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1 Introduction

The theme of the course is the description of solutions to partial differential
equations defined over manifolds. The equations we will be mainly concerned
with are those coming from differential geometry. By “describe” solutions we
may mean for example: prove existence theorems or perhaps “count” the solu-
tions. Later in the course we will talk about specific examples in more detail.
Some prototypes we mention now, as motivation, are:

• A surface S ⊂ R3 has an induced Riemannian metric (first fundamental
form). More generally we can consider an abstract 2-dimensional mani-
fold with metric (M2, g). The isometric embedding problem asks whether
(M, g) can be realised as a surface in R3. In general the answer is no
but if g has positive curvature then there always is such a representation
(Weyl, Nirenberg). The statement asserts the existence of a solution to a
PDE for a map f : Σ→ R3.
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• Let X be a generic cubic surface in C3. Then a famous classical fact is
that there are 27 lines contained in X. Similarly one can study lines, in
a quintic 3-fold in C4. These are important in string theory and “Mirror
symmetry”. An important modern extension of these numerical geometry
ideas involves extending the definition of “lines”. In this extension the
relevant objects are holomorphic curves which are solutions of a partial
differential equation for a map S2 → X. One needs a theory for “count-
ing” solutions, with a count which is invariant under perturbations of the
problem.

• The Plateau problem for minimal surfaces in R3.

• The eigenvalue equation Δφ = λφ for the Laplace operator on a Rieman-
nian manifold.

• Problems involving curvature (Ricci curvature, scalar curvature. . . ) of
general Riemannian manifolds. These become PDE for the Riemannian
metric.

In thinking about these kind of PDE problems it is useful to keep in mind
things one knows in finite dimensions. Thus we might consider a map f : Rn →
Rn and for given y ∈ Rn ask to “solve” the equation f(x) = y for x (in the sense
of proving existence, say). For example the “fundamental theorem of algebra”
can be thought of in this way: any complex polynomial equation p(z) = w has
a solution z. Consider various approaches.

• Variational: seek to minimize the function |f(z)−w| of z. Show that the
minumum is attained and then, by a local analysis round the minimising
point, show that the minimum must be 0.

• Continuity method: Obviously a solution exists for some w = w0 and
any other w = w1 can be joined to w0 by a path wt. Now consider the
1-parameter family of equations p(zt) = wt and seek to follow the solution
from t = 0 to 1.

• Topological: Consider the winding number about w of p(z) as z moves
round a large circle. Show that this is non-zero and that this implies there
must be a solution.

A common feature of these approaches is that, because C is not compact,
one needs to consider the behaviour of p(z) for large z.

Of course, in addition to an existence theorem we also have a “counting
theorem”: the number of solutions, counted with multiplicity, is equal to the
degree of p.
To attack these finite-dimensional problems we have the tools of calculus.

Near a point a function is approximated by its derivative, a linear map. Similarly
the theory of linear differential operators is a crucial tool in nonlinear PDE. The
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first part of this course will discuss linear elliptic operators, mainly over compact
manifolds.
Here, in the lectures, we recall the definition of a smooth manifold and a

Riemannian metric. As the course progresses we will probably want to use other
differential geometric objects (differential forms, bundles, spinors. . . ), and we
may say something about these, depending on time available.

2 The Poisson equation on a manifold

We want to consider the model equation Δφ = ρ with ρ given and φ to be found.
Here Δ is the Laplace operator. We use the sign convention that in Rn this is

Δ = −
∑ ∂2

∂x2i
.

So if one of f, g has compact support then integration by parts gives

〈Δf, g〉 = 〈∇f,∇g〉.

(Notation: The left hand side denotes the usual L2 inner product of func-
tions. The right hand side is

〈∇f,∇g〉 =
∫

Rn
∇f.∇g,

where . is the dot product of vectors which we might also write as (∇f,∇g).)
In the setting of a Riemannian manifold we have a Laplace operator Δ given

by the local formula

Δ = −
1
√
g

∑ ∂

∂xi

(
√
ggij

∂

∂xj

)

,

and more intrinsically by the analogue of the identity above. Notice that on a
compact manifold M ∫

M

Δφ = 0,

so a necessary condition to solve our problem is that
∫
M
ρ = 0. The general

result is

Theorem 1 On a compact Riemannian manifold M if ρ is a smooth function
of integral 0 then there is a smooth solution of the equation Δφ = ρ, unique up
to the addition of a constant.

It will be a while before we can prove this in general.
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2.1 Flat space

We begin with the case of the flat torus Tn = Rn/2πZn. We use Fourier Series

∑
aνe

iν.x

where ν runs over Zn. The Laplace operator is locally the usual operator on
Rn and

Δeiν.x = |ν|2eiν.x.

Ignoring analytical niceties, we solve our problem this way (which is probably
familiar). We take the Fourier co-efficients ρν of ρ so

ρ =
∑

ρνe
iν.x.

Taking the operator inside the sum the equation becomes the condition for the
Fourier coefficients φn of φ:

|ν|2φν = ρν .

The Fourier coefficient ρ0 is proportional to the integral of ρ so we assume this
vanishes. Then we can define φν = |ν|−2ρν for ν 6= 0 and φ0 = 0, say to get a
formal solution

∑
φνe

iν.x.
To make all this watertight we need to know some facts about Fourier Series.

• Given a smooth function f the Fourier co-efficients fν = (2π)−n
∫
fe−iν.x

are rapidly decaying in ν. For any p,

|fν | ≤ Cp|ν|
−p.

The sum
∑
fνe

iν.x converges uniformly to f and similarly after differen-
tiating any number of times in x.

• Conversely any rapidly decaying series aν appears as the Fourier series of
a smooth function.

Thus we have a 1-1 correspondence between rapidly decaying series and
smooth functions. Given this it is clear that our formal solution is valid. Notice
that the solution φ has even more rapidly decaying Fourier series than ρ—
the functionφ is “smoother” than ρ. (This does not make precise sense at the
moment but will do when we come to Sobolev spaces.)

Another case which may be familiar is for functions on Rn. (Of course this is
not compact.) For suitable ρ we can give an explicit solution using the Newton
kernel. For n ≥ 3 we have K(x) = c|x|2−n and when n = 2, K(x) = −c log |x|.
The solution is by the integral formula (convolution)

φ(x) =

∫
K(x− y)ρ(y)dy,
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which can also be written as
∫
K(y)ρ(x− y).

Two basic facts are that for f smooth and of compact support (say) we have

K ∗ (Δf) = f,

and
Δ(K ∗ f) = f

To prove the first assertion we may, by translation invariance, calculate at
origin. Then the proof is a standard integration by parts over the complment
of a small ball, followed by a limit as the radius of the ball shrinks to zero.
For the second part we examine the formula

(K ∗ f)(x) =
∫
K(y)f(x− y)dμy.

When we take the Laplacian with respect to x there is no problem in moving
the differential operator inside the integral, since f is smooth and x does not
appear inside the argument of K. Thus

Δ(K ∗ f) =
∫
K(y)Δxf(x− y)dμy,

where the notation means that we take the Laplacian with respect to x. But
this is just the same as K ∗Δf , which is equal to f by the first part. (The point
is that we can differentiate f(x− y) with respect to either x or y.)
For any compact Riemannian manifold there is a “Green’s function” G(x, y)

which solves the Poisson equation

φ(x) =

∫

M

G(x, y)ρ(y)dy,

(although of course we haven’t proved this yet) and has a singularity on the
diagonal of the same nature as the Euclidean case. In some cases, such as the
round 2-sphere one can find this explicitly.

A useful language for taking about this involves “distributions” (or gener-
alised functions). We will not make much use of this so we just outline the
definitions. A distribution is an element of the dual of the space of rapidly
decaying smooth functions. That is if D is a distribution and f such a function
we have a number D(f). The delta function at 0 is the Distribution

δ0(f) = f(0).

Any locally integrable function S which grows slower than a power defines a
distribution DS :
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DS(f) =

∫
fS.

Differentiation of a distribution is motivated by integration by parts:

(
∂D

∂xi

)

(f) = −D(
∂f

∂xi
).

The Newton Kernel is the solution of the equation ΔK = δ0.

On the torus Tn the distributions correspond to formal Fourier series
∑
aνe

iν.x

where |aν | ≤ C|ν|p for some p.

Note that we could also solve our problem on Rn in an analogous manner
to the torus, using the Fourier transform. More on this later.

2.2 Hilbert space theory and weak solutions

Return to a general compact Riemannian manifold M and a function ρ of inte-
gral 0. A smooth function φ satisfies Δφ = ρ if and only if for all “test functions”
f we have

〈∇f,∇φ〉 = 〈f, ρ〉.

The advantage of this weak formulation is that it only involves one derivative
of φ. Let C∞0 be the space of smooth function of integral 0. Define a norm on
this space by

‖f‖2H =
∫

M

|∇f |2.

This is associated to an inner product 〈 , 〉H , making C∞0 a pre-Hilbert space.
So we have a Hilbert space completion H. (Here it is crucial to realise that the
norm ‖ ‖H is not the same as the L2-norm.)
Recall the Riesz representation theorem: any bounded linear map α : H →

R is represented by the inner product: there is a unique a ∈ H with α(f) =
〈a, f〉H for all f ∈ H. For the proof see any standard Functional Analysis text.
The formula αρ(f) = 〈ρ, f〉 defines a linear map from C∞0 to R. Suppose

we know that this extends to a bounded map on H. Then by the representation
theorem there is a φ ∈ H such that

〈∇φ,∇f〉 = 〈ρ, f〉,

for all f , which is the identity satisfied by a genuine smooth solution. We say φ
is a weak solution of our equation. Thus we have two tasks:

• Prove that αρ extends to a bounded linear map on H.

• Prove that a weak solution f ∈ H is in fact smooth.
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But tackling these we make two remarks.
First, the proof of the Riesz theorem goes by considering the hyperplane

{f : α(f) = 1} in H and showing that there it contains a point of minimal
norm. Thus one considers a minimizing sequence fi in the hypersurface and
the trick is to show that this is Cauchy. Unwinding this, in our situation, we
consider a minimising sequence φi for the Dirichlet integral

∫

M

|∇φ|2

restricted to functions φ with

∫

M

φ = 0

∫

M

ρφ = 1.

Second, the first item above follows if we establish the Poincaré inequality:

∫

M

|φ|2 ≤ C2
∫

M

|∇φ|2,

for all functions φ of integral 0. Conversely suppose we prove a little more than
stated in the first item, that in fact

|αρ(f)| ≤ C‖ρ‖L2‖f‖H .

for some fixed constant C, independent of ρ. Then taking f = ρ we deduce the
Poincaré inequality.
The best constant C in the Poincare inequality is an important geometric

invariant of a compact Riemannian manifold. As we will see later, it is in the
inverse of the smallest eigenvalue of the Laplace operator.
The foundation of our proof of the first item (αρ bounded) will be a result

from calculus. Suppose Ω is a bounded, convex, open set in Rn. (For our
applications it suffices to consider the case of a ball). Let V be the volume of
Ω and d be its diameter.

Theorem 2 Let ψ be a smooth function on an open set containing the closure
Ω and let ψ denote the average

ψ =
1

V

∫

Ω

ψdμ,

where dμ is the standard Lebesgue measure on Rn. Then for x ∈ Ω we have

|ψ(x)− ψ| ≤
dn

nV

∫

Ω

1

|x− y|n−1
|∇ψ(y)|dμy.

