗du = ± ∗ d ∗ du,

Δu = g−1/2
∑ ∂

∂xi

(

g1/2 gij ∂u
∂xj

)

.
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Usually there will be metricson M, E , F .
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Basic fact: Ker D is finite dimensional and Im D consists of
sections of F which are L2-orthogonal to kerD∗.

Here D∗ is the formal adjoint operator defined by the condition

〈σ,Df 〉 = 〈D∗σ, f 〉.

where

〈p, q〉 =

∫

M
(p(x), q(x)) dμx =

∫

M
(p(x), q(x)) dx .
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For example, for any ρ we can solve the equation −Δf + f = ρ
since −Δ + 1 is a strictly positive self-adjoint operator:

〈(−Δ + 1)f , f 〉 = ‖∇f‖2
L2 + ‖f‖2

L2 .

The solution is given by an integral operator

f (x) =

∫

M
G(x , y)ρ(y)dy .
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There are multitudes of function spaces, with associated norms.

Lp
k for p ≥ 1—functions with k derivatives in Lp.

Ck ,α for 0 < α < 1—functions whose first k derivatives are
Hölder continuous with exponent α.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 1,2



Elliptic operators over compact manifolds behave well on these
function spaces (taking p > 1 in the first case).

D : L2
k+r → L2

k

is Fredholm, with finite dimensional kernel and closed image of
finite codimension. Similarly for the Ck ,α. There are elliptic
estimates of the shape:

‖f‖L2
k+r

≤ C
(
‖Df‖L2

k
+ ‖f‖L2

)
.

Also regularity: if f is only a priori in L2 (or even just a
distribution) and Df = ρ in the weak sense for ρ ∈ L2

k then in
fact f ∈ L2

k+r .
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Results of “Ascoli-Arzela type”: inclusions L2
k+1 → L2

k and
Ck+1,α → Ck ,α are compact.
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Sobolev embedding theorems

The quantity k − n/p where n = dimM is the scaling weight of
the Lp

k norm.

If 1 − n/p > 0 then functions in Lp
1 are continuous.
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Outline proof.

If f is a smooth function on Rn supported in the unit ball then
we can write f (0) as the integral of the radial derivative ∂f

∂r along
any ray through the origin. Now average over these rays to get
a formula of the shape

f (0) =

∫
k(x).(∇f )(x)dx , (∗)

where |k(x)| = O(|x |1−n) and estimate the integral (*) using
Hölders inequality.
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In fact for 1 − n/p > 0 the functions in Lp
1 are in C,α for

α = 1 − n/p.
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If 1 − n/p ≥ −n/q then Lp
1 ⊂ Lq.

This can be reduced to the case p = 1, q = n/(n − 1) for
nonnegative functions of compact support on Rn. That is, the
Sobolev inequality

(∫
f n/n−1

)(n−1)/n

≤ Cn

∫
|∇f |, (∗∗)

which can be shown to be equivalent to the isoperimetric
inequality.
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Outline proof.

Start with case n = 2 and write

g1(x2) =

∫
|
∂f
∂x1

| dx1.

Then |f (x1, x2)| ≤ g1(x2) and
∫

g1x2)dx2 ≤ ‖∇f‖L1 .

Define g2(x1) similarly. So

f (x1, x2)
2 ≤ g1(x2)g2(x1)

and ∫
f 2 ≤

∫
g1dx2 ×

∫
g2dx1 ≤ ‖∇f‖2

L1
2
.
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For n = 3 we get in the same way functions g1(x2, x3) etc. and

f 3 ≤ g1(x2, x3)g2(x1, x3)g3(x1, x2).

Now use the Cauchy-Schwartz inequality twice to estimate the
integral of f 3/2.

Similarly for general n.
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The corresponding result for sets K ⊂ Rn is

Vol(K )n−1 ≤ Π1 × ∙ ∙ ∙ × Πn,

where Πi is the volume of the projection of K to the ith.
coordinate hyperplane.
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Inverse and Implicit function theorems in Banach spaces

For example, suppose that H1, H2 are Banach spaces and

F : U → H2

is a continuously differentiable map from an open set U ⊂ H1

containing 0 and F(0) = 0.

Suppose that dF at 0 is an isomorphism from H1 to H2.

Then for all small y in H2 there is a unique small solution x to
the equation F(x) = y .
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Outline proof

Write F(x) = x + E(x), so the equation to be solved is
x = T (x) where T (x) = y − E(x). Then

T (x1) − T (x2) = E(x1) − E(x2),

and the hypotheses imply that T is a contraction for xi

sufficiently small.

