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The interaction between geometry in the adjacent dimensions 2,3 and 4 is a
theme which runs through a great deal of the work by mathematicians on gauge
theory over the past few years. In this article we will examine the possibility of
developing this theme in higher dimensions. We will find extensions following two
intertwining threads. One thread, which we say more about here, replaces real
variables by complex variables, and hence operates in complex dimensions 2, 3, 4.
The other thread involves, from one point of view, replacing the quaternions by the
octonians, and operates in the realm of manifolds with “exceptional holonomy”.
The picture we will find pulls together various ideas which have been touched on
in the literature but the striking analogies which emerge do not seem to be well-
known. Our treatment will be informal throughout this article—our main aim is
to advertise the potential for research in these directions. A great deal of technical
work is needed to develop these ideas in detail, and a more thorough and wide-
ranging account of the Calabi-Yau story will appear in the D.Phil. thesis of the
second author. The first author would like to emphasise the debt due to other
mathematicians in forming parts of the picture described here; particularly Dominic
Joyce, Simon Salamon and Christopher Lewis for lessons on exceptional holonomy.
A substantial part of this picture is essentially due to Joyce and Lewis, and again
futher details will appear in the doctoral thesis of Lewis.

1. The familiar theory.

Let us begin by reviewing very briefly, ignoring many important technicalities,
the sort of ideas and structures in gauge theory that we wish to generalise. These
involve gauge theory, with structure group a compact Lie group (which we may
wish to take to be SU(2) or SO(3) in a detailed development) over differentiable
manifolds of dimensions 2, 3,4, all of which have definite orientations. It is con-
venient to focus on the intermediate dimension 3, where we have the well-known
theories of Casson and Floer. If Yr is a compact 3-manifold, the Chern-Simons
functional gives a map CS : B(Yr) — R/Z where B(YR) is the infinite-dimensional
space of gauge-equivalence classes of connections on a fixed bundle over Yr. The
derivative of C'S is the given by the curvature of a connection, regarded as a 1-form
on B(Yr), through the formula:

(1) 5CS = / Te(F A G A),
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and so the critical points are the flat connections. We assume for simplicity that
the C'S is a generic function, so the critical points are non-degenerate and in par-
ticular isolated. The Casson invariant of YR is given by counting, with signs, the
flat connections. It can be interpreted, formally, as the Euler characterisitic of the
infinite-dimenional space B(Yr). The Floer homology of Yr is defined by fixing a
metric on Yr, and hence on B(Ygr). This allows one to define the gradient vector
field of C'S; the integral curves of the gradient vector field connecting different criti-
cal points give, in Floer’s celebrated construction, a chain complex which computes
the Floer homology. The homology groups do not depend on the metric and are
formally the homology groups of B(Yr) in “semi-infinite dimensions”.

The four-dimensional view-point on these ideas comes from the fact that the
gradient flow equation for C'S is precisely the Yang-Mills instanton equation on Yg X
R: thus the pointwise symmetry group SO(3) of the three-dimensional theory has
a surprising extension to SO(4) (related to the Lorentzian invariance of Maxwell’s
equations). More generally, if Yr is the boundary of a 4-manifold Xg one gets an
interaction between the instanton theory on Xgr, made into a complete manifold
by adjoining an infinite cylinder, and the Floer theory on Yg.

To go down to 2-dimensions we consider a splitting of the 3-manifold, Y =
Y;: Usg Ygr , by a surface Sg C Yr. The moduli space M (Sr) of flat connections
over the surface Sg is, roughly speaking, a finite-dimensional manifold with an
intrinsic symplectic structure induced by the formula:

(2) Q(a,b) = i Tr(a A D),

where a and b are bundle-valued 1-forms over Sgr representing tangent vectors to
M (Sr). Now we consider the subsets L*, L~ C M(Sgr) given by the connections
which extend over Y. These are Lagrangian submanifolds of M (Sg) and the flat
connections on Ygr appear as the intersection points L* N L~. (This is the point
of view Casson took in his original definition.) The instantons in 4-dimensions are
more elusive in this picture but they are related to the holomorphic discsin M (Sgr)
with boundary in the L*. (Here one chooses a metric on Sr, which makes M (SgR)
into a Kahler manifold.) This is the essence of the “Atiyah-Floer conjecture”,
versions of which have been proved by D. Salamon and others [DS]. The main
point is that if T' is another surface the “adiabatic limit” of the instanton equations
on the product Sg x T, as the metric in the Sr direction is scaled down, can be
identified with the holomorphic mapping equation for maps from T to M (Sg).