(Here the notation is supposed to indicate that the variable of integration on
the right hand side is y ∈ Ω.)
To prove this there is no loss in supposing that the point x is the origin in

Rn (applying a translation in Rn) and that ψ(0) is zero (changing ψ by addition
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of a constant). To simplify notation we will do the case n = 2 (the general case
is essentially the same). We work in standard polar co-ordinates (r, θ) on the
plane. Thus we can write

ψ =
1

V

∫ 2π

0

∫ R(θ)

0

ψ(r, θ)rdrdθ,

where R(θ) is the length of the portion of the ray at angle θ lying in Ω. (Here
we use the fact that Ω is convex.) Now if we introduce another radial variable
ρ we can write, for each (r, θ)

ψ(r, θ) =

∫ r

0

∂ψ

∂ρ
dρ,

using the fact that ψ vanishes at the origin. So now we have

ψ =
1

V

∫ 2π

0

∫ R(θ)

0

∫ r

ρ=0

ρ
∂ψ

∂ρ
r
∂ψ

∂ρ
dρdrdθ.

We interchange the order of the r and ρ integrals, so

ψ =
1

A

∫ 2π

0

∫ R(θ)

ρ=0

(∫ R(θ)

r=ρ

rdr

)
∂ψ

∂ρ
drdθ.

The innermost integral is

∫ R(θ)

r=ρ

rdr =
1

2
(R(θ)2 − r2)

which is positive and no larger than R(θ)2

2 , while, by definition, R(θ) ≤ d. Thus

|ψ| ≤
d2

2V

∫ 2π

0

∫ R(θ)

0

1

ρ
|
∂ψ

∂ρ
|ρdρdθ.

The modulus of the radial derivative ∂ψ
∂ρ
is at most that of the full derivative

∇ψ, so switching back to a co- ordinate free notation we have

|ψ| ≤
d2

2V

∫

Ω

1

|y|
|∇ψy|dμy,

as required.

Corollary 1 Under the hypotheses above, for a constant c(n,Ω) which we could
calculate, ∫

Ω

|ψ(x)− ψ|2dμx ≤ c
∫

Ω

|∇ψ|2dμ.
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To prove this, and for later use, we recall the notion of the convolution of
functions on Rn. The convolution of functions f, g is defined by

(f ∗ g)(x) =
∫

Rn
f(y)g(x− y)dμy,

The operation * is commutative and associative and if ‖ ‖T is any translation-
invariant norm on functions on Rn we have

‖f ∗ g|T ≤ ‖f‖L1‖g‖T ,

where ‖f‖L1 is the usual L1 norm

‖f‖L1 =
∫

R2
|f |dμ.

In particular this holds when ‖ ‖T is the L2 norm

‖g‖2L2 =
∫

Rn
|g|2dμ.

(Strictly we should specify what class of functions we are considering in the
definition of the convolution, but this will be clear in the different contexts as
they arise.)
To prove the corollary, we define

K(x) =
dn

nV

1

|x|n−1
for |x| < d,

and K(x) = 0 if |x| ≥ d. This has a singularity at the origin but is nevertheless
an integrable function so write c for its L1 norm. Define a function g on R2 by

g(y) = |∇ψ|2(y),

if y ∈ Ω and g(y) = 0 if y /∈ Ω. Then K ∗ g is a positive function on R2 and the
Theorem above asserts that for all x ∈ Ω,

|ψ(x)− ψ| ≤ |(K ∗ g)(x)|.

It follows that
∫

Ω

|ψ(x)− ψ|2dμx ≤ ‖K ∗ g‖
2
L2 ≤ ‖K‖

2
L1‖g‖

2
L2 ≤ c

2‖∇ψ‖2L2 ,

as asserted.
What we have proved is a “local” Poincaré inequality, for functions on a

convex set Ω ⊂ Rn. Now we want to transfer this to our Riemannian manifold.
Fix a finite cover by co-ordinate charts Uα which map to balls in R

n. It is
elementary to prove that we can write ρ =

∑
ρα where ρα is supported in Uα
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and the integral of each ρα is zero. For example consider the case of two charts
M = U1 ∪ U2. Fix a partition of unity

1 = χ1 + χ2,

subordinate to this cover. So of course we have ρ = ρχ1 + ρχ2. The problem
is that ρχi may not have integral 0. So fix a function σ of integral 1 supported
on the intersection U1 ∩ U2. Let I be the integral of ρχ1, which is minus the
integral of ρχ2, since ρ has integral 0, by hypothesis. Then the functions

ρ1 = ρχ1 − Iσ , ρ2 = ρχ2 + Iσ

do the job. The general case is similar (exercise). Further one can choose ρi so
that

‖ρi‖L2 ≤ c‖ρ‖L2 ,

for a fixed constant c. This means that we can reduce to the case when ρ is
supported in a single coordinate chart in our manifold, which we identify with
a bounded convex set Ω in Rn. Now since the integral of ρ is zero we also have

∫

M

ρφdμg =

∫

Ω

ρ(φ− φ)dμg,

where dμg is the Riemannian volume element and φ is the average of φ over Ω
with respect to ordinary Lebesgue measure. By the Cauchy-Schwartz inequality

|
∫

Ω

ρ(φ− φ)dμ| ≤ ‖ρ‖L2(Ω)‖φ− φ‖L2(Ω).

Here crucially we use the fact that the norms computed using the Rieman-
nian structure of the Euclidean structure are uniformly equivalent. Using the
Corollary above, we deduce that

|αρ(φ)| ≤ C‖ρ‖L2‖∇φ‖,

for suitable C.

Now we turn to the second item, the smoothness of a weak solution. We
postpone the general case and treat the situation when the manifold is lo-
cally Euclidean, so the Laplace operator is locally just that on Rn. In fact,
this argument also works for any 2-dimensional Riemannian manifold provided
we know that there are local “isothermal co-ordinates” in which the metric is
eF (dx2 + dy2). This is the same as saying that (after perhaps passing to the
oriented cover) the Riemannian manifold is naturally a Riemann surface. In
that case the Poisson equation can be transformed locally into the standard
equation on R2. The result we want to prove is essentially what is known as
“Weyl’s lemma” in Riemann surface theory.
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Suppose that φ is an element of H which is a weak solution to our problem
in the sense explained above. That is, we have a sequence of smooth functions,
of integral 0, φi on M which is Cauchy with respect to the Dirichlet norm ‖ ‖H
and, for any ψ

〈φi, ψ〉H → αρ(ψ),

as i tends to infinity. By the Poincaré inequality the sequence is Cauchy in L2

so has an L2 limit. So we can identify the limiting object φ in the abstract
completion with an L2 function. We need to show that φ is smooth. Since
smoothness is a local property we can fix attention on a single co-ordinate
chart.

Proposition 1 Let Ω be a bounded open set in Rn and ρ be a smooth function
on Ω. Suppose φ is an L2 function on Ω with the property that for any smooth
function χ of compact support in Ω

∫

Ω

Δχ φ =

∫

Ω

χρ.

Then φ is smooth and satisfies the equation Δφ = ρ.

The proof will involve a number of steps. The first step is to reduce to the
case when ρ is zero. Since smoothness is a local property it suffices to prove
that φ is smooth over any given interior set Ω′, where we suppose that the ε
neighbourhood of Ω′ is contained in Ω. Then we can choose a ρ′ equal to ρ on
a neighbourhood of the closure of Ω′ and of compact support in Ω. Suppose
we can find some smooth solution φ′ of the equation Δφ′ = ρ′ over Ω. Then
ψ = φ − φ′ will be a weak solution of the equation Δψ = 0 on Ω′. If we can
prove that ψ is smooth then so will φ be.

To find the smooth solution ψ′ we use the “Newton potential” K(x) as
discussed above. We take a function τ of compact support in Ω and equal to 1
on Ω′. Then ψ′ = K ∗ (τρ) satisfies Δφ′ = ρ over Ω′

We have now reduced to the case when ρ = 0 so, changing notation, let us
suppose that φ is a weak solution of Δφ = 0 on Ω and seek to prove that φ is
smooth on the interior domain Ω′, with the ε-neighbourhood of Ω′ contained
in Ω. The argument now exploits the mean value property of smooth harmonic
functions. This says that if ψ is a smooth harmonic function on a neighbourhood
of a closed ball then the value of ψ at the centre of the ball is equal to the average
value on the boundary. Fix a smooth function β on R with β(r) constant for
small r and vanishing for r ≥ ε and such that

V ol(Sn−1).

∫ ∞

0

rn−1β(r)dr = 1.
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Now let B be the function B(z) = β(|z|) on Rn. Then B is smooth and has
integral 1 over Rn (with respect to ordinary Lebesgue measure). Suppose first
that ψ is a smooth harmonic function on a neighbourhood of the closed ε-ball
centred at the origin. Then we have

∫

Rn
B(−z)ψ(z)dμz =

∫ ∞

0

∫

Sn−1
rn−1β(r)ψ(r, θ)dθdr = ψ(0),

where we have switched to “generalised polar coordinates” and used the mean
value property. Now the integral above is just that defining the convolution
B ∗ ψ at 0. By translation invariance we obtain the following

Proposition 2 Let ψ be a smooth function on Rn and suppose that Δψ is
supported in a compact set J ⊂ Rn. Then B ∗ ψ − ψ vanishes outside the
ε-neighbourhood of J .

We see in particular from this that if our function φ on Ω is smooth we must
have B ∗φ = φ in Ω′. Conversely, for any L2 function φ the convolution B ∗φ is
smooth. So proving the smoothness of φ in Ω′ is equivalent to establishing the
identity B ∗ φ = φ in Ω′. To do this we proceed as follows. It suffices to show
that for any smooth test function χ of compact support in Ω′ we have

〈χ, φ−B ∗ φ〉 = 0,

where we are writing 〈 , 〉 for the usual L2 inner product”

〈f, g〉 =
∫
fgdμ.

We use the fact that for any functions f, g, h in a suitable class

〈f, g ∗ h〉 = 〈g ∗ f, h〉.

This follows by straightforward re-arrangements of the integrals. We will not
bother to spell out conditions on the functions involved, since the validity of the
identity will be fairly obvious in our applications below.
Put h = K ∗ (χ − B ∗ χ) = K ∗ χ − B ∗ K ∗ χ. Now K ∗ χ is a smooth

function on Rn and Δ(K ∗ χ) = χ by the properties of the Newton potential.
Thus Δ(K ∗χ) vanishes outside the support of χ, and hence by the Proposition
above B ∗K ∗ χ equals K ∗ χ outside the ε-neighbourhood of the support of χ.
Thus h has compact support contained in Ω. So we can use h as a test function
in the hypothesis that Δφ = 0 weakly, i.e. we have

〈Δh, φ〉 = 0.

But Δh = Δ(K ∗ (χ − B ∗ χ)) = χ − B ∗ χ (since χ and B ∗ χ have compact
support). So we see that

〈χ−B ∗ χ, φ〉 = 0.

But applying the identity above again this gives

〈χ, φ−B ∗ φ〉 = 0,

as desired.
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2.3 Compactness

We continue with our compact Riemannian manifold M . We have seen that
there is a continuous inclusion H → L2. In fact more is true: the inclusion map
is compact. Recall here that a map T : X → Y between Banach spaces is called
compact if for any bounded sequence xi the sequence Txi has a convergent
subsequence in Y . It is a little more convenient to drop the restriction to
functions of integral zero and define the Sobolve space L21 to be the completion
of the smooth functions with the norm

‖f‖2L21 =
∫
|∇f |2 + |f |2.

Then we have

Theorem 3 The inclusion L21 → L2 is compact.

It is easy to show that this is equivalent to the compactness of H → L2.
This result can be compared with the ‘Ascoli-Arzela theorem: if we define

the C0, C1 norms in the obvious way then C1 → C0 is compact. (Actually this
is a special case: the Ascoli-Arzela theorem deals with any “equicontinuous” set
of functions: e.g. those satisfying a Hölder condition.)