We find a solution x = limk→∞T k (0).
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For example, consider the PDE −Δf + f 2 = 1 + ρ on a compact
manifold of dimension n ≤ 8. We can apply the above to show
that for sufficiently small ρ ∈ L2 there is a solution 1 + η where
η ∈ L2

2 is small.

That is, we define

F(η) = −Δη + (1 + η)2 − 1.

Sobolev embedding shows that if η ∈ L2
2 then η ∈ L4 so F is

defined as a map from L2
2 to L2.

The derivative at η = 0 is the linear map D(ξ) = −Δξ + 2ξ
which is positive, self-adjoint hence invertible from L2

2 to L2.
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Explicitly, if G is the integral operator (−Δ + 2)−1 we define a
sequence

σk+1 = σk +
(
ρ − (σk + (Gσk )2)

)
.

Then σk → σ∞ and the solution η is Gσ∞.
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Suppose, more generally, that the derivative of F is surjective,
with finite dimensional kernel of dimension p. Then for small y
the small solutions of the equation F(x) = y are parametrised
by a manifold of dimension p.
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SECTION 2. Constant Gauss curvature and vortices

Let M be a compact 2-manifold. A Riemannian metric g on M
has a Gauss curvature Kg . We are interested in finding a metric
of constant Gauss curvature in a given conformal class.

The basic differential geometric formula we need is that if
g = e2ug0 then

Kg = e−2u (K0 − Δ0u)
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One way of seeing this is through complex differential
geometry. If L is a holomorphic line bundle over a complex
manifold with a hermitian metric h on the fibres then there is a
unique connection on L compatible with the holomorphic and
metric structures.

If s is a local holomorphic section of L the curvature Θ of this
connection is the 2-form ∂∂

(
log |s|2

)
.
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Suppose that our manifold M is oriented, so it becomes a
Riemann surface with area form ω. Then ∂∂f = i

2Δf ω.

Applying the discussion above to the tangent bundle we get a
curvature form Θ which (from the definitions) is Θ = −iKω.
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We treat the case of negative Euler characteristic.

By the Gauss-Bonnet Theorem this means that the integral of
the curvature of any metric is negative.

As a first step we choose u so that K0 − Δ0u is a negative
constant. Then Kg < 0 so without loss of generality we may
suppose that the original metric has K0 = −ρ with ρ > 0.

The equation to solve to get K = −1 is

−Δu + e2u = ρ. (∗ ∗ ∗)
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The main result is that there is a unique solution u.
This gives a proof of the Uniformisation Theorem (for compact
Riemann surfaces of negative Euler characteristic).

We prove the existence of a solution to this equation (***) using
the continuity method.
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Let ρt = (1 − t) + tρ for t ∈ [0, 1].
We have a family of equations −Δut + e2ut = ρt . Let S ⊂ [0, 1]
be the set of parameter values for which a solution exists.
The strategy is to prove

1 S is nonempty;
2 S is open;
3 S is closed.

(1) is easy since u0 = 0 is a solution.
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To prove (2) we use the inverse function theorem.
Let F(u) = −Δu + e2u. In this dimensionL2

2 functions are
continuous, so F is defined as a map from L2

2 to L2. The
derivative of F at u is the linear map D(ξ) = −Δξ + 2e2uξ
which is positive self-adjoint hence invertible.
So if t ∈ S and σ is sufficiently small in L2 there is an L2

2
solution v to the equation F(v) = ρt + σ.
In particular this is true for ρt + σ = ρt ′ for t ′ close to t .
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To complete the proof of openness we need a regularity result.

If ρ is C∞ and u is an L2
2 solution to −Δu + e2u = ρ then u is

also smooth.

This follows by “bootstrapping”.
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For smooth f we have

Δ(e2f ) = e2f (2Δf + 4|∇f |2).

We have inclusions L2
2 ⊂ C0 and L2

2 ⊂ L4
1. This means that

τ = e2u(2Δu + 4|∇u|2)

is defined in L2.
If fi ∈ C∞ converge in L2

2 to u then Δ(e2fi ) converge in L2 to τ
which implies that the equation τ = Δe2u is true in the weak
sense.
So Δ2u = Δρ − τ in the weak sense and the right hand side is
in L2. Elliptic regularity implies that u ∈ L2

4
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. . . and so on.
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Now we want to prove that S is closed. This is done using a
priori estimates from the maximum principle.