2. The complex analogy.

In elementary terms, our procedure for extending the ideas sketched above is

to replace ordinary derivatives ai’ where z, are real co-ordinates, by Cauchy-
T o

Riemann operators %, where z, are complex co-ordinates. The important role
«@

played by orientation in the real case leads to the need for a “complex orientation” —
a trivialisation of the canonical line bundle. Thus the geometrical setting for our
discussion involves Calabi-Yau manifolds. From the point of view of analysis the
crucial thing is that the ordinary derivative % on R and the Cauchy-Riemann
operator % on C are both ellipic operators, so behave in rather similar ways.
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We begin then in complex dimension 3 with a compact Calabi-Yau 3-fold Y,
so there is a nowhere degenerate holomorphic form 6 € Q3°(Y). We sometimes
want to suppose that Y is Kahler, and so admits a Kahler-Einstein metric with
holonomy SU(3). Fix a C* complex vector bundle E over Y and let A be the
space of 0-operators on E: that is differential operators:

(3) 0o : Q°(E) — Q¥Y(E)

satisfying the usual Leibnitz rule. Any two elements of A differ by a tensor in
QY (End E). If E has a fixed Hermitian metric these d-operators may be iden-
tified with unitary connections, by projecting to the (0,1) part. We consider the
action of the complex gauge group G° of general linear automorphisms of £, which
act on A by conjugation. Thus we have a quotient space Cp = A/G°. This defini-
tion should not be taken too literally: we know very well from other problems that
issues involving “stability” arise in forming such quotients, and we may wish to
restrict attention to a suitable set of stable points in A. In particular we may em-
ploy the well-known framework involving the comparison of symplectic and complex
quotients and, having fixed metrics, work with the quotient of the space of con-
nections whose curvature satisfies a moment map condition F.w = 0 (where w is
the Kéhler form), by the group G of unitary automorphisms of E (see [DT] for
example). However for the present we shall ignore such technicalities and imagine
that Cg is an infinite-dimensional complex manifold. Now any operator 0, € A

prolongs to the E-valued (0,q) forms, and the composite 5(21 defines a tensor in
Q%2 (EndE). If we identify the operators with connections, this is just the (0,2)
part of the curvature, so we denote it by F%2(a). Then we define a complex 1-form
U on the space A by

(@) U (60) = /Y Tr(5a A FO2(a)) A 6.

Here « is a point in A and d« is a tensor in Q¥!(End E), regarded as a tangent
vector to A at a. The analogy with the case of connections over 3-manifolds will be
clear to the reader. Just as in that case one shows that U descends to the quotient
space Cg and defines a closed 1-form, so is locally the derivative of a complex-valued
function ®. The new feature in our present case is that ® is a holomorphic function
on the complex manifold Cg. We can identify ® more explicitly: if we regard A as a
space of connections then it is just given by pairing the Chern-Simons invariant with
the holomorphic form 6. In any event we get a well-defined function on a covering
space of Cg, with covering group at most H3(Y'; Z)—for our current exposition we
will largely ignore this covering issue. Now the main point is that, just as in the
Casson-Floer theory, the critical points of ®—the zeros of the 1-form U—have a
solid geometric meaning. They are just the operators satisfying the integrability

condition 52 = 0, that is, those which endow E with a holomorphic structure.
Clearly then we should hope that “counting” the holomorphic bundles of a fixed
topological type over a Calabi-Yau manifold Y will yield an invariant which can be
regarded as analogous to the Casson invariant of a 3-manifold.

Some remarks are now in order. First, the point of view above is very close to
the discussion by Witten in ([W], Sec 4.5), which is aimed more at an analogy with
the Chern-Simons theory on 3-manifolds, involving integration of the exponential
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of the Chern-Simons functional. Second, a lot of work would need to be done to
give precision to these ideas. For example one would expect to bring in a suitable
notion of stability, as mentioned above. One would have to deal with the problem
that the zeros of the 1-form U may be degenerate, i.e. the situation is not generic,
and consider suitable perturbations, or appropriate methods of counting degenerate
zeros. One would need compactness results to ensure that counting gave a finite
answer. However, at least as far as the “local” discussion goes (in the space of
connections) one can take over much of the usual Fredholm-theory analysis [T
from the usual 3-manifold case to this complex setting. The setting for the local
analysis in the ordinary case is the de Rham complex

(5) Q040 402403

coupled to the flat connection on the adjoint bundle. In the holomorphic case we
get the Dolbeault complex

(6) Q0 2 ot 2, o2 2, o3

coupled to the endomorphism bundle. The point is that these are both elliptic
complexes. As far as compactness goes, one knows at least that the L2 norm of the
curvature of a Hermitian-Yang-Mills connection over a compact Kahler manifold
of any dimension m is fixed by the topology of the bundle. This follows from the
Chern-Weil theory and the identity:

(7) |F|?w™ = —Tr(F?) A w™ 2

for curvature tensors F' of type (1,1) with F.w = 0. A third remark is that, while
the tight analogy with the Casson theory is restricted to Calabi-Yau manifolds, one
may try more generally to approach the integrabilty equations F%2 = 0 (or what is
more or less the same, the Hermitian-Yang-Mills equations for unitary connections)
from the point of view of nonlinear Fredholm theory. The problem is that the
equations are overdetermined in complex dimension 3 or more. This difficulty
is not so serious in a situation where one knows that all the higher dimensional
cohomology groups H*(EndyE), for all the relevant holomorphic bundles E, vanish
for + > 3. Here Endy denotes the trace-free endomorphisms. From this perspective
the good feature of a Calabi-Yau 3-fold is that the cohomology group H3(EndyFE)
is dual to H°(EndyE), which vanishes for stable bundles E.