Interesting example.
Consider the function defined to f = log | log r| for small r < 1/2 where r

is the radial co-ordinate in R2 extended by the obvious constant for r ≥ 1/2.
Choose any compact Riemannian manifold which contains an isometric copy of
the unit disc and regard f as a function on this manifold. (Of course the manifold
is completely artifical here, just included to fit in with our definitions.) Then
f ∈ L21 but is not bounded near the origin.

We prove the Theorem first in the case of the torus. The L21 norm of f =∑
aνe

iν.x is the square root of

∑

ν

(1 + |ν|2)|aν |
2.

So we have to show that a
(i)
ν is a sequence of Fourier-coefficient sets with

∑

ν

(1 + |ν|2)|a(i)ν |
2 ≤ C

then there is subsequence which converges in l2. For each fixed ν the a
(i)
ν are

obviously bounded so we can choose a convergent subsequence; by a diagonal
argument we get a single subsequence which works for every ν. Without loss of
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generality we can suppose this is the original sequence. Now we claim that the
sequence automatically converges in l2 or equivalently is Cauchy. Given ε we
choose a large R such that ∑

|ν|>R

|aν |
2 ≤ ε.

Now there are just a finite number of terms with |ν| ≤ R and the argument
should be clear.
Notice that the same applies if we take any norm on Fourier co-efficients

‖f‖2W =
∑

W (ν)|aν |
2,

with a positive weight function W (ν) which tends to infinity as |ν| → ∞. Such
functions are roughly analogous to “moduli of continuity”, as in Ascoli-Arzela.
Now for a general manifold cover by a finite number of co-ordinate patches

in the familiar way and identify these patches with patches in the torus. Fix a
partition of unity βα subordinate to this cover. If fi is bounded in L

2
1 then so

are βαfi, and we deduce what we want by considering these as functions on the
torus.

Now return to the Poisson equation Δφ = ρ. It follows easily from what we
did that for each ρ ∈ L2 of integral zero there is a unique L2 solution φ = Gρ,
also of integral zero, where of course we interpret the equation in the weak sense.
Further since

‖∇φ‖2 = 〈Δφ, φ〉 ≤ ‖φ‖ ‖ρ‖,

the Poincaré inquality implies that G : L2 → L2 is a bounded operator. A
corollary of the Theorem is that G is actually compact (Exercise.) There is
a rather easy theory of compact self-adjoint operators on Hilbert spaces. This
gives a complete orthonormal system of eigenfunctions φi in L

2 with Gφi = μiφi
and the eigenvalues μi tend to 0. leaving out the zero eigenspace, the inverses
λi = μ−1i are the eigenvalues of the Laplace operator. (Although we have not
yet shown that these eigenfunctions are actually smooth.)
Examples

• On the torus the eigenfunctions are just the eiνx.

• On the 2-sphere the eigenfunctions are given by the spherical harmonics,
as described in classical analysis and mathematical physics texts.

Remark
Notice that this derivation of the “spectrum”does not require any mention

of smoothness. For example one can extend the notion of a Riemannian metric
to situations where the gij are arbitrary measurable functions with, in the sense
of quadratic forms,

0 < c ≤ (gij) ≤ C <∞,
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and the theory works perfectly well.

3 General theory of linear elliptic operators

We consider the general set-up of a pair of vector bundles E,F over a compact
Riemannian manifold M , with metrics on the fibres. This defines the L2 norm
on sections of E,F . We consider a linear differential operator of order r,

D : Γ(E)→ Γ(F ).

There is a formal adjoint D∗ : Γ(F )→ Γ(E) defined by the identity

〈f,Dg〉 = 〈D∗f, g〉.

We postpone for the moment the definition of what it means for D to be elliptic.
Let us just say thatD is elliptic if and only if D∗ is and that the Laplace operator
is a prototype. Now we can state the main theorem, write kerD for the smooth
sections of E which satisfy the equation Df = 0, and similarly for D∗.

Theorem 4 In this situation

1. kerD, kerD∗ are finite-dimensional vector spaces,

2. We can solve the equation Df = ρ if and only if ρ is orthogonal to kerD∗.

The condition of being elliptic depends on the notion of the symbol of a
differential operator. Let D : Γ(E) → Γ(F ) be a linear differential operator of
order r (obvious definition). Then at each point x ∈M and for each cotangent
vector ξ ∈ T ∗M there is a linear map

σξ : Ex → Fx.

One way to define this is by choosing bundle trivialisations so D is given by
a matric of differential operators Dαβ say. In turn each of these is, in local
coordinates, a sum

Dαβ =
∑

I

aα,β,I
∂

∂xI
,

where we use multi-index notation I = (i1, i2, . . . in). Then we define σ by
taking the terms of highest order

∑
iλ = r and regarding the operators ∂

∂xi
as

linear functions on the cotangent space so ∂
∂XI
is a polynomial function. Then

one can check that this definition does not depend on the choice of trivialisations
and local co-ordinates. A more invariant definition is to choose a section s of
E and a function f on M , vanishing at x and with df = ξ at x. Then we can
define

σξ(s(x)) = D(f
rs)(x).
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Again one needs to check that this is does not depend on the choice of f, s.
Now an operator is elliptic if for each nonzero ξ ∈ TMx the linear map σξ

is an isomorphism from Ex to Fx. Note that this can only happen if E,F have
the same rank. The symbol of the formal adjoint is (−1)r times the adjoint of
the symbol so D is elliptic if and only if D∗ is.
For example if D = Δ is the Laplace operator on functions then the σξ is

multiplication by −|ξ|2, so Δ is elliptic.

Example: Hodge Theory
Here we assume knowledge of the bundles of differential forms and the ex-

terior derivative
d : Ωp → Ωp+1

with d2 = 0. The cohomology kerd/Imd is a topological invariant of the manifold
(isomorphic to the singular cohomology). Using a Riemannian metric we have

d∗ : Ωp+1 → Ωp,

and a Hodge Laplacian Δ = dd∗ + d∗d. This is obviously self-adjoint.
For example consider the Laplacian on 1-forms over flat space Rn. If θ =

fdx1 we have (writing fi, fij for the partial derivatives of f):

dθ =
∑

i>1

fidxidx1,

and

d∗dθ = −

(
∑

i>1

fiidx1 − fi1dxi

)

.

While
d∗θ = −f1,

and
dd∗θ = −

∑

i

fi1dxi.

Cancelling terms we find that

Δθ = −(
∑

i

fii)dx1.

In general, on flat space Δ acts on forms of all degrees as the ordinary scalar
Laplacian on the individual co-efficients. On any Riemannian manifold the
symbol of Δ at ξ is −|ξ|2 times the identity. Thus Δ is elliptic.
Forms in the kernel of Δ are called harmonic forms. The Hodge theorem as-

serts that each cohomology class has a unique harmonic representative. Unique-
ness is easy, the hard part is existence. To obtain this from our main theorem,
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assuming the fact that Δ is elliptic, we take any p-form φ. Then the projec-
tion Hφ to the harmonic forms is also smooth and φ − Hφ is orthogonakl to
kerΔ = kerΔ∗ so we can write

φ−Hφ = Δf

for some f . Now suppose φ is closed, dφ = 0. Then dΔf = dd∗df = 0 and taking
the inner product with df we see that df = 0. So Δf = dd∗f and φ = Hφ+dd∗f
demonstrates the harmonic representative Hφ in the cohomology class [φ].
Remark
The Hodge Theorem is easier to understand if one thinks of the harmonic

forms as solutions of dφ = d∗φ = 0. The harmonic representative is the form
which minimises the L2 norm among all representatives in the cohomology class.
One can avoid mentioning the second order operator Δ and this is preferable
for some purposes.
Applications

1. Topology.
The Levi-Civita connection of a Riemannian metric defines a covariant deriva-

tive
∇ : ΓT ∗M → Γ(T ∗M ⊗ T ∗M).

then we have another operator

∇∗∇ : Γ(T ∗M)→ Γ(T ∗M).

This differs from Δ by a curvature term, in fact (Bochner formula):

Δθ = ∇∗∇θ +Ric(θ),

where Ric is the Ricci tensor. hence we have

Corollary 2 If a compact manifold M has positive definite Ricci tensor then
H1(M) = 0.

This is related toMyer’s Theorem; proved in quite a different way using geodesics.
Myer’s theorem gives stronger information in the positive definite case, but the
Bochner argument tells one more in the case when Ric ≥ 0.

2. Lowest eigenvalue.
Suppose Ric ≥ c > 0. Let f be a (nonconstant) eigenfunction of the laplace

operator, Δf = λf . Then if θ = df we have

Δθ = Δdf = dΔf = λdf = λθ.

Taking the L2 inner product with θ in the Bochner formula we immediately see
that λ ≥ c. With a little more care we see that (Lichnerowicz)

λ ≥
n

n− 1
c,
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(since |d∗θ|2 ≥ 1
n
|∇θ|2.) One can show further that equality is achived only in

the case of the round sphere (Obata’s Thheorem).
Example of a non-elliptic operator
Let κ be an irrational number and let A be the operator

A = −i

(
∂

∂x1
− κ

∂

∂x2

)

,

acting on functions over the 2-torus. Then A is self-adjoint and acts as a mul-
tiplier operator on Fourier series, multiplying exp(iνx) by n1 − κn2. Thus
ker(A) = ker(A∗) consists of the constant functions. If the integral of ρ is zero
we can write down a formal solution to the equation Af = ρ in the usual way,
f =

∑
fνe

iνx where

fν =
1

ν1 − κν2
ρν .

Suppose κ can be approximated to infinite order by rationals, so there is are
sequences pi, qi with

|κ−
pi

qi
| ≤
1

qii
.

Then the formal solution f need not be smooth even if ρ is. For when (ν1, ν2) =
(pi, qi) we have

|
1

ν1 − κν2
| ≥ c|ν|i.

Proof of the main theorem
Facts from functional analysis
Let E be a Banach space and T : E → E a bounded operator. Then

• If the operator norm of T is less than 1 then 1 + T is invertible.

• If T is compact then ker(1 + T ) is finite dimensional and the image of
1 + T is a closed subspace of finite codimension.

For simplicity we consider an elliptic operator of order 1. We define Sobolev
spaces L2k, then D is a bounded operator

D : L2k → L2k−1.

The intersection of L2k over all k gives exactly the smooth functions (or
sections) and the inclusions L2k → L2k−1 are compact.
There are three main ideas/auxiliary results:
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• The existence of a parametrix, a bounded operator

P : L2 → L21,

such that
D ◦ P = 1 +K

where K is compact.

• The fundamental elliptic inequalities

‖f‖L2
k
≤ C(‖Df‖L2

k−1
+ ‖f‖L2 .

• Elliptic regularity: if ρ ∈ L2k−1 and f is a weak solution of the equation
Df = ρ then f is in L2k.

Remark The first item uses the surjectivity of the symbol and the other two
the injectivity.

Suppose we have established these assertions. Then the image of D : L21 →
L2 contains the image of 1 + K and so is closed of finite codimension. It
follows that this image is equal to its double orthogonal complement. The
orthogonal complement of the image is by definition the set of weak solutions
of the equation D∗ρ = 0. By elliptic regularity these are all smooth. So we see
that for any smooth ρ which is orthogonal to kerD∗ there is an L21 solution f of
the equation Df = ρ. Now elliptic regularity implies that f is actually smooth.
The finite dimensionality of kerD follows from the elliptic inequality (using the
criterion that the unit ball in a Banach space is compact iff the space is finite
dimensional). One can also deduce the finite dimensionality from the above,
replacing D by D∗.

We will concentrate on the proof of the first item.

Consider first a constant co-efficient operator D0 acting on sections of trivial
bundles over the torus Tn, or equivalently acting on periodic functions on Rn.
Then the action on Fourier coefficients is just

D0(
∑

aνe
iνx) = i

∑
σν(aν)e

iνx.

