GEOMETRIC ANALYSIS SECTIONS 1,2 London School of Geometry and Number Theory 2021

Simon Donaldson¹

¹Department of Mathematics Imperial College

March 9, 2021

"GEOMETRIC ANALYSIS":

Study of partial differential equations (usually elliptic or parabolic) related to differential geometry on manifolds.

The course will focus on *examples*, mainly from *Riemannian Geometry* and *Gauge theory*.

Outline plan:

- Short review of background theory.
- The equation of constant Gauss curvature on surfaces and the vortex equation.
- The theorem of Eells and Sampson on harmonic maps to spaces of negative curvature and applications to Hitchin's equation.
- The Seiberg-Witten equation on symplectic 4-manifolds.
- The Yamabe problem for constant scalar curvature metrics.
- Yau's solution of the Calabi conjecture in complex differential geometry.
- Perelman's monotonicity formula for Ricci flow.
- Adiabatic approximations, such as the result of Dostoglou and Salamon relating Yang-Mills instantons to holomorphic maps

We may not get to all of these topics, and the level of detail will be variable.

Some books:

- T. Aubin Nonlinear Analysis on manifolds: Monge-Ampère equations; Nonlinear problems in Riemannian geometry.
- J. Jost Geometric analysis and Riemannian geometry.
- R. Schoen and S-T Yau Lectures on differential geometry.

SECTION 1. REVIEW OF SOME BACKGROUND. Linear elliptic equations.

Let \mathcal{D} be a linear elliptic operator of order r over a compact manifold M so

$$\mathcal{D}: \Gamma(E) \to \Gamma(F)$$

for vector bundles *E*, *F* over *M*.

Fundamental example: the Laplace operator on functions on a Riemannian manifold.

$\Delta u = \operatorname{div} \operatorname{grad} u$

$$\Delta u = -d^* du = \pm * d * du,$$

$$\Delta u = g^{-1/2} \sum \frac{\partial}{\partial x^i} \left(g^{1/2} g^{ij} \frac{\partial u}{\partial x^j} \right).$$

Usually there will be metrics on M, E, F.

Basic fact: Ker \mathcal{D} is finite dimensional and Im \mathcal{D} consists of sections of F which are L^2 -orthogonal to ker \mathcal{D}^* .

Here \mathcal{D}^* is the formal adjoint operator defined by the condition

$$\langle \sigma, \mathcal{D}f \rangle = \langle \mathcal{D}^*\sigma, f \rangle.$$

where

$$\langle p,q \rangle = \int_M (p(x),q(x)) \ d\mu_x = \int_M (p(x),q(x)) \ dx.$$

For example, for any ρ we can solve the equation $-\Delta f + f = \rho$ since $-\Delta + 1$ is a strictly positive self-adjoint operator:

$$\langle (-\Delta + 1)f, f \rangle = \|\nabla f\|_{L^2}^2 + \|f\|_{L^2}^2.$$

The solution is given by an integral operator

$$f(\mathbf{x}) = \int_M G(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y}.$$

There are multitudes of *function spaces*, with associated norms.

- L_k^p for $p \ge 1$ —functions with *k* derivatives in L^p .
- C^{k,α} for 0 < α < 1—functions whose first k derivatives are Hölder continuous with exponent α.

Elliptic operators over compact manifolds behave well on these function spaces (taking p > 1 in the first case).

$$\mathcal{D}: L^2_{k+r} \to L^2_k$$

is *Fredholm*, with finite dimensional kernel and closed image of finite codimension. Similarly for the $C^{k,\alpha}$. There are *elliptic estimates* of the shape:

$$\|f\|_{L^2_{k+r}} \leq C\left(\|\mathcal{D}f\|_{L^2_k} + \|f\|_{L^2}\right).$$

Also *regularity*: if *f* is only *a priori* in L^2 (or even just a distribution) and $\mathcal{D}f = \rho$ in the weak sense for $\rho \in L^2_k$ then in fact $f \in L^2_{k+r}$.