Let −Δu + e2u = ρ where ρ is strictly positive. At a point x0

where u attains is maximum we have Δu ≤ 0. So

2u(x0) ≤ log ρ(x0).

Similarly at a point x1 where u attains its minimum we get

2u(x1) ≥ log ρ(x1).
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This implies that there is some fixed C so that for all t ∈ S

‖ut‖C0 ≤ C

Then we get a bound on the L2 norm of Δut , hence on the L2
2

norm of ut .

Differentiating the equation repeatedly we get bounds on all L2
k

norms of ut .
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Suppose ti ∈ S converge to t∞ ∈ [0, 1].

Taking a subsequence, we can suppose that uti converge in L2
k

for all k .

The limit shows that t∞ ∈ S.
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Uniqueness of the solution follows easily from the maximum
principle. (Exercise)
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Variational method
This gives another approach to the problem. Define

E(u) =

∫

M
|∇u|2 + e2u − ρu.

Then our equation −Δu + e2u − ρ = 0 is the Euler-Lagrange
equation associated to this functional.

We will find a solution by minimising E .
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For x ∈ M write
Vx(y) = e2y − ρ(x)y .

Our functional is
∫

M
|∇u|2 + Vx(u) dx

The key point is that Vx(y) → +∞ as y → ±∞.
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Clearly E is bounded below so we have a number θ defined as
the infimum of E(u) as u runs over all smooth functions.

We can choose a “minimising sequence”: a sequence ui so that
E(ui) → θ.

We first argue that we can choose such a sequence which
satisfies a fixed bound

‖ui‖L∞ ≤ C (∗ ∗ ∗ ∗ ∗)
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For each x ∈ M the function Vx has a unique minimum
achieved at some ν(x) ∈ R. Let ν, ν be the maximum and
minimum values of ν(x).

Suppose we have a u with maxx u(x) > ν. Let Ω ⊂ M be the
set where u < ν. Define a new function u∗ by u∗(x) = u(x) for
x ∈ Ω and u∗(x) = ν if x /∈ Ω.

Ignoring for the moment the fact that u∗ need not be smooth,
we see that E(u∗) ≤ E(u).

So we can change any minimising sequence to get a new one
which is bounded above. Similarly for the lower bound.
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The lack of smoothness of u∗ is handled by a straightforward
approximation argument.

(Note that changing ν by an arbitrarily small amount we can
assume, by Sard’s Theorem, that Ω is a domain in M with
smooth boundary.)
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Next we can prove that our bounded minimising sequence
converges in L2

1.

This is the same idea as in the standard proof of the Riesz
representation Theorem, in Hilbert space theory.

We see that, for u1, u2 satisfying the bound (*****), we have

E(
u1 + u2

2
) ≤

E(u1) + E(u2)

2
− δ‖u1 − u2‖

2
L2

1
,

for some (computable) δ > 0 depending on C.

This uses the convexity of the functions Vx .
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So suppose that ui → u∞ in L2
1.

The bound (*****) means that there is no problem defining e2u∞ .

We claim that u∞ satisfies the Euler-Lagrange equation in a
weak sense. That is, for all smooth ψ we have

〈∇u∞,∇ψ〉 + 〈e2u∞ − ρ, ψ〉 = 0.

Write the left hand side of the above as D(u∞, ψ). It is the
derivative of the functional E at the point u∞ in the direction ψ.
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Arguing for a contradiction, suppose that D(u∞, ψ) < 0.

We have

E(ui + tψ) = E(ui) + tD(ui , ψ) + α(ui , tψ),

say, where it is straightforward to show that |α(ui , tψ)| ≤ ct2 for
small t .
It is also straightforward to see that, for this fixed ψ, we have

D(ui , ψ) → D(u∞, ψ)

as i → ∞.
Then we can choose a fixed t > 0 so that
E(ui + tψ) ≤ E(ui − η) for some η > 0 independent of i .
This contradicts the minimising property.
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To finish the proof we just have to establish regularity: that u∞

is smooth (Exercise).
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Remark
Although we have avoided needing it; the functional E can be
defined on L2

1.

The Sobolev inequalities in dimension say that L2
1 ⊂ Lp for all

finite p, but not for p = ∞.

If f is a function supported on the unit disc in R2 with
‖∇f‖L2 ≤ 1, a careful study of the Sobolev embedding
constants shows that there is an ε > 0 such that exp(εf 2) is
integrable, which implies that exp(Kf ) is integrable for all K .