So, just as for the Laplacian, the kernels of D0, D
∗
0 are just given by the constant

sections. Orthogonal to the constants we have an inverse operator G given by
the action of σ−1ν on the Fourier coefficients. The crucial point of course is that
for ν 6= 0 this inverse exists, by the definition of ellipticity. Moreover, since σν
is linear in ν we have

|σ−1ν | ≤ c|ν|
−1.
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This means that G is a bounded map L2k−1 → L2k.
The constants are a nuisance which we can avoid in various ways. One way

is to consider a fixed nonintegral vector α = (αi) and functions f on R
n which

satisfy
f(x+m) = eiα.mf(x),

for m ∈ Zn. These behave just like periodic functions for our purposes and have
a Fourier expansion:

f =
∑

ν

aνe
i(ν+α)x.

The operator D0 acts by σν+α on the Fourier coefficents and these are all in-
vertible, so D0 is now an invertible operator

D0 : L
2
k,α → L2k−1,α,

where the meaning of the notation should, I hope, be clear.
Now consider a linear operator with periodic coefficients which is a small

perturbation of D0, say D = D0 + δ where δ again has first order and the coef-
ficients are sufficiently small (in fact, small in L∞ will suffice for the moment).
This means that δ : L21 → L2 is small in operator norm, so D is also invertible
as a map from L21,α to L

2
α. We have an inverse Q say, which is compact when

regarded as a map from L2α to itself.

Next go to an operator D over a general compact manifoldM . We fix charts
Uλ over which we have bundle trivialisations. The next crucial idea is that
when we rescale a small ball about a point to unit size the operator approaches
a constant coefficient operator of order 1, determined by the symbol. This is
much the same as the fact in Riemannian geometry then when we rescale a small
ball to unit size the Riemannian metric looks very close to the Euclidean metric.
Using this idea we arrange our trivialisations so that over each (rescaled) Uλ the
operator is very close to the constant coefficient model. Moreover we can think
of the Uλ as being embedded well inside the standard hypercube in R

n and
extend the coefficients to be periodic on Rn. Choose a smaller ball Vλ ⊂⊂ Uλ
and a cut off function γ equal to 1 on Vλ and supported in Uλ. If ρ is supported
in Vλ then γQ(ρ) can be viewed as section of E over M and

D(γQρ) = γDQρ+ (∇γ) ∗Qρ,

where ∗ denotes some algebraic operation. But by construction,

γDQρ = ρ.

So if we write the operator ρ 7→ γQ(ρ) as Pλ we have

DPλρ = ρ+Kλρ,

for sections ρ supported on Vλ, and Kλ is compact.
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Next we choose a partition of unity 1 =
∑
βλ subordinate to a cover by sets

Vλ, and we define

Pρ =
∑

Pλ(βλρ).

Then
DP (ρ) =

∑
DPλρ =

∑
βλρ+

∑
Kλ(βλρ)

and this has the form ρ +Kρ where K is compact. Thus we have constructed
our parametrix.
Remark There are other ways of doing this. for example if D is teh laplace

operator we can define a parametrix to be the integral operator with kernel
function

P (x, y) = cσd(x, y)2−n

(assuming n > 2) . Here d(x, y) is the Riemannian distance between x, y, c is
the inverse of the volume of Sn−1 and σ is a cut-off function, equal to 1 in a
neighbourhood of the diagonal.
The proofs of the other two items follow in a similar way, reducing to an

operator which is a small perturbation of a constant coefficient operator.

4 Further topics

4.1 Other function spaces

One can consider many other different classes of functions on a compact mani-
fold. We just mention

• For 1 ≤ p < ∞ and integer k ≥ 0 the space Lpk (the completion of the
smooth functions in the norm given by the Lp norm of the derivatives up
to order k).

• For 0 ≤ α ≤ 1 the space Ck,α of functions whose derivatives up to order
order k are Holder continuous with exponent α (when α = 0 we can
interpret this just as saying that the derivatives of order k are continuous.)

We can ask

• what is the relation between these spaces?

• how do elliptic operators behave?

The first question is answered by the various Sobolev embedding theorems.
To each of these spaces we can attach a scaling weight. We consider compactly
supported functions f on Rn and the transformation of the highest term under
the rescaling fε(x) = f(εx). This is k − p

n
for Lpk and k + α for Ck,α. Then we

have natural inclusions
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•
Lpk → Lql

if k ≥ l and k − n
p
≥ l − n

q
,

•
Lpk → Cl+α

if k − p
n
≥ l + α.

and these embeddings are compact if strict inequality holds.
To give an idea of the proofs consider the embedding Lp1 → C0 for p > n.

This is easily deduced from an inequality, for all smooth functions f of compact
support on the unit ball in Rn

|f(0)| ≤ C‖∇f‖Lp .

This is straightforward to prove with the same kind of argument that we used for
the Poincaré inequality in Section 2. We work in generalised polar co-ordinates
and write

f(0) = c

∫ (
∂f

∂r

1

rn−1

)

rn−1drdθ,

where c is the inverse of the volume of Sn−1. Now use the fact that |∂f
∂r
| ≤ |∇f |

and that the function r−(n−1) is in Lq over the unit ball for any q > n
n−1 . Then

Holders inequality gives what we need.

For another model case consider the embedding L11 → Lq, where q = n/(n−
1). This can be derived from a basic inequality, for functions f of compact
support on Rn,

‖f‖Lq ≤ C‖∇f‖L1 . (∗)

This is closely related to the isoperimetric inequality. For any bounded domain
Ω with (say) smooth boundary we have

Vol(Ω)1/n ≤ cnVol(∂Ω)
1/(n−1),

and in fact the best constant cn is determined by saying that equality holds for a
ball. In one direction, if we assume (*) is known then we can prove the isoperi-
metric inequality (with some constant) by considering smooth approximations
to the characteristic function of a domain Ω. In the other direction it is possible
to deduce (*) from the isoperimetric inequality using the co-area formula. For
a positive function f write Ωa = f

−1(a,∞). Then

‖∇f‖L1 =
∫ ∞

0

Vol(∂Ωa)da.
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The best constants in the Sobolev embeddings are interesting invariants of
a compact Riemannian manifold M of dimension n. For a function f on M and
p ≥ 1 write

‖f‖∗Lp = inf
α∈R
‖f − α‖Lp .

The first eigenvalue λ of the Laplacian is given by

√
λ = inf

‖∇f‖L2
‖f‖∗L2

.

The Sobolev constant S is defined by

S1/n = inf
‖∇f‖L1
‖f‖∗

Ln/n−1

.

Now consider codimension 1 submanifolds Σ ⊂M dividing M into two regions
Ω1,Ω2 with Vol(Ω1) ≤ Vol(Ω2). The Cheeger constant h is defined to be

h = inf
Σ

Vol(Σ)

Vol(Ω1)
,

and the isoperimetric constant I is defined to be

I = inf
Σ

Vol(Σ)n

Vol(Ω1)n−1
.

Then it is known that

λ ≥
h2

4
,

and
I ≤ S ≤ 2I.

We saw above that a positive lower bound on the Ricci curvature gives a
bound on λ. There is a large body of results relating the Ricci curvature to
the Sobolev and isoperimetric constants. A good source for this is the book
Eigenvalues in Riemannian geometry by I. Chavel.

4.2 Elliptic operators

The basic fact is that elliptic operators behave well on the function spaces Lpk so
long as 1 < p <∞ and Ck,α so long as 0 < α < 1. This amounts to establishing
inequalities, for an operator D of order r over a compact manifold,

‖f‖Lpk+r ≤ C(‖Df‖L
p
k
+ ‖f‖Lp),

(the Calderon-Zygmund Theory) and

‖f‖Ck+r,α ≤ C(‖Df‖Ck,α + ‖f‖C0,α),
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(the Schauder Theory).
As usual we can reduce the problem to a model case of constant co-efficient

operators; here it will be more convenient to work over Rn, rather than the
torus. Consider for example the case when D is the Laplace operator, inverted
by convolution with the Newton potential. Formally if Δφ = ρ then a second
derivative ∇i∇jφ is given by the convolution of ρ with a function, k = kij say,
which is homogeneous of degree −n. Thus k is not integrable around the origin
so the integral involved in the convolution is not on the face of it well-defined.
It has to be interpreted as a singular integral operator. The basic example is
the Hilbert transform on functions of one variable

Hf(x) =
1

π
lim
ε→0

∫

|y|≥ε

f(x− y)
y

dy.

Such operators correspond under the Fourier transform to multiplier operators
with a multiplier function M(ξ) which is homogeneous of degree 0. For example
the Hilbert transform corresponds to the multiplier isgn(ξ) . The basic fact
is that these operators are bounded on the spaces Lp (1 < p < ∞) and C,α
0 < α < 1. A good source for this is the book of E. Stein Singular integral
operators and differentiability properties of functions.

Sketch of application: the measurable Riemann mapping theorem.
This is an extension of the assertion that any two dimensional Riemannian

manifold is locally conformal to Euclidean space (mentioned in Section 2). The
problem can be expressed in terms of a a complex-valued function μ on C with
|μ(z)| ≤ k < 1 for some fixed k. Then we want to find a homeomorphism f
from C to C solving the Beltrami equation

∂f + μ∂f = 0,

where ∂ = ∂
∂z
, ∂ = ∂

∂z
. The assertion is that, without any continuity or smooth-

ness assumption on μ, this can be done (where the derivatives of f will be
interpreted in a suitable sense). We consider the case when μ has compact
support–the general case can be reduced to this by a trick. The idea is to write
f(z) = z + g(z) so we have to solve the equation

∂g + μ∂g = −μ.

Let Q be the inverse to ∂ and write g = Qρ. So we have to solve

ρ+ μ∂ ◦Q(ρ) = μ.

We work with ρ ∈ Lp. The operator norm of ∂ ◦Q on L2 is equal to 1 (in fact Q
is an isometry of L2) and it follows that when p is close enough to 2 the norm
is strictly less than k−1. We fix such a p > 2. Then the operator norm of ∂ ◦Q
is less than 1 and (1 + ∂ ◦ Q) is invertible, so we have an Lp solution ρ. Now
g = Qρ has derivative in L0, and this implies that g is continuous, since p > 2.
This is used to show that f is in fact a homeomorphism. Full details can be
found in the book Quasiconformal mappings by L. Ahlfors.
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4.3 Index theory

Let U, V be Banach spaces and T : U → V a bounded operator. The
operator is called Fredholm if kerT is finite dimensional and the image of T is
closed of finite codimension. Then we define the index of T to be

index T = dim kerT − dim cokerT.

If U, V are finite-dimensional then this is simply dim U −dim V . In general the
space of Fredholm operators is open, in the operator norm topology, and the
index is constant on each connected component. It is often useful to think of it
formally as the difference of the dimensions of U, V even when these are infinite.
If D : Γ(E) → Γ(F ) is an elliptic differential operator of order r over a

compact manifold then it defines a Fredholm operator L2k+r → L2k for any k
and the index does not depend on k. The index is just the difference of the
dimensions of the kernels of D,D∗, which are made up of smooth sections. If D
varies in a continuous family of such operators then the index does not change.
For example the operator might depend on the choice of a Riemannian metric,
but the index is independent of this choice. The index is a homotopy invariant
of the data consisting of the bundles E,F over M and the symbol of D. The
Atiyah-Singer index theorem gives the a general formula for the index in terms
of algebraic topology. For a simple example consider the operator

d+ d∗ : Ωeven → Ωodd,

over an even dimensional manifold. Since (d + d∗)2 = Δ the Hodge theorem
identifies the index with the alternating sum of the Betti numbers

index d+ d∗ =
∑
(−1)pdimHp(M).