We now go up to complex dimension 4, beginning with the product C x Y. Here
we fix a Kahler-Einstein metric on Y and a metric on E, so that A gets an induced
Hermitian L2-metric. Thus the complex co-tangent vector U is dual to a tangent
vector U. We would like to consider a “complex gradient equation”, in parallel
with Floer’s theory. Some subtleties are involved, however, because the complex
gauge group G¢ does not preserve the vector field U , so there are different ways
to proceed. On the one hand we could consider a map «(z) from C to A which
satisfies the equation

Jda -~
(8) i U.
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On the other hand we can consider the complex quotient C = A/G¢ which (modulo
questions of stability) is identified with the symplectic quotient {F.w = 0}/G, and
in this way get an induced Kahler metric. The vector field U on A induces a vector
field U on C, and we can consider a map &(z) from C to C satisfying

oo~
8’ — =U.
(&) 57

We want to interpret these constructions in terms of gauge theory over C x Y.
Observe that on any n-dimensional Calabi-Yau manifold we have complex antilinear
maps *, : 2%7 — Q%"~9 defined by the condition that the (0,n)-form a A *,« is
|a|? times the conjugate of the complex volume form. The vector field U can
be identified with *3F%2, defined by combining the above operation on the form
component with the antilinear adjoint map on End E.

Now move to 4 dimensions. If X is any Calabi-Yau 4-fold we have %4 : ng —
ng with 2 = 1, so we get a decomposition ng = 99;2 & 0%? into £1 eigenspaces.
(It is important to realise that these are real, not complex, subspaces. In terms of
representations, what we are saying is that the representation A%?2 of SU(4) is a
real representation. Notice also that multiplying the complex volume form 6 by a
complex scalar gives a different splitting.) This decomposition of the forms means
that there is a “complex anti-self-duality” equation for unitary connections over
X: F)? = 0. This equation has been found and studied independently by Lewis.
Putting the pieces together, in the first setting of a map from C to A we define
a connection over C x Y with zero components in the C direction and one sees
that solutions of (8) correspond to connections over C x Y which satisfy the two
equations

F02 — 0,
9) { "
F.(.UC = 0,

where F.wc is the component of the curvature in the C-variable. In the second
setting, of a map from C to C, one finds that the solutions of (8') correspond to
solutions of the two equations

0,2
(@) =0
F.wy = 0.

On the other hand, over any Calabi-Yau 4-fold X the natural supplement to the
anti-self-duality equation, as studied by Lewis, is F.wx = 0. We say that a uni-
tary connection over X is an SU(4)-instanton if it satisfies the two equations
F2’2 =0, F.wx = 0. These are elliptic equations, modulo unitary gauge equiva-
lence. Notice that (when X is compact) Hermitian-Yang-Mills connections on stable
holomorphic bundles give examples of such instantons. Lewis has shown that if a
certain characteristic class condition is satisfied then these are the only solutions.
Moreover there is in any case an L? bound on the curvature of an SU (4)-instanton,
coming from an identity like (7).
In the case when X = C x Y we can write the SU(4)-instanton equations as

0,2 _
(9//) F+ =0,
F.wc + F.wy = 0.
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These three equations (9), (9) and (9”) all fit into the continuous family FE’Q =0,
tF.wc+(1—t)F.wy =0 (0 <t < 1), and supposing that this family is well-behaved
the solutions of the three equations are more-or-less equivalent (at least in regard
to topological “counting” of the solutions). The advantage of the intermediate
equation (9”) (or, more generally, the equation for any parameter ¢t with 0 < ¢ < 1)
is that it is elliptic. Clearly the existence of these different equations has to do
with different ways of dealing with the gauge invariance of the problem and we can
think of (9”) as a regularisation of the extremes (9), (9).

Now we can carry through the discussion above replacing C by any Riemann
surface with trivial cotangent bundle, and in particular by R x S'. The conclu-
sion we are finally lead to is that the SU(4)-instantons over R x S! x Y which
converge to Hermitian-Yang-Mills connections on holomorphic bundles E*, E~ at
+o0 in the R-variable play the role of complex gradient curves for the holomorphic
Chern-Simons functional, in the same way that instantons over tubes are viewed
as gradient curves in Floer’s theory. In Section 7 below we shall return to dis-
cuss the topological interpretation of these complex gradient curves; we shall see
there that the solutions which are invariant under rotations in the S-variable have
a particularly simple interpretation and it is worth noting now that for rotation-
invariant connections the three equations (9), (9),(9"”) are all directly equivalent
since F.wg=0.