Results of "Ascoli-Arzela type": inclusions $L_{k+1}^2 \rightarrow L_k^2$ and $C^{k+1,\alpha} \rightarrow C^{k,\alpha}$ are *compact*.

Sobolev embedding theorems

The quantity k - n/p where $n = \dim M$ is the *scaling weight* of the L_k^p norm.

If 1 - n/p > 0 then functions in L_1^p are *continuous*.

Outline proof.

If *f* is a smooth function on \mathbb{R}^n supported in the unit ball then we can write f(0) as the integral of the radial derivative $\frac{\partial f}{\partial r}$ along any ray through the origin. Now average over these rays to get a formula of the shape

$$f(0) = \int k(x) . (\nabla f)(x) dx, \qquad (*)$$

where $|k(x)| = O(|x|^{1-n})$ and estimate the integral (*) using Hölders inequality.

In fact for 1 - n/p > 0 the functions in L_1^p are in $C^{,\alpha}$ for $\alpha = 1 - n/p$.

If $1 - n/p \ge -n/q$ then $L_1^p \subset L^q$.

This can be reduced to the case p = 1, q = n/(n-1) for nonnegative functions of compact support on \mathbb{R}^n . That is, the Sobolev inequality

$$\left(\int f^{n/n-1}\right)^{(n-1)/n} \leq C_n \int |\nabla f|, \qquad (**)$$

which can be shown to be equivalent to the *isoperimetric inequality*.

Outline proof.

Start with case n = 2 and write

$$g_1(x_2) = \int |\frac{\partial f}{\partial x_1}| dx_1.$$

Then $|f(x_1, x_2)| \le g_1(x_2)$ and

$$\int g_1 x_2) dx_2 \leq \|\nabla f\|_{L^1}.$$

Define $g_2(x_1)$ similarly. So

$$f(x_1, x_2)^2 \leq g_1(x_2)g_2(x_1)$$

and

$$\int f^2 \leq \int g_1 dx_2 \times \int g_2 dx_1 \leq \|\nabla f\|_{L^1_2}^2.$$

For n = 3 we get in the same way functions $g_1(x_2, x_3)$ etc. and $f^3 \le g_1(x_2, x_3)g_2(x_1, x_3)g_3(x_1, x_2).$

Now use the Cauchy-Schwartz inequality twice to estimate the integral of $f^{3/2}$.

Similarly for general n.

The corresponding result for sets $K \subset \mathbf{R}^n$ is

$$\operatorname{Vol}(K)^{n-1} \leq \Pi_1 \times \cdots \times \Pi_n,$$

where Π_i is the volume of the projection of *K* to the ith. coordinate hyperplane.

Inverse and Implicit function theorems in Banach spaces

For example, suppose that H_1, H_2 are Banach spaces and

$$\mathcal{F}: U \to H_2$$

is a continuously differentiable map from an open set $U \subset H_1$ containing 0 and $\mathcal{F}(0) = 0$.

Suppose that $d\mathcal{F}$ at 0 is an isomorphism from H_1 to H_2 .

Then for all small y in H_2 there is a unique small solution x to the equation $\mathcal{F}(x) = y$.

Outline proof

Write $\mathcal{F}(x) = x + E(x)$, so the equation to be solved is x = T(x) where T(x) = y - E(x). Then

$$T(x_1) - T(x_2) = E(x_1) - E(x_2),$$

and the hypotheses imply that T is a *contraction* for x_i sufficiently small.

We find a solution $x = \lim_{k\to\infty} T^k(0)$.

For example, consider the PDE $-\Delta f + f^2 = 1 + \rho$ on a compact manifold of dimension $n \le 8$. We can apply the above to show that for sufficiently small $\rho \in L^2$ there is a solution $1 + \eta$ where $\eta \in L^2_2$ is small.

That is, we define

$$\mathcal{F}(\eta) = -\Delta \eta + (1+\eta)^2 - 1.$$

Sobolev embedding shows that if $\eta \in L_2^2$ then $\eta \in L^4$ so \mathcal{F} is defined as a map from L_2^2 to L^2 .