4.4 The Dirac operator and connections on complex line
bundles

These are the last pieces of differential geometry we will need. More details
will be given in the lectures. The theory applies in every dimension but we
emphasise dimension 4.
A spin structure on an oriented Riemannian 4-manifold M is given by a pair

of quaternionic line bundles S+, S− over M and an isomorphism γ from TM
to the bundle of quaternion-linear maps from S+ to S−, compatible with the
algebraic structure around. We usually regard S+, S− as rank 2 complex vector
bundles. The algebraic compatability can be expressed by saying that at each
point we can choose standard bases such that

γ(e0) = 1, γ(ei) = σi, i = 1, 2, 3
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where σi are the Pauli matrices

σ1 =

(
1 0
0 −1

)

,

σ2 =

(
0 i
−i −0

)

,

σ3 =

(
0 1
1 0

)

.

The Dirac operator on flat space is

∂

∂x0
+
∑

σi
∂

∂xi
.

Over the Riemannian manifold M the Levi-Civita connection defines a Dirac
operator

D : Γ(S+)→ Γ(S−).

This is an elliptic operator. The Atiyah-Singer index theorem, in this case, is

index D =
1

8
τ(M),

where τ(M) is the signature of M . It follows from the definitions that the
kernels of D,D∗ are quaternionic vector spaces so even dimensional as complex
vector spaces. Hence we deduce Rohlin’s Theorem, that the signature of a spin
4-manifold is divisible by 16.
The Lichnerowicz formula is

D∗D = ∇∗∇+
R

4
,

where R is the scalar curvature. If R > 0 then the kernels of D,D∗ are trivial
and the index is 0, hence the signature must be zero.
Examples

• The complex projective plane, with its standard metric, has positive scalar
curvature and non-zero signature, but is not spin.

• Let M be a complex K3 surface. This is is spin and has signature 16. We
see that any Riemannian metric with R ≥ 0 must have R = 0 and admit a
covariant constant section of S+. This occurs exactly for the Calabi-Yau
metrics on M .

Now consider a unitary connection A on a complex line bundle L→M . In a
local trivialisation this is expressed by a 1-form A =

∑
Aαdxα. The curvature

is the 2-form F = dA. We can couple the Dirac operator to the connection to
get an operator

DA : Γ(S
+ ⊗ L)→ Γ(S− ⊗ L).
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Over flat space, in a local trivialisation, this is given by replacing derivatives
∂
∂xα
by ∂

∂xα
+ iAα. The index of DA is

τ(M)

8
+
1

2
c1(L)

2.

The Lichnerowicz formula becomes

D∗ADAψ = ∇
∗∇ψ +

R

4
ψ + F ∗ ψ,

where ∗ denotes a natural algebraic operator.
Application (Gromov and Lawson)

Suppose there is a Riemannian metric on the torus T 4 with R > 0 every-
where. Fix a line bundle L→ T 4 with c1(L)

2 6= 0. For any n > 0 we can find a
covering p : T 4 → T 4 such p∗(L) has an nth. root

p∗(L) = L̃⊗n.

The curvature of L̃ is n−1 times the curvature of L. Thus after taking a covering
we can find a line bundle with c1(L̃)

2 6= 0 but with curvature |F̃ | << minR.
This gives a contradiction. So the 4-torus has no metric of strictly positive
scalar curvature.

5 Nonlinear equations: perturbative theory

5.1 General notions

We should begin by saying what we mean by a nonlinear partial differential
equation. We need to steer a middle course between the concrete and the
abstract. Consider first the bundle R ⊕ T ∗M over a manifold M . This can
be viewed as the space of “1-jets” of functions on M . That is, for each p ain
M we define an equivalence relation on functions by saying f ∼ g if f and g
agree to first order at p. (Of course we have to check that this notion does
not depend on a choice of local co-ordinates.) More generally, if X → M is a
differentiable fibre bundle we can define, for each p ∈ M and integer k ≥ 0 the
the space of k-jets of sections of X at p. The set of all k jets forms another
bundle Jk(X) → M . Any section σ of X defines a section jk(σ) of Jk(X).
Now a partial differential equation for sections of X is specified by some subset
E ⊂ Jk(X): the solutions are just sections σ such that jk(σ) lies in E. To be
more specific we should probably require that E is a submanifold and in fact
that E →M is a differentiable fibre bundle.
To make this more concrete, consider the case when M = Rn( or an open

subset of Rn) and X is a trivial bundle, with fibre Y ⊂ Rm. Then sections of
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X are vector-valued functions u, constrained to lie in Y . We suppose that the
subset E is cut out as the zeros of smooth functions gα. Then a kth. order PDE
is a system of equations

gα(x, u,∇u,∇∇u, . . . ,∇
ku) = 0,

just as we always thought.
Given a PDE and a solution u0 there is a well-defined linearisation Lu0 ,

which is a linear differentiable operator, mapping between sections of appro-
priate vector bundles. To take a concrete point of view, we consider sections
u = u0 + tf and the equation Lu0(f) = 0 is the condition that u satisfies the
equation to first order in t. Then we say that the PDE is elliptic at u0 if Lu0 is
a linear elliptic operator.
The simplest kind of example are equations which differ from an elliptic

equation by arbitrary lower order terms.

Δu+ u3 = 0

Then at a solution u0 the linearisation is

L(f) = Δf + 3u20f.

Δu+ u|∇u|2 = 0.

The linearisation at u0 is

L(f) = Δf + |∇u0|
2f + 2u0(∇u0,∇f).

More complicated are equations such as the minimal surface equation

∑

i

∂

∂xi

(
1

1 + |∇u|2
∂u

∂xi

)

= 0.

The linearisation is again a Laplace type operator. Or the Monge-Amper̀e
equation:

det(
∂2u

∂xi∂xj
= 1.

The linearisation at a solution u0 is

∑
uij0 fij = 0,

where uij0 is the inverse of the Hessian matrix of second derivatives. This is
elliptic if u0 is a convex function.
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5.2 The inverse function theorem in Banach spaces

Let U, V be Banach spaces and Ω ⊂ U an open set containing 0. We have a
notion of a C1 map F : Ω → V . Suppose F is such, with F(0) = 0 and has
a derivative L at 0 which is an isomorphism from U to V . Then the inverse
function theorem asserts that for each small v in V there is a unique small
solution u to the equation F(u) = v, and u varies in a C1-fashion with v.

For the proof we may as well suppose that U = V and L is the identity. So
we can write

F(u) = u+ η(u),

where
‖η(u)− η(u′)‖ ≤ c‖u− u′‖,

where c can be made arbitrarily small if ‖u‖, ‖u′‖ are small enough. We write
our equation as

G(u) = u,

where
G(u) = v − η(u).

Then we use the contraction mapping theorem. We start with u1 = v and set

un = G(un−1),

to generate a sequence u1, u2, u3, . . . . One checks that if v is sufficiently small
then ‖un − |un−1‖ decays exponentially with n. Thus the sequence is Cauchy
and converges in U to the desired solution.

Suppose now that F∞ is defined by some partial differential operator of
order r, so that the equation F∞(u) = v is a PDE. There is then an easy
general principle that F∞ defines a smooth Banach map F on Sobolev spaces
L2k, L

p
k, Ck,α once k is sufficiently large. Suppose also that the linearisation L is

elliptic. Then provided that the kernel of L and its adjoint are both trivial we
know that L is invertible, and we can fit into the framework above. So for any
small v ∈ L2k−r we have a small solution u ∈ L

2
k to the equation F(u) = v. If k

is large it is straightfowrward to use elliptic estimates and “bootstrapping” to
prove that, if v is actually smooth, then so is u.

Remark. We are being very vague about this, but the proofs—if one is
allowed to take k large— are truly very easy. We will work through some
examples later. The interesting problems arise when we only know that v is
small in some particular sense–say in L19. Then the questions may become
delicate and challenging.

Example Consider the equation

Δf + sinh f = ρ,

30



for functions f, ρ over a compact n-manifold M , We set this up as a map

F(f) = Δf + sinh f,

with
F : L2k → L2k−2,

and k > n/2. The linearised operator at 0 is

L(f) = Δf + f,

which is invertible. So for all small ρ (in L2k−2 norm) there is a unique small
solution f .

It is useful to see explicitly what is going on—unravelling the proof of the
inverse function theorem. Let T be the inverse operator to Δ + 1. We define a
sequence fn by

f1 = Tρ,

f2 = f1 + T (Tρ− sinhTρ) , . . .

and find our solution as the limit of the fn. Then we can note:

• This is a definite procedure, independent of any function space machinery.

• One could use just the same procedure to find a solution numerically.

• The basic idea (contraction mapping) was also one of the foundations
of the linear theory, In practise one might combine the two by using an
approximate inverse to Δ + 1.

The theory extends easily to families of equations. Suppose we have some
family of nonlinear equations Ft(u) = vt, depending on a parameter t ∈ R.
If we have a solution u0 at t = 0 and if the linearisation at that solution is
invertible then for small t there is a unique nearby solution to the equation with
parameter t.
Example
Let q be some given smooth function on our compact manifold M and con-

sider the equation
Δf + tq|∇f |2 + f = 1

When t = 0 there is a solution f = 1 and the linearisation is Δ + 1 which is
invertible. So for small parameter values t there is a unique solution f close to
1.
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5.3 Fredholm maps: finite-dimensional reduction

A useful abstract notion is a Fredholm map F : Ω→ V , where Ω ⊂ U as before
and the derivative DF : U → V at each point in Ω is Fredhom, of index d. Let
Sy = F−1(y). We say that y is a regular value if DF is surjective at all points in
Sy. In that case d ≥ 0 and Sy is a manifold of dimension d. To see this consider
a point x ∈ Sy and let H = kerDFx. Choose a complementary subspace H ′

(this can always be done when H is finite-dimensional). For small h ∈ H we
seek a solution of the equation F(x′) = y where x′ = h + h′, for h′ ∈ H ′. The
inverse function theorem tells us that there is a unique small solution h′. This
gives a local chart on Sy.
Now suppose that y is not a regular value so we have an x ∈ Sy where the

derivative is not surjective. Let I be the image of DFx and choose a (finite-
dimensional) complementary subspace I ′. Let F∗ be the projection of F − y
to I. Then, in a small neighbourhood of x, the discussion above implies that
F−1∗ (0) is a manifold and we have a chart

B → F−1∗ (0)

where B is a small ball in H. Let F∗∗ be the projection of F − y to I ′. By
definition Sy is the intersection F−1∗ (0) ∩ F

−1
∗∗ (0). Composing with the chart

above the restriction of F∗∗ to F−1∗ (0) gives a smooth map

f : B → I ′

and a neighbourhood of x in Sy is identified with f
−1(0). In short the solutions

of the infinite-dimensional equation F(x) = y are locally modelled on the finite
dimensional equation f(h) = 0.
In many situations we can show further that the map f is real analytic and

the set Sy has an intrinsic “structure sheaf”. One can also prove an infinite-
dimensional form of Sard’s Theorem (Smale): “generic” values y are regular.
(Where “generic” can often mean open, dense.)
Here we can see again the way in which the index d behaves as the difference

of the dimensions of U, V .

5.4 Infinite-dimensional manifolds

Often the space in which we have to work is not (or not naturally) an open
subset of a Banach space but a “Banach manifold”. We will only outline this
because the theory will not be needed in the examples we treat in detail.

Spaces of maps Let M,N be compact manifolds and consider the space of
smooth maps from M to N . Let f be a point in this space. There is a vector
bundle f∗TN → M . A useful way to think of this is as the restriction of
the “vertical part” or the tangent bundle of M × N to the graph of f . A
neighbourhood of f in the space of maps can be identified (not canonically)
with a neighbourhood of 0 in the space of sections of f∗TN → M . To see one
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way of doing this, fix a Riemannian metric on N so for each y ∈ N we have an
exponential map

ey : TNy → N.