3. Exceptional holonomy.

There is a remarkable feature of these SU(4)-instanton equation, which leads us
to the second thread mentioned at the beginning of this article. This thread gives
us, in some ways , a more direct generalisation of the familiar 3 and 4-dimensional
picture. (Much of what follows was explained to the first author by Dominic Joyce:
a general reference for exceptional holonomy is [S].) Consider the 8-dimensional,
real, spin representation V of Spin(7), and the standard embedding of Spin(6)
in Spin(7). There is an exceptional isomorphism between Spin(6) and SU(4), so
we get an embedding of SU(4) in Spin(7), and under this embedding V' becomes
the fundamental representation of SU(4), of complex dimension 4. This means
that a Calabi-Yau 4-fold, with holonomy group SU(4), furnishes an example of
an 8-manifold with an integrable Spin(7)-structure, where Spin(7) acts via the
spin representation. Now the second exterior power A2V splits under the Spin(7)
action into two irreducible pieces, a copy of the adjoint representation (given by the
infinitesimal action on V'), and a complement, H say, of dimension 7. Restricting
to SU(4) C Spin(7), the representation H splits into

0,2
(10) H=Rwa A2

So we conclude that the SU(4)-instanton equation Fﬂ’z = F.w = 0 has a further
symmetry under Spin(7): it is just the condition that the H component of the
curvature vanishes, which makes sense on any manifold with a Spin(7)-structure.
(So we will also refer to the equations as the Spin(7)-instanton equations.) This
is rather similar, although the similarity does not seem to fit into the general pat-
tern of this article, to the way in which the Hermitian-Yang-Mills equation on a
Kaéhler surface (with holonomy U (2)) is just the ordinary instanton equation, and as
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such makes sense on any oriented Riemannian 4-manifold (with holonomy SO(4)).
Higher dimensional versions of the instanton equation have been discussed by vari-
ous authors (see [C],[Wa] for example), and these Spin(7)-instanton equations are
part of a general theory developed by Salamon and Reyes-Carrion [RC].

We may also take these ideas over to 7 real dimensions, and the exceptional
holonomy group G3. Let us start on a different tack, and consider a compact
oriented n-manifold N furnished with a closed (n—3)-form ¢. Then we may consider
a functional on the space of unitary connections on a bundle over N defined by the
closed 1-form

(11) /N Tr(F ASA) Ao,

following the notation of (1). The critical points of this functional are the con-
nections with ' A ¢ = 0. Linearising the theory leads to a complex which is a
bundle-valued version of:

(12) Q% & o 2% ont 4 qr

The condition that this complex be elliptic is an algebraic condition on o at each
point which (choosing a metric) essentially comes down to the condition that o
defines a non-degenerate skew-symmetric cross product TM x TM — TM. As
is well-known, this leads to an almost complex structure on the (n — 1) sphere,
and can only exist in dimensions n = 3,7, where the algebraic models are the
cross-product on the imaginary quaternions and octonians. The first case is the
ordinary Floer theory. The second case operates best when we have a 7-manifold
with holonomy G5, and *o is the fundamental covariant constant 3-form, which
can be taken as the definition of the structure. In this situation one gets an L?
bound on the curvature, by an identity similar to (7). In sum then, on a manifold
N with a Ga-structure, we have the basis for a Casson/Floer-type theory, in which
the role of the flat connections is played by the solutions of the equation F'Ao = 0.
The corresponding gradient lines are just the solutions of the Spin(7) instanton
equation on the manifold N x R (which has a Spin(7) structure, corresponding to
the natural inclusion Go C Spin(7)). This picture interacts with the previous one,
when we consider N = Y x S!, where Y is our Calabi-Yau manifold with holonomy
SU(3). For a general G5 manifold, and a bundle E — N, one could expect to have
a Casson invariant, and a Floer homology theory which bears the same relation
to the Spin(7)-instantons on a Spin(7) manifold which is asymptotic to a tube
N X [0,00), as in the ordinary case of three and four dimensions.

4. The two-dimensional picture.

We now return to the complex geometry strand of Section 2, and view things from
the standpoint of complex dimension 2. Let S be a compact Calabi-Yau surface (so
either a torus or a K3 surface), and let M (S) be a moduli space of vector bundles
over S (as usual, we ignore niceties involving stability). In favourable cases at least,
this is a complex manifold with a complex symplectic structure due to Mukai [M].
The tangent space of M (S) at a bundle E is the cohomology group H'(End E) and
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the symplectic form is given by the cup product H*®@ H' — H?2, composed with the
trace pairing End E® End E — C and the evaluation map H?(0) = H*(Ks) — C.
More explicitly, if tangent vectors are represented by bundle-valued (0, 1) forms, the
symplectic form is given by a formula analogous to (2):

(13) (a,b) = /S Tr(a A B) A .