The derivative at $\eta = 0$ is the linear map $\mathcal{D}(\xi) = -\Delta \xi + 2\xi$ which is positive, self-adjoint hence invertible from L_2^2 to L^2 . Explicitly, if G is the integral operator $(-\Delta + 2)^{-1}$ we define a sequence

$$\sigma_{k+1} = \sigma_k + \left(\rho - (\sigma_k + (\mathbf{G}\sigma_k)^2)\right).$$

Then $\sigma_k \to \sigma_\infty$ and the solution η is $G\sigma_\infty$.

Suppose, more generally, that the derivative of \mathcal{F} is surjective, with finite dimensional kernel of dimension p. Then for small y the small solutions of the equation $\mathcal{F}(x) = y$ are parametrised by a manifold of dimension p.

SECTION 2. Constant Gauss curvature and vortices

Let *M* be a compact 2-manifold. A Riemannian metric *g* on *M* has a Gauss curvature K_g . We are interested in finding a metric of constant Gauss curvature in a given conformal class.

The basic differential geometric formula we need is that if $g = e^{2u}g_0$ then

$$K_g = \mathrm{e}^{-2u} \left(K_0 - \Delta_0 u \right)$$

One way of seeing this is through complex differential geometry. If L is a holomorphic line bundle over a complex manifold with a hermitian metric h on the fibres then there is a unique connection on L compatible with the holomorphic and metric structures.

If *s* is a local holomorphic section of *L* the curvature Θ of this connection is the 2-form $\overline{\partial}\partial (\log |s|^2)$.

Suppose that our manifold *M* is oriented, so it becomes a Riemann surface with area form ω . Then $\overline{\partial}\partial f = \frac{i}{2}\Delta f \omega$.

Applying the discussion above to the tangent bundle we get a curvature form Θ which (from the definitions) is $\Theta = -iK\omega$.

We treat the case of negative Euler characteristic.

By the Gauss-Bonnet Theorem this means that the integral of the curvature of any metric is negative.

As a first step we choose *u* so that $K_0 - \Delta_0 u$ is a negative constant. Then $K_g < 0$ so without loss of generality we may suppose that the original metric has $K_0 = -\rho$ with $\rho > 0$.

The equation to solve to get K = -1 is

$$-\Delta u + \mathbf{e}^{2u} = \rho. \qquad (***)$$

The main result is that there is a unique solution *u*. This gives a proof of the Uniformisation Theorem (for compact Riemann surfaces of negative Euler characteristic).

We prove the existence of a solution to this equation (***) using the *continuity method*.

Let $\rho_t = (1 - t) + t\rho$ for $t \in [0, 1]$. We have a family of equations $-\Delta u_t + e^{2u_t} = \rho_t$. Let $S \subset [0, 1]$ be the set of parameter values for which a solution exists. The strategy is to prove

- S is nonempty;
- S is open;
- S is closed.

(1) is easy since $u_0 = 0$ is a solution.

To prove (2) we use the inverse function theorem. Let $\mathcal{F}(u) = -\Delta u + e^{2u}$. In this dimension L_2^2 functions are continuous, so \mathcal{F} is defined as a map from L_2^2 to L^2 . The derivative of \mathcal{F} at u is the linear map $\mathcal{D}(\xi) = -\Delta \xi + 2e^{2u}\xi$ which is positive self-adjoint hence invertible. So if $t \in S$ and σ is sufficiently small in L^2 there is an L_2^2 solution v to the equation $\mathcal{F}(v) = \rho_t + \sigma$. In particular this is true for $\rho_t + \sigma = \rho_{t'}$ for t' close to t. To complete the proof of openness we need a regularity result.

If ρ is C^{∞} and u is an L_2^2 solution to $-\Delta u + e^{2u} = \rho$ then u is also smooth.

This follows by "bootstrapping".