Then we can map a section σ of f∗TN to the map which takes x ∈ M to
ef(x)(σ). For sufficiently large k this extends to Sobolev completions, so we get
a space of L2k maps from M to N which is a Banach manifold, locally modelled
on the L2k sections of f

∗TN .
WARNING. It might seem most natural to try to model a neighbourhood

of the identity M →M on the vector fields by using the time 1 map of teh flow
generated by a vector field. This is different to what we are doing above, and
does not work (there are diffeomorphisms arbitrarily close to the identity which
do not arise as such time 1 maps).

Quotients

Consider the equation that a Riemannian metric on a 2-manifold M has
constant Gauss curvature. Counting dimensions shows immediately that this
cannot be elliptic. However this equation is invariant under the action of the
group of diffeomorphisms of M . What we are really interested in is the space
of solutions modulo this action. For simplicity we just consider an open set
Ω of metrics which have no isometries. Then one can show that the quotient
Ω/DiffM (after taking Sobolev completions) is an infinite dimensional manifold.
To do this we consider slices for the action. For example the derivative of the
action at a given metric g is a differential operator

L : Γ(TM)→ Γ(s2T ∗M).

We consider the subset of metrics g+ γ where L∗γ = 0. To show that this gives
a slice we need to solve a PDE for a diffeomorphism close to the identity. The
constant curvature equation for g + γ, together with the constraint L∗γ = 0
forms an elliptic system, except that one needs to modify the definitions lightly
because the equations have different orders.
Similar remarks apply to other problems invariant under a group action,

such as the minimal submanifold equations for parametrised submanifolds.
In either these two kinds of examples the equations one ends up studying

are usually for a zero of a section of a vector bundle over a Banach manifold.
For example the diffeomorphism group of M acts on the functions on M so we
get a vector bundle

Ω×DiffM C∞M → Ω/DiffM.

WE HAVE NOW COMPLETED OUR DISCUSSION OF PRELIMINARY
MATERIAL AND CANGETONWITH THEMAIN BUSINESS: THE STUDY
OF EXAMPLES.
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6 Surfaces of constant Gauss curvature

In this section we use the continuity method to give a simple proof of the fact
that any 2-dimensional Riemannian manifold, of negative Euler characteristic,
is conformally equivalent to a constant curvature manifold.
Let g0 be some metric on the compact M

2 with Gauss curvature K0. Con-
sider the conformal metric g = e2ug0. The Gauss curvature of g is

K = e−u(K0 −Δu).

Notice that ∫

M

euKdμ0 =

∫

M

K0dμ0.

This is essentially the Gauss-Bonnet theorem since eudμ0 is the area form of
the metric g. A simple preliminary observation is that we can choose u so that
K has the same sign as the Euler characteristic. So we may as well suppose
that this is true for K0. We deal with the negative case, so K0 = −κ say, where
κ > 0. We want to solve the equation K = −1 which is

Δu+ eu = κ.

For t ∈ [0, 1] set κt = (1− t) + tκ and consider the equation

Δu+ eu = κt, (∗)

for u = ut. When t = 0 there is a solution u = 0, and we want a solution when
t = 1. If for any t we have a solution the operator appearing in the linearisation
is

Lf = Δf + euf,

and this is invertible. So there is a solution for parameter values t′ close to t.
Thus the problem comes down to proving a priori bounds on the solutions.
These bounds are easy to obtain using the maximum principle. At a point

x where a function u achieves its maximum we have Δu ≥ 0. For a solution of
(*) we get

eumax ≤ κt(x),

which gives an upper bound on umax. Slightly more subtly we get a lower bound
on umin, using the fact that κt ≥ c > 0. (Of course this is the reason for our
preliminary step.) Now eu is bounded in L2 so using the equation (*) and the
elliptic estimates for Δ we get an L22 bound on u. This gives an L

2
2 bound on

eu and then an L24 bound on u, and so on.
Remarks

• There are more subtle forms of the maximum principle but we do not need
these here.

• Clearly the same argument applies to a wide variety of other equations,
provided the signs work in the favourable way.
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• The case of positive Euler characteristic is much harder from this point of
view. Surprisingly the complex analysis proof is simpler in this case. The
action of the conformal group of the 2-sphere shows that it is impossible
to obtain a priori bounds in this case. (See also the remark at the end of
Section 8.)

7 The Seiberg-Witten equations, enumerative
theories

The set-up here will involve an oriented Riemannian 4-manifold M with spin
structure and connections on a complex line bundle L → M . We will assume
that M is simply connected, but this is really unnecessary.
More on spinors
Let V be a 2-dimensional complex vector space with Hermitian metric and

a trivialisation Λ2V = C. It is the same to say that V is a 1-dimensional
quaterionic vector space, with metric. The symmetry group of V is a copy of
SU(2) which we call SU(V ), with Lie algebra su(V ). This is a 3-dimensional
real Euclidean vector space. We have structure maps

ρ : su(V )→ End(V ),

τ : V → su(V ),

where τ(v) is the trace-free part of ivv∗. We normalise so that

(iρ(τ(v))(v), v) =
1

2
|v|4. (∗)

Now on an oriented Riemannian 4-manifold we have a decomposition of the
2-forms into self-dual and ant-self-dual parts

Λ2 = Λ+ ⊕ Λ−.

This is compatible with the Laplace operator so the harmonic forms decompose
similarly and we have b2 = b

+ ⊕ b− where b+ − b− is the signature.
A spin structure is given by bundles S+, S− and these are related to Λ± in

just the way above, so we have

ρ : Λ+ → End S+,

etc. If A is a connection on L with curvature FA the Lichnerowicz formula on
S+ is

D∗ADAφ = ∇
∗
A∇Aφ+

R

4
φ+ iρ(F+A )(φ).
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The Seiberg-Witten equations are for a pair consisting of a connection A and
positive spinor field φ are

DAφ = 0 , F+A = τ(φ).

There is an infinite-dimensional symmetry group given by the action of the
Maps(M,S1) on L → M . This acts freely on the set where φ 6= 0. Solutions
with φ = 0 are called reducible solutions. They can only occur if there is an anti-
self-dual harmonic form representing c1(L). It is easy to handle the group action
in this case. We fix some connection A0 and consider A = A0+a where d

∗a = 0.
(This is the Coulomb gauge condition from classical electromagnetism.) The
equations are then

DA0+aφ = 0 d+a = τ(φ)− F+A0 d∗a = 0.

Let M̃ be the set of solutions (a, φ) to this equation. There is some residual
symmetry given by multiplying φ by a constant element of S1. This gives an
S1 action on M̃ which is free if there are no reducible solutions. The quotient
M̃/S1 is the “moduli space” of equivalence classes of solutions to the Seieberg-
Witten equation.
The linearised operator is equal, modulo lower order terms, to the direct

sum of
DA0 : Γ(S

+ → Γ(S−),

d∗ + d+ : Ω1 → Ω0 ⊕ Ω+.

These are both elliptic. The total index, regarding the vector spaces as real is

d = c1(L)
2 +
1

4
(b+ − b−) + (b1 − b+ − 1).

The magic of the theory is that the moduli spaceM is compact. To see this
we apply the Lichnerowicz formula, the basic inequality

Δ|φ|2 ≤ 2(φ,∇∗∇φ),

and the maximum principle. We see then that

max|φ|4 ≤ cmax|φ|2,

where c is the maximum value of −R/4. Substituting into the equation we get
an L∞ bound, and hence an L2 bound, on F+A , thus on d

+a. Since d∗ ⊕ d+ has
trivial kernel, this leads to an L21 bound on A and from there on it is easy to
bootstrap to obtain bounds on all higher derivatives. In shorthand we can go

φ ∈ L∞, A ∈ L2 ⇒ DA0φ ∈ L
2 ⇒ ∇φ ∈ L2(&φ ∈ L∞)⇒ ∇(τ(φ)) ∈ L2 ⇒ ∇F+ ∈ L2 ⇒ A ∈ L22, . . .

Now suppose that b+ > 0 and that c1(L) is not zero.. Then it is not hard
to show that there for generic Riemannian metrics g on M the harmonic form
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representing c1(L) is not anti-self-dual: thus there are no reducible solutions.
There may be points in the moduli space where the linearised operator has non-
trivial cokernel but it is easy to see that this cokernel is generated by Ω+. For
a fixed η ∈ Ω+ we can perturb the equations to

F+A = τ(φ) + η.

For generic small perturbations η the corresponding moduli space Mη is a
smooth manifold of dimension d (More precisely, (0, η) is a regular value for
the relevant map.) The compactness proof works equally well for the perturbed
equations.

Remark There is a slight complication here because the operator d∗ : Ω1 →
Ω0 always has cokernel, given by the constant functions. But this ties in with
the S1 action, so in the end we get the right formula for the dimension.

Suppose we have arranged the topological input so that d = 0. ThenMη is a
finite set of points. We count these modulo 2 to get an element n(η, g) ∈ {0, 1}.
If we make another choice (η′, g′) then an argument with generic 1-parameter
families gives a compact cobordism between the two moduli spaces, provided
that b+ > 1. (Otherwise we might hit reducible solutions in the family.) Under
this assumption, then, we see that n(η, g) = n(η′, g′). We get an invariant in
{0, 1} of the data consisting of

• a compact, simply-connected, oriented differentiable 4-manifold with w2 =
0 and and b+ > 1

• a nonzero class c ∈ H2(M) such that 4c2 = 3b+ − b− + 1

These have very nontrivial applications in 4-manifold theory.
The theory can be extended in various ways

• If we discuss orientations we can attach a sign to each point and get an
integer-valued invariant.

• If we take d > 0 we could try to use the cobordism class of the moduli
space, or its homology class in the infinite-dimensional manifold of all pairs
modulo equivalence.

• By considering the whole Seiberg-Witten map we get Bauer-Furuta in-
variants which lie, roughly speaking, in the stable homotopy groups of
spheres.

A good reference for the Seiberg-Witten theory is J. Morgan: The Seiberg-
Witten equations and applications to the topology of smooth 4-manifolds:
Princeton UP
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7.1 Holomorphic curves and harmonic maps

Another important “enumerative” theory is given by considering a compact Rie-
mann surface M and a symplectic manifold N with a choice of almost complex
structure J . Then we can talk about maps u : M → N whose derivative is
complex linear. This is an elliptic equation in Maps(M,N). The interesting
feature, compared with the Seiberg-Witten theory, is that the moduli spaces
are not generally compact. But there is a partial compactness theory which is
sufficient to define certain Gromov-Witten invariants. We will just discuss some
of the PDE aspects of this.
Example Take M = N = S2 = C ∪ {∞} and the holomorphic maps given

by rational functions

u(z) =
∑ ai

z − ζi
.

We may consider, for example, a family with fixed ζi and a1 = a
(α)
1 → 0. Away

from ζ1 these converge to a map of degree one less. To analyse the behaviour
around ζ1 suppose (without loss of generality) that z1 = 0 and make a sequence
of co-ordinate changes

wα =
z

a
(α)
1

.

In these rescaled co-ordinates the maps converge, on compact subsets of C.

The energy of any map u :M → N is

∫

M

|du|2.

Note that this is conformally invariant when M is 2-dimensional. Holomorphic
maps minimise energy in their homotopy class (their energy is given by a simple
topological formula). The part of the theory we want to discuss applies equally
well to harmonic maps with bounded energy. (A map is harmonic if it is an
extremum of the energy functional.) We will discuss this first for manifolds M
of any dimension n.

Proposition 3 There are constants C, r0, ε0 with the following property. Sup-
pose we have a harmonic map U :M → N that B ⊂M is a ball of radius r ≤ r0
and there is an ε ≤ ε0 such that for ALL other balls Bρ ⊂ B of radius ρ we have

∫

Bρ

|du|2 ≤ ερn−2.