Now suppose that S is embedded in a compact complex 3-fold YT, and that it
is cut out as the zero-set of a section of the anticanonical bundle K;}L (i.e. there
is a meromorphic 3-form on Y with no zeros and with a simple pole along S—in
this situation the adjunction formula forces S to be a Calabi Yau surface). We
consider a moduli space LT of holomorphic bundles over Y+ of the appropriate
topological type, and the map from L™ to M(S) given by restriction of bundles. It
is an observation of Tyurin [Ty], that the image is (roughly speaking) a complex
Lagrangian submanifold of M (S), with respect to the complex symplectic structure.
At the level of tangent vectors, the situation is described by a portion of the long
exact sequence associated with the restriction map, for a bundle E over Y *:

HY (YY", EndEQ Ky+) = H'(YT,EndE) — H*(S, End E|s) —

— H*(YT,EndE® Ky+) — H* (Y, End E).

The key thing is that this exact sequence is its own transpose with respect to Serre
duality. This is a standard general fact about duality in complex geometry: if one
works with Dolbeault cohomology it essentially comes down to the fact that 1/z
is a fundamental solution for the 0-operator over C. We suppose that the final
term is zero: which is roughly speaking the assumption that LT is smooth and of
the proper dimension. Then the first term also vanishes and we get a short exact
sequence
0—TL" - TM(S)— T*LT — 0,

self-dual with respect to the symplectic form on TM(S), and this just expresses
the fact that TLT maps to a Lagrangian subspace under the restriction map.

We want next to consider the analogue of the Lagrangian intersection picture for
the Casson invariant in the real case. Suppose that the same surface S is embedded
as an anticanonical divisor in another compact 3-fold Y~. Then we can form a
singular space with a normal crossing singularity by gluing together the two copies
of S: Yy = YTUgY ™. Then we may consider deformations of Y, in a family Y; such
that Y; is smooth. This is a standard kind of deformation problem, to which an
extensive theory can be applied [F]. Locally around S, the picture can be modelled
within the total space of the bundle vy @ v_ over S, where vy are the normal
bundles of S in Y+ (which are the restrictions of the anti-canonical bundles). For
any section € of the line bundle v, ® v_ over S the equation s;s_ = € cuts out a
3-dimensional subvariety V. of the total space. Here s* are tautological sections
of the lifts of v* to the total space. The double-crossing space Yj is modelled on
Vo. If we can choose € to have transverse zeros (forming a smooth curve Z in S)
then V, will be smooth. If appropriate obstruction spaces vanish we can extend this
local model to a 1-parameter family of deformations of the whole space, modelled
near S on Vi.. Even if Z has simple nodes, so that V, has double points, we can
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get a family of smooth manifolds by making small resolutions (which will change
the topology). A particular example of this comes if € is the product of sections
eT,e” of vT,v™, so that Z = Z1T U Z~ is a reducible curve. Then we can proceed
in another way, in which the topology of the construction is rather transparent. We
blow up Yt along Z+ and Y~ along Z~ to get new 3-folds 7+,7_. The proper
transforms of S, which we denote by the same letter, in these manifolds have trivial
normal bundles, and the smooth 3-fold we seek to construct is given, topologically,
by cutting out tubular neighbourhoods of S in 7+,7_ and gluing together the
resulting boundaries, each of which is a product of S with a circle. It is particularly
easy to see in this case that the canonical bundle of the manifold Y we make by
deforming will be trivial, and in fact this is true for any e. (A useful example in
lower dimensions to have in mind comes by taking the rational elliptic surface—the
projective plane blown up in nine points of intersection of two cubics. A fibre of
the elliptic fibration is an anticanonical divisor and the fibre sum of two copies of
this manifold yields a K3 surface, with trivial canonical bundle.)

Now a holomorphic bundle over the singular space Y} is given by a pair of bundles
E*t,E~ over YT,Y~, which are isomorphic over S. Thus, ignoring questions of
stability etc., these holomorphic bundles correspond to intersection points of L™, L™
in M(S). The general idea should now be clear: we want to regard these Lagrangian
intersection points as a limit of the holomorphic bundle moduli space on the smooth
Calabi-Yau manifolds Y; as the complex structure degenerates. So, for example,
we would hope that the putative “holomorphic Casson invariant” should go over to
the intersection number of L™, L™ in M (S).

5. Adiabatic limits and dimension reduction.

Here we consider briefly the analogue in the complex case of the link between
holomorphic maps into the real moduli space M (Sg) and ordinary instantons in 4
dimensions. To do this we take the product X =T x S of two Calabi-Yau surfaces
(tori or K3 surfaces). This is a manifold with holonomy Sp(1) x Sp(1) C SU(4).
We have simultaneous actions of the quaternions I,.J, K on the tangent spaces
of T and S. It is well-known that the moduli space M (S)—viewed as a moduli
space of instantons—has an induced hyperkahler structure, so the quaternions also
act on tangent vectors to M(S). Now consider the SU(4)-instanton equations
over the product, but with the metric on S scaled by a small factor e. We can
decompose the curvature F' of a connection over the product into three pieces
Fs € A%X(T*S), Fr € A*(T*T), Fsr € A'T*S ® A'T*T. The SU(4)-instanton
equations then break up into two parts: one part is