For smooth f we have

$$\Delta(e^{2f}) = e^{2f}(2\Delta f + 4|\nabla f|^2).$$

We have inclusions $L_2^2 \subset C^0$ and $L_2^2 \subset L_1^4$. This means that

$$\tau = e^{2u}(2\Delta u + 4|\nabla u|^2)$$

is defined in L^2 .

If $f_i \in C^{\infty}$ converge in L_2^2 to u then $\Delta(e^{2f_i})$ converge in L^2 to τ which implies that the equation $\tau = \Delta e^{2u}$ is true in the weak sense.

So $\Delta^2 u = \Delta \rho - \tau$ in the weak sense and the right hand side is in L^2 . Elliptic regularity implies that $u \in L^2_4$

...and so on.

Now we want to prove that *S* is closed. This is done using *a priori* estimates from the maximum principle.

Let $-\Delta u + e^{2u} = \rho$ where ρ is strictly positive. At a point x_0 where u attains is maximum we have $\Delta u \leq 0$. So

 $2u(x_0) \leq \log \rho(x_0).$

Similarly at a point x_1 where *u* attains its minimum we get

 $2u(x_1) \geq \log \rho(x_1).$

This implies that there is some fixed *C* so that for all $t \in S$

$$\|u_t\|_{C^0} \leq C$$

Then we get a bound on the L^2 norm of Δu_t , hence on the L_2^2 norm of u_t .

Differentiating the equation repeatedly we get bounds on all L_k^2 norms of u_t .

Suppose $t_i \in S$ converge to $t_{\infty} \in [0, 1]$.

Taking a subsequence, we can suppose that u_{t_i} converge in L_k^2 for all k.

The limit shows that $t_{\infty} \in S$.

Uniqueness of the solution follows easily from the maximum principle. (Exercise)

Variational method

This gives another approach to the problem. Define

$$E(u) = \int_M |\nabla u|^2 + e^{2u} - \rho u.$$

Then our equation $-\Delta u + e^{2u} - \rho = 0$ is the Euler-Lagrange equation associated to this functional.

We will find a solution by minimising *E*.

For $x \in M$ write

$$V_x(y) = e^{2y} - \rho(x)y.$$

Our functional is

$$\int_M |\nabla u|^2 + V_x(u) \quad dx$$

The key point is that $V_x(y) \to +\infty$ as $y \to \pm \infty$.

Clearly *E* is bounded below so we have a number θ defined as the infimum of *E*(*u*) as *u* runs over all smooth functions.

We can choose a "minimising sequence": a sequence u_i so that $E(u_i) \rightarrow \theta$.

We first argue that we can choose such a sequence which satisfies a fixed bound

$$\|u_i\|_{L^{\infty}} \leq C \qquad (****)$$

For each $x \in M$ the function V_x has a unique minimum achieved at some $\nu(x) \in \mathbf{R}$. Let $\overline{\nu}, \underline{\nu}$ be the maximum and minimum values of $\nu(x)$.

Suppose we have a *u* with $\max_{x} u(x) > \overline{\nu}$. Let $\Omega \subset M$ be the set where $u < \overline{\nu}$. Define a new function u^* by $u^*(x) = u(x)$ for $x \in \Omega$ and $u^*(x) = \overline{\nu}$ if $x \notin \Omega$.

Ignoring for the moment the fact that u^* need not be smooth, we see that $E(u^*) \leq E(u)$.

So we can change any minimising sequence to get a new one which is bounded above. Similarly for the lower bound.

The lack of smoothness of u^* is handled by a straightforward approximation argument.

(Note that changing $\overline{\nu}$ by an arbitrarily small amount we can assume, by Sard's Theorem, that Ω is a domain in *M* with smooth boundary.)

Next we can prove that our bounded minimising sequence converges in L_1^2 .

This is the same idea as in the standard proof of the Riesz representation Theorem, in Hilbert space theory.

We see that, for u_1, u_2 satisfying the bound (*****), we have

$$E(\frac{u_1+u_2}{2}) \leq \frac{E(u_1)+E(u_2)}{2} - \delta \|u_1-u_2\|_{L^2_1}^2$$

for some (computable) $\delta > 0$ depending on *C*.