See Gilbarg and Trudinger, Chapter 7.
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The Vortex equation
Let M be a Riemann surface with a compatible metric and area
form ω.
Let L be a Hermitian complex line bundle over M. Fix a positive
real number τ .
The vortex equation is a system of non-linear equations for a
pair (A, φ) where A is a unitary connection on L and φ is a
section of L.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 1,2



∂Aφ = 0 ,
(
τ − |φ|2

)
ω = iFA.

Here FA is the curvature of A (a purely imaginary 2-form) and
∂A is the ∂-operator on sections of L defined by A.
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In a local complex co-ordinate x + iy on M we have

∂As =
1
2

(
∇xs + i∇ys

)
,

where ∇x ,∇y are the covariant derivatives in the x , y directions
defined by A.
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We review the fact that for any connection A the operator ∂A

defines a holomorphic structure on the line bundle L.

We define a sheaf on M by the local solutions of the equation
∂As = 0. It follows from the definition that this is a sheaf of
modules over the structure sheaf of M. We just have to see that
there is a non-vanishing solution of the equation in the
neighbourhood of any point in M.
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In some local trivialisation of L we write
∇x = ∂x + Ax ,∇y = ∂y + Ay .
We need to find a non-trivial solution f of the equation

(
∂x + i∂y

)
f = (Ax + iAy )f .

Writing Ax + iAy = α and f = eg this becomes the equation
∂g = α, which we can solve locally using the Cauchy kernel.
(The first case of the “∂-Poincaré lemma)
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So the first part of the vortex equation says that φ is a
holomorphic section of line bundle, for the holomorphic
structure defined by A. This implies that the degree d of L is
≥ 0. The Chern-Weil theory says that

d =
i

2π

∫

M
FA,

and the second equation implies that

2πd =

∫

M
(τ − |φ|2)ω.

So τ ≥ 2πd/Area(M) and if equality holds we have φ = 0.
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Fix d > 0 and τ > 2πd/Area).

The main result is that there is a 1-1 correspondence between
solutions of the vortex equation, up to natural equivalence, and
positive divisors of degree d on M.

More precisely, the group of “gauge transformations”

Aut(L) = Maps(M, S1)

acts on the space of solutions (A, φ) and we regard solutions in
the same orbit as equivalent.
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Suppose that we start with a positive divisor D.

From complex geometry theory this defines a holomorphic line
bundle L with a holomorphic section Φ having zero divisor D.
Also, a Hermitian metric h on L defines a unitary connection.
Now the second vortex equation becomes an equation for the
metric h. If we take some initial metric h0 and set h = e2uh0 the
equation is

−Δu + Γe2u = ρ,

where Γ = |Φ|2h0
and ρ ω = τ − iF0.

Our hypotheses imply that the integral of ρ is strictly positive.
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We can choose the initial metric h0 so that cΓ ≤ ρ ≤ CΓ for
positive constants c, C.

Consider the continuity path with equations

−Δut + Γe2ut = tρ + (1 − t)Γ,

so u0 = 0 is a solution for t = 0.

The same argument as before gives openness.
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The proof of closedness is a little more involved. If the
maximum and minimum of ut occur outside D the same
argument as before gives upper and lower bounds. We just
have to see that the maximum or minimum cannot occur only at
points of D.
This follows from a stronger version of the maximum principle,
based on the identity

−
∫

Ω
fΔf =

∫

Ω
|∇f |2

if f vanishes on ∂Ω.

We apply this to f = ut + constantfor a suitable constant.
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These vortex equations have their origins in real-world physics.

Solutions are absolute minimisers of the Landau-Ginzburg
functional ∫

|∇Aφ|2 + |FA|
2 + (τ − |φ|2)2.

The vortex equations are a prototype for a large family of
important equations involving pairs (A, φ) comprising a
connection A and an additional field φ.
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The set of positive divisors of degree d is the symmetric
product sdM: a complex manifold of complex dimension d
It is the moduli space Mτ of solutions to the vortex equation.

One consequence is that we get natural metrics on sdM.
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Let A0 be some fixed connection on L. We consider
connections A0 + ia where a is a 1-form on M with d∗a = 0.
This fixes the gauge freedom AutL except for the constant
maps from M → S1.
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A tangent vector to Mτ at a point [A, φ] is given by a pair (a, ψ)
satisfying the linear equations

d∗a = 0,

da = −2Re〈ψ, φ〉,

∂Aψ + ia0,1φ = 0,
∫

M Im〈ψ, φ〉 = 0.
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To define the metric on M we use the L2 norm of (a, ψ).
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