(14) Fg = eF],

which makes sense since the bundles of self-dual forms on S, T are trivialised, and
the other part is

(15) W(FST) = O,

where 7 is the projection from A'T*S @ A'T*T to A(J)r’2. The second equation (14)
does not involve €. If we naively put € = 0, the first equation (13) tells us that the
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connection is an ordinary instanton on each copy of S in the product, so yields a
map f from T to M(S). The second equation goes over to a linear condition on the
derivative of f. To see what this linear equation is, let U,V be quaternionic vector
spaces and consider the real vector space Hompg(U, V') of R-linear maps. This can
be decomposed into four subspaces

Homgr(U,V)=H,® H;® H; ® Hg,

where H, consists of the quaternion linear maps, Hj consists of the maps which
are [-linear but J and K antilinear, and so on. So we get four projection maps
w1, 71, Ty, Tk to the different factors. Now we can apply this when U is the tangent
space of T and V is the tangent space of M (S) : the condition on the map f which
arises from the SU(4) instanton equations is 7w y(df) = 0. This is an elliptic equation
which is the natural quaternionic analogue of the holomorphic mapping equation
in the complex case. (Notice that the choice of this equation breaks the symmetry
between I, J, K: this just comes from the fact that the SU(4) equations depend on
a particular complex structue on the product, and a particular holomorphic 2-form.
We get a family of similar equations by interchanging I, J, K, which corresponds
to different choices of SU(4)-structure on the product.)

We will now outline analogues of Hitchin’s theory in [H], studying translation in-
variant solutions of the instanton equation. Let ST be the positive spin space of R*.
Then W = R* x St is a real 8-dimensional vector space with a Spin(7)-structure:
that is the obvious action of Spin(4) on W extends to the spin representaion of
Spin(7), under a certain embedding Spin(4) C Spin(7). (Another way of saying
this is to exhibit a certain natural 4-form on W, [S].) Let us consider solutions
of the Spin(7) instanton equation on the flat space W which are invariant under
translations in the ST directions. These connections correspond to pairs consisting
of a connection A on a bundle E over R* and a Higgs field ®, which is a section of
ST @R ad(E) = ST ®c ad(E)¢, where ad(E)° is the complexification of the bundle
associated to the adjoint representation. The Spin(7)-instanton equations go over
to equations of the shape:

(16) Ft(A) = [®,®*], Ds® =0,

where D 4 is the Dirac operator in 4-dimensions, coupled to the connection A, and
the bracket in the first equation denotes the combination of the bracket on the Lie

algebra with the map S* ® §* = S* ® S* — A*+. Having written the equations
for flat space R*, we see that they make sense over any spin 4-manifold.

This is clearly a 4-dimensional analogue of Hitchin’s theory, but also has obvious
similarities with the renowned Seiberg-Witten equations in four dimensions (in a
similar mould to the equations studied recently by Pidstragatch and Tyurin, Okonek
and Teleman and others). If we look for reducible solutions, where the bundle E
is L ® L™, the connection A is induced from a U(1) connection on L, and ®
takes values in L? ® ST, then we essentially arrive at the standard Seiberg-Witten
equations.

We can play the same game with the G2 equations F' A ¢ = 0 in 7-dimensions.
Here there are two standard models. We can either look at R3 x S, where S is the
spin space of R3, or R* x At where AT is the bundle of self-dual 2-forms. The
first model leads to the 3-dimensional Seiberg-Witten equations, and non-abelian
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versions of these. The second leads to the Vafa-Witten equations for a pair (A, ¢)
consisting of a connection A over a 4-manifold and a section ¢ of AT ®ad(E) [VW].

6. An example: quadrics in PS.

We will now discuss an example which illustrates the ideas of Section 4 above.
We consider a Calabi-Yau manifold Y; ¢ CP® which is the complete intersection
of a quadric (9 and a quartic hypersurface V. We can degenerate V into a union
of two quadrics 1 U@2, and in this way embed Y7 in a family Y; with Y, the union
of two pieces Yy = YT Ug Y, where

YT=QoNQ1, Y =QoNQa, S=QoNQ1NQ>.

So S is the intersection of 3 quadrics in CP?; a K3 surface. There is a wonderful
explicit construction of a certain moduli space of holomorphic bundles over such a
surface S, an example of Mukai duality. To explain this we must review some basic
facts about quadrics in P5. If Q C P® is any nonsingular quadric there are two
families of planes in (), the “a-planes” and “(B-planes” in the language of twistor
theorists. The a-planes through each point are parametrised by a copy of P! and
similarly for the 3-planes. So we get two P'-bundles P,, Pg over Q. (These can be
lifted to vector bundles, but it easier to work with P! bundles here.) Another way
to view this is to identify ) with the Klein quadric Gra(C*). Then P, and Pg are
the projectivisations of the tautological bundle U and the quotient bundle C*/U.
However it is important to realise that in general there is a complete symmetry
between P, and Pg, with no preferred way to choose which one is which. (This
happens because the orthogonal group has two components.) If we take instead a
singular quadric (', with one singular point, then there is just one family of planes
in Q': so roughly speaking the bundles P, and Pg coalesce as the quadric becomes
singular.