This uses the *convexity* of the functions V_x .

So suppose that $u_i \rightarrow u_\infty$ in L^2_1 .

The bound (*****) means that there is no problem defining $e^{2u_{\infty}}$.

We claim that u_{∞} satisfies the Euler-Lagrange equation in a weak sense. That is, for all smooth ψ we have

$$\langle \nabla u_{\infty}, \nabla \psi \rangle + \langle \mathbf{e}^{2u_{\infty}} - \rho, \psi \rangle = \mathbf{0}.$$

Write the left hand side of the above as $D(u_{\infty}, \psi)$. It is the derivative of the functional *E* at the point u_{∞} in the direction ψ .

Arguing for a contradiction, suppose that $D(u_{\infty}, \psi) < 0$.

We have

$$E(u_i + t\psi) = E(u_i) + tD(u_i, \psi) + \alpha(u_i, t\psi),$$

say, where it is straightforward to show that $|\alpha(u_i, t\psi)| \le ct^2$ for small *t*.

It is also straightforward to see that, for this fixed ψ , we have

$$D(u_i,\psi) \rightarrow D(u_\infty,\psi)$$

as $i \to \infty$. Then we can choose a fixed t > 0 so that $E(u_i + t\psi) \le E(u_i - \eta)$ for some $\eta > 0$ independent of *i*. This contradicts the minimising property. To finish the proof we just have to establish regularity: that u_{∞} is smooth (Exercise).

Remark

Although we have avoided needing it; the functional *E* can be defined on L_1^2 .

The Sobolev inequalities in dimension say that $L_1^2 \subset L^p$ for all finite p, but not for $p = \infty$.

If *f* is a function supported on the unit disc in \mathbb{R}^2 with $\|\nabla f\|_{L^2} \leq 1$, a careful study of the Sobolev embedding constants shows that there is an $\epsilon > 0$ such that $\exp(\epsilon f^2)$ is integrable, which implies that $\exp(Kf)$ is integrable for all *K*.

See Gilbarg and Trudinger, Chapter 7.

The Vortex equation

Let *M* be a Riemann surface with a compatible metric and area form ω .

Let *L* be a Hermitian complex line bundle over *M*. Fix a positive real number τ .

The vortex equation is a system of non-linear equations for a pair (A, ϕ) where A is a unitary connection on L and ϕ is a section of L.

$$\overline{\partial}_{A}\phi = 0$$
 , $\left(\tau - |\phi|^{2}\right)\omega = iF_{A}.$

Here F_A is the curvature of A (a purely imaginary 2-form) and $\overline{\partial}_A$ is the $\overline{\partial}$ -operator on sections of L defined by A.

In a local complex co-ordinate x + iy on M we have

$$\overline{\partial}_{\mathcal{A}} \mathbf{s} = \frac{1}{2} \left(\nabla_{\mathbf{x}} \mathbf{s} + i \nabla_{\mathbf{y}} \mathbf{s} \right),$$

where ∇_x , ∇_y are the covariant derivatives in the *x*, *y* directions defined by *A*.

We review the fact that for any connection A the operator $\overline{\partial}_A$ defines a *holomorphic structure* on the line bundle L.

We define a sheaf on *M* by the local solutions of the equation $\overline{\partial}_A s = 0$. It follows from the definition that this is a sheaf of modules over the structure sheaf of *M*. We just have to see that there is a non-vanishing solution of the equation in the neighbourhood of any point in *M*.