Then |du| at the centre of the ball B is bounded by Cεr−2.

We postpone the proof for the moment. When n = 2 the condition is satisfied
if ∫

B

|du|2 ≤ ε.
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Suppose uα :M → N is a sequence of harmonic maps with bounded energy, say
at most E. Then an elementary covering argument shows that, after passing to
a subsequence, (which we ignore in the notation) there are

•

• a finite number of points p1, . . . pk , with k ≤ 2E/ε,

• a cover of M \ {p1, . . . , pk} by a countable collection of balls Bi such that
∫

2Bi

|duα|
2 ≤ ε

for all i, α.

It follows that we have uniform bounds on the derivatives over compact subsets
of M \ {p1, . . . , pk} and this easily gives C∞ convergence over these sets. The
upshot, after more work, is that the general picture is much the same as that
in the case of rational functions above.

To prove the proposition we use a differential inequality for the “energy
density” |du|2. A harmonic map from a domain in Rn to Rp is just a vector-
valued function whose components are harmonic. In particular, all components
of the derivative are again harmonic. In the general case we can regard the
derivative du as a section of the vector bundle T ∗M ⊗ u∗TN over M . Withe
respect to the the natural covariant derivative on this bundle we have

∇∗∇(du) = K3(du, du, du) +K1(du)

where K3( , ),K1 are respectively trilinear and linear maps determined by the
curvature tensors of M and N . This means that, writing f = |du|2, we have

Δf ≤ Cf2 + C ′f,

for constants C,C ′ depending on M,N .
To explain the proof we simplify slightly and suppose that B is a ball of

radius r in Rn and that C = 1, C ′ = 0. Recall the mean value property for
harmonic functions on open sets in Rn. The same proof shows that if Δg ≤ 0
on some ball then the value of g at the centre of the ball is no greater then the
average over the ball. More generally if Δg ≤ 2nκ over over a ball centred at
0 then g(0) does not exceed the average of g + κ|x|2 over the ball. Let f be a
positive function on B with

Δf ≤ f2.

Suppose that the integral of f over any interior ball of radius ρ is bounded by
ερn−2. Set

M = max
x∈B

f(x)d(x)2,
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where d(x) = r − |x| is the distance from x to to the boundary of the ball. Let
x0 be a point where the maximum is attained, let ρ ≤ d(x0)/2 and let Bρ be
the ball of radius ρ centred at x0. Write E = f(x0. Then

f(x) ≤ 4E

for all x ∈ Bρ so, on this ball,

Δf ≤ 4E2.

The mean value inequality gives

E = f(x0) ≤
1

Vol(Bρ)

(∫

Bρ

f +

∫

Bρ

4E2

n
|x− x0|

2

)

.

Calculating the last integral and using the hypothesis we get

E ≤ c
(
ερ−2 + E2ρ2

)
,

for an explicitly computable constant c. Thus

Eρ2 ≤ c(ε+ (Eρ2)2).

Consider the equation, for a real number t,

t = c(ε+ t2).

When ε is sufficiently small this has two roots, a “small root” t0 which is approx-
imately cε and a “large root”t1 which is approximately c

−1. So if t ≤ c(ε+ t2)
we have either t ≤ t0 or t > t1. We apply this to the quantity Eρ

2 above. When
ρ = 0 the first alternative clearly holds and by continuity it must persist for all
ρ ≤ d(x0)/2. Taking ρ = d(x0)/2 we get M ≤ c′ε. Finally, by the definition of
M , we have f(0) ≤Mr−2.
A good reference for this material is McDuff and Salamon: J-holomorphic

curves and symplectic topology, AMS.

8 The Yamabe problem

This is the higher-dimensional version of the problem discussed in Section 6
above. We have a compact Riemannian manifold (M, g) of dimension n > 2
and we seek a conformal metric g̃ = e2fg such that the scalar curvature R̃ of
g̃ is constant. This can be viewed as a variational problem. Without loss of
generality suppose that the volume of (M, g) is 1 and consider the functional

I(g̃) =
n− 2
4(n− 1)

∫
R̃dμ̃,

restricted to volume 1 conformal metrics. Then we will see that the constant
scalar curvature equation is the corresponding Euler-Lagrange equation. In fact
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this is part of a more general picture: the condition δI = 0 among all metrics of
volume 1 (not in a fixed conformal class) is the Einstein equation. (The factor
n− 2/4(n− 1) is included here to simplify things later.)
The main result (of Yamabe, Trudinger, Aubin, Schoen. . . ) is

Theorem 5 There is a volume 1 metric in the conformal class which minimises
I.

Remark This might be misleading in regard to the more general problem
of Einstein metrics. There is never a minimum of I over all metrics of volume
1. This is distantly related to the work of Perelman on the Ricci flow.

To set up the problem we begin with the equation

R̃ = e−2f
(
R+ 2(n− 1)Δf + (n− 1)(n− 2)|∇f |2

)
.

It is convenient to write
e2f = u4/(n−2)

and then manipulation gives

R̃ = u−(n+2)/(n−2)
(
4(n− 1)
(n− 2)

Δu+Ru

)

.

In this notation

I(g̃) =

∫
u2n/(n−2)u−(n+2)/(n−2)

(

Δu+
n− 2
4(n− 1)

Ru

)

,

which is just

I =

∫
uΔu+

n− 2
4(n− 1)

Ru2,

or in turn

I(u) = |∇u|2 +
n− 2
4(n− 1)

Ru2.

The volume is the integral of u2n/(n−2) and the Euler-Lagrange equation
(with Lagrange multiplier) is

Δu+
n− 2
4(n− 1)

Ru = λun+2/n−2,

which is the constant scalar curvature equation, with R̃ = (4(n− 1)/(n− 2))λ.

Let Lg be the operator

Lgf = Δf +
(n− 2)
4(n− 1)

Rf.
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This is conformally invariant in the sense that

LΩ2gf = Ω
−(n+2)/2Lg

(
Ω(n−2)/2f

)
.

This statement is a formal consequence of the identity we have above

Scal(u4/n−2g) = u−(n+2)/(n−2)4
n− 1
n− 2

Lg(u),

when one considers a product u1u2.

The whole theory revolves around the connection with Sobolev embeddings.
The exponent p = 2n/n − 2 is critical for the embedding L21 → Lp. Suppose
we changed the problem by fixing p′ with 2 ≤ p′ < p and seeking to minimise
I(u) subject to the constraints u > 0 and ‖u‖Lp′ = 1. Then the inclusion

L21 → Lp
′
is compact. It follows that a minimising sequence has a subsequence

which converges weakly in L21 and strongly in L
p′ . So the constraint on the Lp

′

norm is preserved in the limit. Crucially, the limit is not identically zero. We
get a nontrivial weak solution u ∈ L21 of the modified Euler-Lagrange equation,
written in the weak form

∫
∇u.∇χ+

n− 2
4(n− 1)

Ruχ = κ

∫
up
′−1χ,

for all smooth test functions χ. To begin with we know that u ≥ 0 (and strictly
u is only defined almost everywhere). However one can show by straightforward
bootstrapping arguments that u is actually C2. (We will do a more delicate
argument below.) Now a sharper version of the maximum principle shows that
u is strictly positive.

Proposition 4 Suppose f ≥ 0 and satisfies Δf ≥ Cf . Then if f vanishes at
any point it is actually identically zero.

One of the way of proving this is to write F (ρ) for the integral of F over the
ball of radius ρ centred at the zero. For simplicity we work in Euclidean space.
Then F satisfies a differential inequality L(F ) ≤ CF where L is the differential
operator

L = ρn−1
d

dρ

(
1

ρn−1
d

dρ

)

.

Since f and its first derivatives vanishes at the origin we have F = O(ρn+2)
for small ρ. We consider for comparison the function G(ρ) = ρn+1. Then
LG = cρn−1 so LG ≥ CG for ρ ≤ ρ0 say. Choose ε so that F (ρ0) = εG(ρ0) and
suppose ε > 0. Then F − εG has a strictly negative minimum in (0, ρ0 and this
gives a contradiction.
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The essential difficulty in trying to carry this through at the critical expo-
nent problem is that there is no reason why the weak limit should be non-trivial.
(Indeed we can see an example of this if we use the conformal transformations
of Sn.)

Consider the case when g is the round metric on Sn = Rn ∪ {∞}. Metrics
in the conformal class can be represented by functions u on Rn which decay
suitably at ∞. The standard round metric is defined by

U = C

(
1

1 + |x|2

)n/2−1
,

where C is a constant chosen so that the integral of Up is 1. The variational
problem is simply to minimise ‖∇u‖L2 subject to the constraint ‖u‖Lp = 1. Let
μ0 be the best constant in the Sobolev inequality

μ0 = inf
‖∇χ‖2L2
‖χ‖2Lp

.

Initially we could suppose that χ runs over functions of compact support on Rn,
but it is the same to work in a suitable completion of this space, containing U ,
and functions with the same decay behaviour as U . Then we see that μ0 is the
infimum of the functional I, for metrics conformal to the round sphere. In fact
one can show using a symmetrisation argument that U realises this infimum.
Returning to a general manifold (M, g) we write the infimum of I as μ. Then

the proof of the theorem has two main components:

• Show that if μ < μ0 then there is a smooth minimiser.

• Show that, if (M, g) is not conformal to the round sphere then, μ < μ0.

From now on we take n = 4, to simplify the notation. To show the first item
we first prove

Proposition 5 Suppose u is a smooth positive solution of an equation Δu =
u3−Fu on a 4-manifold, for some fixed smooth function F . There are ε0, r0, C
such that if B is a ball of radius r ≤ r0 and

∫

B

u4 = ε < ε0

then the value of u at the centre of the ball is bounded by Cε1/4r−1.

The proof is similar to that of Proposition 3 in the previous section.
This means that we get a priori estimates on all derivatives of a solution to

our problem, provided we know that every point is the centre of a ball of fixed
size over which the integral of u4 is less than ε.
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The other step is to establish this property, assuming that μ < μ0. For
simplicity we suppose we work around a point where the original metric is flat.
Then we have

Δu = μu3,

where μ < μ0. Let β be a cut-off function, to be specified later. We multiply
by β2u and integrate by parts.

∫
∇(β2u).∇u = μ

∫
β2u4.

Now
∇(β2u).∇u = |∇(βu)|2 − |∇β|2u2.

So ∫
|∇(βu)|2 = μ

∫
β2u4 +

∫
|∇β|2u2.

Applying the Sobolev inequality to the function βu (viewed as a function of
compact support on R4) we get

μ0‖βu‖
2
L4 ≤ μ

∫
β2u4 +

∫
|∇β|2u2.

Now use Cauchy-Schwartz to estimate the two terms on the RHS:

μ0‖βu‖
2
L4 ≤ μ‖βu‖

2
L4‖u‖

2
L4 + ‖∇β‖

2
L4‖u‖

2
L4 .

Now recall that the L4 norm of u is fixed to be 1. We get

(μ0 − μ)‖βu‖
2
L4 ≤ ‖∇β‖

2
L4 .

We choose β to be supported on a ball of radius r and equal to 1 on a concentric
ball of radius r′ < r. If we make r′ very small we can choose β so that the L4

norm of ∇β is as small as we please. (This is essentially the fact that L41 does
not embed in L∞.) Then we can make the integral of u4 on the smaller ball as
small as we please.

These arguments give us a priori bounds on all derivatives of a solution,
assuming that μ < μ0. With small adaptations they prove the existence of a
smooth minimiser. For example the arguments give uniform bounds on solutions
of the deformed problem for exponents p′ < p, then we can take the limit as
p′ → p.