Now consider the sextic curve B C P2 given by the equation

det(AoQo + A1Q1 + A2Q2) = 0.

Each point (Ao, A1, A2) of P2\ B defines a nonsingular quadric containing the surface
S. We get a double cover of this complement by fixing a choice of which of two
bundles is to be P,. For each point of this double cover we get a bundle over S, the
restriction of the bundle P,, for that quadric, to S. This construction extends over
the curve B, where the quadrics become singular, but the cover becomes branched
there (because the bundles coalesce, as mentioned above). The upshot is that the
moduli space M(S) of bundles of the relevant topological type over the K3 surface
S is the double cover of the plane branched along the sextic curve B, which is
another K3 surface.

Now consider the manifold Y+ = Qo N Q1. The quadrics through Yt are given
by setting Ay = 0, and we can repeat the construction above to get a moduli space
Lt C M(S) of bundles over Y+ which is the double cover of the line {X2 = 0}
in P2, branched along the six intersection points with B. This is the description
by Newstead of the moduli space of bundles of odd degree over a curve of genus
2 as the intersection of two quadrics, but seen in the opposite way: the universal
bundle can be seen either as a family of bundles over the curve LT parametrised
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by YT or vice-versa. In just the same way the subset L, parametrising bundles
over Y, is the double cover of the line {\; = 0}. The intersection LT N L~
consists of two points and, following through the definitions, one sees that these
just correspond to the restriction to Yy of the two bundles P, and Pg over the
original quadric )g. This suggests that the only stable bundles of the relevant
topological type over the smooth Calabi-Yau manifold Y; are the restrictions of
P,, Pg. (Note that P,, Pg have different topological type over @) since they have
different characteristic classes in H*(Qo) = Z & Z, but this difference is not seen
over Y; since H*(Y;) = Z.)

7. Vanishing cycles and pseudoholomorphic curves.

Here we return to discuss the analogue of the Floer theory in our complex setting.
The starting point for the ordinary Floer theory is the Morse theory of a real valued
function, and it is well-known that the Picard-Lefschetz theory of monodromy and
vanishing cycles is the complex analogue of the Morse theory, so it is not surprising
that these ideas emerge from our discussion. If we have any Kahler manifold Z and
a holomorphic function ¢ : Z — C with nondegenerate critical points we can define
the complex gradient flow equation, for a map I': S' x R — Z,

(17) ar = do.

Here Eg\b is the tangent vector obtained from the derivative of ¢ using the metric.
This is a deformation of the holomorphic mapping equation, and fits into a class
which has been studied quite extensively in that setting. Indeed if H is any real
valued function on Z there is a standard deformation of the holomorphic mapping
equation given, from one point of view, by adding

HO’Y
S1

to the symplectic action functional for maps v : S* — Z. The equation (17) is
just this standard deformation for the function H = Re(¢). Pursuing this line,
one sees that there will generically be no solutions of our equation (17) which
interpolate between different critical points of ¢ (which are also the critical points
of H), essentially because the Morse indices of H at all these critical points are
the same. However we can bring in the fact that H came from a holomorphic
function by considering the family of equations like (17) parameterised by a circle,
just multiplying ¢ by a complex number A of unit modulus. The simplest solutions
are those which are invariant under the rotations acting on S! x R: these are
just the ordinary gradient lines of H. Standard Morse Theory arguments give
the following picture. For each pair of critical points p™,p~ we count the S*-
invariant solutions of the family of deformed equations, as A varies over the circle
(but dividing of course by the obvious action of translations) to give a number
n(p™,p~). Now for each critical point p there is a vanishing cycle W (p), well-defined
up to isotopy, in any nearby fibre. We take the straight line in C between ¢(p™)
and ¢(p~), which generically does not contain any other critical value. Parallel
transport along this line allows us to regard the vanishing cycles W (p™*), W (p™) as
submanifolds of the same fibre, and n(p™,p~) is the intersection number of these



GAUGE THEORY IN HIGHER DIMENSIONS 13

two vanishing cycles. (The data from the more general moduli spaces of solutions,
not rotation invariant, describes the action of the “quantum multiplication” in
the fibres of ¢ on the vanishing cycles.) The set of numbers n(p*,p~), as p*,p~
range over the different critical points, together with knowledge of the location of
the critical values in C, and the reflection formula for the monodromy around a
single critical value, gives a complete description of the monodromy action of the
fundamental group of C\ {critical values} on the part of the homology of the fibre
generated by the vanishing cycles. This is the complex analogue of the boundary
operator in the familar Morse/Floer picture, defined by gradient lines, which gives
a complete description of the homology of the space. Just as in that case, the
numbers n(p™,p~) themselves can change under continuous deformations of the
set up (Z,¢). In the complex case this change comes about when a critical point
p’ moves across the line segment between p~, p*, so one is essentially changing the
choice of homotopy class of path used to identify fibres around different critical
points.