In some local trivialisation of *L* we write $\nabla_x = \partial_x + A_x, \nabla_y = \partial_y + A_y.$ We need to find a non-trivial solution *f* of the equation

$$\left(\partial_{\mathbf{X}}+i\partial_{\mathbf{y}}\right)f=(\mathbf{A}_{\mathbf{X}}+i\mathbf{A}_{\mathbf{y}})f.$$

Writing $A_x + iA_y = \alpha$ and $f = e^g$ this becomes the equation $\overline{\partial}g = \alpha$, which we can solve locally using the Cauchy kernel. (The first case of the " $\overline{\partial}$ -Poincaré lemma)

So the first part of the vortex equation says that ϕ is a holomorphic section of line bundle, for the holomorphic structure defined by *A*. This implies that the degree *d* of *L* is \geq 0. The Chern-Weil theory says that

$$d=rac{i}{2\pi}\int_M F_A,$$

and the second equation implies that

$$2\pi d = \int_M (au - |\phi|^2) \omega.$$

So $\tau \geq 2\pi d / \text{Area}(M)$ and if equality holds we have $\phi = 0$.

Fix d > 0 and $\tau > 2\pi d$ /Area).

The main result is that there is a 1-1 correspondence between solutions of the vortex equation, up to natural equivalence, and positive divisors of degree d on M.

More precisely, the group of "gauge transformations"

 $\operatorname{Aut}(L) = \operatorname{Maps}(M, S^1)$

acts on the space of solutions (A, ϕ) and we regard solutions in the same orbit as equivalent.

Suppose that we start with a positive divisor *D*.

From complex geometry theory this defines a holomorphic line bundle \mathcal{L} with a holomorphic section Φ having zero divisor D. Also, a Hermitian metric h on \mathcal{L} defines a unitary connection. Now the second vortex equation becomes an equation for the metric h. If we take some initial metric h_0 and set $h = e^{2u}h_0$ the equation is

$$-\Delta u + \Gamma e^{2u} = \rho,$$

where $\Gamma = |\Phi|_{h_0}^2$ and $\rho \omega = \tau - iF_0$.

Our hypotheses imply that the integral of ρ is strictly positive.

We can choose the initial metric h_0 so that $c\Gamma \le \rho \le C\Gamma$ for positive constants c, C.

Consider the continuity path with equations

$$-\Delta u_t + \Gamma e^{2u_t} = t\rho + (1-t)\Gamma,$$

so $u_0 = 0$ is a solution for t = 0.

The same argument as before gives openness.

The proof of closedness is a little more involved. If the maximum and minimum of u_t occur outside D the same argument as before gives upper and lower bounds. We just have to see that the maximum or minimum cannot occur only at points of D.

This follows from a stronger version of the maximum principle, based on the identity

$$-\int_{\Omega} f\Delta f = \int_{\Omega} |\nabla f|^2$$

if *f* vanishes on $\partial \Omega$.

We apply this to $f = u_t + \text{constant}$ for a suitable constant.

Simon Donaldson GEOMETRIC ANALYSIS SECTIONS 1,2

These vortex equations have their origins in real-world physics.

Solutions are absolute minimisers of the Landau-Ginzburg functional

$$\int |\nabla_{\mathcal{A}}\phi|^{2} + |F_{\mathcal{A}}|^{2} + (\tau - |\phi|^{2})^{2}.$$

The vortex equations are a prototype for a large family of important equations involving pairs (A, ϕ) comprising a connection *A* and an additional field ϕ .

The set of positive divisors of degree *d* is the symmetric product $s^d M$: a complex manifold of complex dimension *d* It is the *moduli space* M_{τ} of solutions to the vortex equation.

One consequence is that we get natural metrics on $s^d M$.

Let A_0 be some fixed connection on L. We consider connections $A_0 + ia$ where a is a 1-form on M with $d^*a = 0$. This fixes the gauge freedom AutL except for the constant maps from $M \to S^1$. A tangent vector to M_{τ} at a point $[A, \phi]$ is given by a pair (a, ψ) satisfying the linear equations

- d*a = 0,
- $da = -2 \text{Re} \langle \psi, \phi \rangle$,
- $\overline{\partial}_A \psi + i a^{0,1} \phi = 0$,
- $\int_{M} \operatorname{Im} \langle \psi, \phi \rangle = 0.$

To define the metric on \mathcal{M} we use the L^2 norm of (a, ψ) .