8.1 Conformal deformations and the Dirac equation

It remains to show that for any compact Riemannian manifold M , μ ≤ μ0 with
strict inequality unless M is conformal to the standard metric on Sn. We will
do this assuming that M is a spin manifold.

44



Consider the standard metric gSn on S
n, which realises μ0. This metric can

be written locally as u
4/n−2
0 δij where u0 = 1+O(x

2) for small x. Given a small
number ε we choose vε to be constant in |x| ≤ ε and equal to u0 if |x| ≥ 2ε.
This gives another metric gSn,ε on S

n which is flat in an ε-ball. It is clear that
we can choose the function so that

I(gSn,ε) = I(g0) +O(ε
n+2) , V ol(gSn,ε) = V ol(g0) +O(ε

n+2).

Now consider a point p ∈M and the non-compact manifold M∗ =M \ {p}.
For simplicity we suppose that the metric on M is conformally flat near p, but
this is not essential. Suppose there is a conformal metric g∗ onM

∗ which outside
a compact set K is isometric to Rn \ B where B is the unit ball. Let g∗,ε be
this same metric scaled by a factor ε2, so the complement of K is isometric to
Rn \ εB. Then we can glue gSn,ε and g∗,ε to get a metric gε on the compact
manifold M , in the given conformal class. Although M∗ is not compact the
scalar curvature has compact support so its integral is defined and clearly

I(g∗,ε) = ε
n−2I(g∗).

Thus
I(gε) = I(g∗,ε) + I(gSn,ε) = I(gSn) + ε

n−2I(g∗) +O(ε
n+2).

Similarly
Vol(gε) = Vol(S

n) +O(εn).

Instead of working with volume 1 metrics it is obviously equivalent to con-
sider the functional

I(g)

Vol(g)(n−2)/n
.

We see that this is equal to

I(Sn) + εn−2I(g∗) +O(ε
n).

Thus it suffices to show that

Proposition 6 We can find a metric g∗ with I(g∗) ≤ 0 and with strict equality
if M∗ is not conformal to R

n.

Let x be the Euclidean co-ordinate on the “end” of M∗. The metric g∗ we
seek has the form

∑
dx2i on |x| > 1. Suppose instead that we have a metric g∗∗

of the form
(1 + f)

∑
dx2i ,

where f = O(|x|1−n),∇f = O(|x|−n). Suppose that the scalar curvature of
g∗∗ is ≤ 0 with strict inequality somewhere. For large ρ we introduce a cut-off

45



function βρ equal to 1 on |x| ≤ ρ vanishing when |x| > ρ+1. Then the curvature
of metric g∗,ρ, given on the end by

(1 + βρf)
∑

dx2i ,

has compact support and it is easy to check that the integral of the scalar
curvature is strictly negative, for large enough ρ. (In fact the hypotheses imply
that the scalar curvature of g∗∗ is integrable, so I(g∗∗) is well-defined and I(g∗,ρ
tends to I(g∗∗) as ρ tends to infinity. ) Scaling by ρ

−2 we then get a metric g∗
of the form we need.

Now we introduce spinors. The basic fact we exploit is the conformal in-
variance of the Dirac operator. First, we change our notation slightly from the
earlier chapters. There we called D : Γ(S+)→ Γ(S−) the Dirac operator. Here
it is better to take the total spin space S = S+ ⊕ S− and the Dirac operator
D : Γ(S) → Γ(S), equal to D ⊕D∗ in the previous notation. Suppose we have
the spin bundle S → M and Dirac operator D determined by a metric g. If
g′ = e2fg is a conformal metric we can keep the same spin bundle, with the
same Hermitian norm, but change the structure map

γ : T ∗M → End(S)

to e−fγ. The basic fact we need is that the Dirac operator D′ of g′ is related
to D by

D′(s) = e−(n+1)f/2D(e(n−1)f/2s).

In particular if Dσ = 0 then D′(e−(n−1)f/2σ) = 0.
We now consider two cases, on our manifold (M, g).

Case 1 There is a nontrivial solution σ of the Dirac equation Dσ = 0 on M .

Suppose first that σ does not vanish anywhere onM . By making a conformal
change as above we can suppose that |σ| = 1 pointwise on M . Then

0 = Δ|σ|2 ≤ 2(∇∗∇σ, σ) = −
R

2
,

by the Lichnerowicz formula. So we have a metric of scalar curvature ≤ 0 and
this means that μ ≤ 0, so certainly μ < μ0.
To handle the case when σ vanishes somewhere notice that the function u

corresponding to the conformal change we are considering above is |σ|2α where
α = n−1

2(n−2) . For ε > 0 introduce the function gε(t), equal to t
α for t ≥ ε and to

a+bt for t < ε, where a, b are chosen so that the function is C1. Thus b = αεα−1.
Let S be the set of regular values for the function |σ|2, which is dense by Sard’s

46



Theorem. We take ε ∈ S so Ωε = {x ∈M : |σ|2(x) ≤ ε is a domain with smooth
boundary. We consider the C1 function

u = gε(|σ|
2)

on M . Then Δu is defined except on the measure zero set ∂Ωε and the identity

∫

M

uΔu =

∫

M

|∇u|2,

holds. Outside Ωε the argument above applies to show that

Δu+
n− 1
4(n− 2)

Ru ≤ 0.

Inside Ωε we have, using the fact that Dσ = 0 and the Lichnerowicz formula

Δu = −b(2|∇σ|2 +
R

4
|σ|2) ≤ Cεα

It follows that ∫

M

|∇u|2 +
n− 1
4(n− 2)

Ru2 ≤ Cεα

We can then approximate u in C1 by smooth functions to see that the infimum
of the functional is ≤ 0.

Case 2 The kernel of the Dirac operator on M is trivial.

This the more interesting case. We choose a unit spinor at p ∈M and let δ
be the corresponding “δ-spinor”. Since D is self-adjoint there is a solution σ of
the equation

Dσ = δ.

In a local co-ordinate y around p this behaves as

|σ| = c|y|1−n +O(1). (∗)

More precisely, since we are assuming the metric is Euclidean near p, we can
write σ as a standard fundamental solution, homogeneous of order 1− n plus a
smooth spinor-valued function. Now we apply the same argument to this spinor.
If σ does not vanish we have a conformal metric with a solution σ′ of the Dirac
equation with |σ′| = 1 everywhere. This metric is

|σ|4/n−1
∑

dy2i = (|y|
1−n +O(1))4/n−1 = |y|−4(1 +O(|y|n−1)

∑
dy2i .

Take co-ordinates xi related to yi by the standard inversion

xi = |y|
−2yi.
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Then in the xi co-ordinates the metric is

(1 +O(|x|1−n))
∑

dx2i ,

which is just of the kind we wanted. We take a coordinate x related to y by
inversion. By the same argument as before, this metric has scalar curvature
≤ 0.
There are just two details to clear up.

• what if the spinor vanishes somewhere

• show that equality holds only if M∗ is isometric to Rn.

An argument like that we did above shows that if the spinor vanishes then
either there we get a metric with I strictly negative or the function u = |σ|2α is
a weak solution of the linear equation Δu + (n−1)R

4(n−2) u = 0, around the zero set.

This means that u is smooth and then the maximum principle argument shows
that in fact it does not vanish anywhere, as before. Further in the rescaled
metric we have a parallel spinor field. All of this began with the choice of a unit
spinor at p. If we take another choice then we get another solution u′ of the
same linear equation, with the same growth rate at p and it follows from the
maximum principle (and the conformal invariance of the operator) that u = u′.
It follows that the spinor bundle of the rescaled metric is flat, and this easily
implies that the metric is Euclidean.

Remarks

1. If n = 2m or 2m + 1 the real dimension of the spin bundle is 2m+1

which exceeds n. Thus a generic section of the spin bundle has no zeros. This
reinforces the idea that the possible zeros should not play an essential role.

2. The same argument can be adapted to the two dimensional case. If M
is an oriented surface and p ∈ M then either there is a harmonic spinor over
M or a harmonic spinor with a pole at p. The first only occurs when the Euler
characteristic is negative. In the second case we immediately get a flat metric
on the punctured surface when we rescale using the norm of the spinor field.
The argument is a variant of the standard Riemann surface theory proof that a
surface of positive Euler characteristic is isomorphic to the Riemann sphere.

3. In the literature on the Yamabe problem the proof is usually laid out
rather differently. First one shows that if μ > 0 then there is a metric in the
conformal class of positive scalar curvature. Then one can solve the equation
Lgu = δp and the maximum principle shows that u > 0. In co-ordinates yi
around p,

u = |y|2−n +A+O(|y|).

Essentially the same argument as before shows that it suffices to establish that
A ≥ 0, with equality only when M∗ = Rn. After conformal change we get a
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complete metric with zero scalar curvature with the asymptotic behaviour

(1 +A|x|2−n + . . .)
∑

dx2i .

Then one invokes the positive mass theorem which says that in this situation
A ≥ 0, with equality if and only if the manifold is Euclidean. One proof of
this (due to Witten) uses spinors, essentially as above. But this requires a
spin structure. There is another proof (due to Schoen and Yau) using minimal
submanifolds which avoids spinors but is technically much harder, particularly
in high dimensions. The existence of these two approaches is somewhat similar
to the harmonic 1-forms/ geodesics proofs that Ricci > 0 implies H1 = 0.
Good references for the Yamabe problem are the book Nonlinear analysis

on manifolds of Aubin, and the article The Yamabe problem by Parker and Lee,
Bulletin AMS 1987.
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Questions
For those who wish to be assessed on the course: please send solutions to a

selection of the problems to me at s.donaldson@imperial.ac.uk by January 5th.
As a guide, reasonable attempts at about 4-5 problems should get a good mark.

1. Find a formula for the Green’s Functions on the round sphere Sn.

2. Find a family of functions fρ on R
n, for ρ < 1, with the following

properties

• fρ(x) = 1 if |x| ≤ ρ;

• fρ(x) = 0 if |x| > 1;

• ‖∇fρ‖Ln → 0 as ρ→ 0.

3. Let E be a vector bundle over a compact Riemannian manifold M with
a metric on the fibres. A covariant derivative on E is a map ∇ from sections of
E to sections of E ⊗ T ∗M such that

∇(fs) = f∇s+ df ⊗ s.

This is compatible with the fibre metric if for any two sections s1, s2

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉.

Show that in this case the “Kato inequality” holds:

|∇|s| | ≤ |∇s|.

(You may restrict attention here to points where s does not vanish, although in
fact the inequality holds everywhere, with a suitable interpretation.) Now let F
be another bundle over M and σ : T ∗M ⊗ E → F be a bundle map such that
the composite D = σ ◦ ∇ is an elliptic operator. Show that there is a constant
k < 1 such that for all sections s with Ds = 0 we have

|∇|s| | ≤ k|∇s|,

(again, at points where s does not vanish).

4. Let M be an compact oriented Riemannian 4-manifold. Show that the
operator

d∗ ⊕ d+ : Ω1 → Ω0 ⊕ Ω+

is elliptic. Identify the kernel and cokernel in terms of harmonic forms.
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5. Write out the details of the proof that a moduli space of solutions of
the Seiberg-Witten equation, on a fixed line bundle over a compact Riemannian
4-manifold, is compact.

6. Prove Proposition 5 in Section 8 of the notes for the course.

7. Let F be a smooth function on a compact Riemannian 2-manifold M and
let I be the functional

I(u) =

∫

M

|∇u|2 + Fu2dμ,

restricted to functions u with ‖u‖L4 = 1. Show that I is bounded below. If λ is
the infimum of I, show that a suitable minimising sequence converges to a weak
solution of the equation

Δu+ Fu = λu3.

(That is, u is in L21 and for all smooth test functions χ we have

∫

M

(∇u,∇χ) + Fuχ− λχu3 = 0.)
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