Now we can take these ideas over to the gauge theory case, where Z becomes
the space Cg of equivalence classes of 0-operators on a bundle E over our Calabi-
Yau manifold Y (or, perhaps better, a suitable covering space), and ¢ becomes our
holomorphic Chern-Simons functional ®. Multiplying the map ® by a scalar just
corresponds to changing the choice of holomorphic volume form on Y, and hence on
X =R xS'xY. What we expect then is that for each pair of holomorphic bundles
E*,E~ of the same topological type over Y we can define a number n(E*, E™)
by counting the rotation-invariant solutions of the 1-parameter family of SU(4)-
instanton equations over X, asymptotic to ET at +o0o, and that these numbers can
be interpreted as giving the monodromy action on the semi-infinite dimensional
cohomology of the fibres of ®. The data from other moduli spaces (not rotation-
invariant) should describe the quantum multiplication between the semi-infinite
and finite dimensional cohomology of the fibres.

We finish this discussion with one more remark. In a finite-dimensional situation
the index associated to the Cauchy-Riemann equations for mappings from a closed
Riemann surface ¥ of genus g to a complex manifold Z is

(18) (c(2),[2]) — (2g — 2)dim Z.

We get the same index for any deformed equation, which merely adds lower order
terms. Now in our case we take Y to be a 2-torus, and Z to be the infinite-
dimensional space Cg. For simplicity we take the gauge group of our connections
to be SU(2). From what we have seen above, SU(4)-instantons on a bundle E’
over Y X Y can be interpreted as solutions of a deformation of the holomorphic
mapping equation. The familiar slant product construction gives an isomorphism
p: Ha(Y) — H?(C). Under this isomorphism the homology class of ¥ in C can be
indentified with the component of co(E’) in H2(Y) = H2(Y)®H?(X) C H(Y xX).
On the other hand the index associated to the elliptic SU(4)-instanton equation
in this situation is just (ica(Y)co(E’) — 2¢2(E')?, £ x Y). The upshot is that the
formula (18) is true in the infinite dimensional case if we define

¢1(Cr) = gu(PD(ca(Y) — 8ca(E)),

where PD(c3(Y)—8ca(FE)) € Hy(Y) is the Poincaré dual. The point here is that this
Chern class is not defined in any conventional sense for general infinite dimensional
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complex manifolds (since the infinite general linear group is contractible), but our
index theory allows us to give a meaning to it. Notice also that whereas in finite
dimensions the deformations of the holomorphic mapping equation do not play any
role in the index theory, the analogous deformation is crucial to the discussion
above. The condition for a genuine holomorphic mapping from ¥ to Cg can be
interpreted as a gauge theory problem on > X Y, but leads to a nonelliptic equation
which is not governed by any index theorem.

8. Submanifolds.

In this article we have discussed gauge theory over various manifolds of dimen-
sions 4,6,7,8. We close by pointing out that there are analogues of most of our
constructions which bear instead on special submanifolds, in the framework of Har-
vey and Lawson’s “calibrations” [HL]. This is a very active research area at the
moment, in part because of connections with “mirror symmetry”. The viewpoint
which we arrive at, by analogy with the gauge theory set-up, is perhaps new.

On the one hand, returning to our Calabi-Yau 3-fold Y, it is natural to expect
connections between counting holomorphic bundles (at least of rank 2), and count-
ing complex curves. Indeed one of the standard procedures in algebraic geometry
is to go from a rank 2 bundle over a 3-dimensional variety to a curve by taking
the zero set of a generic section. On the other hand, we can forget about bundles,
and mimic the general scheme in this article, replacing connections by suitable
submanifolds.

So let us consider our Calabi-Yau 3-fold Y, with a fixed Kahler metric w with
holonomy SU(3). Let S be the space of (real) 2-dimensional submanifolds X, rep-
resenting a given homology class in Y, which are symplectic with respect to w; i.e.
such that w|y, is non-degenerate. Fix a base point 3¢ in S, and let S be the covering
of S consisting of pairs (3, [Z]) where [Z] is an equivalence class of 3-chains Z in
Y with boundary ¥ — Xy, and Z ~ Z' if [Z—Z'] is zero in H3(Y). Then we can
define a functional

v: §—-C
by
xlr(z,[Z]):/Ze.

It is an easy exercise to show that the critical points of ¥ correspond to the holo-
morphic curves in Y. Now we can define a (real) gradient equation associated to
this functional as follows. If £, n are independent tangent vectors to 3 at a point p,
let v be a tangent vector corresponding, under the metric on Y, to the 1-form

1
& anaRe(0).
w(&,n)
This does not depend on the choice of basis &, 7 for T,X, and we denote it by vs(p).
Thus we get a vector field vy along ¥ in Y which can be regarded as a tangent
vector in §. Then the gradient equation is 0%/t = vy. Similarly, we can define a
complex gradient equation for a map from C to S:

o 0
ot Z@s N

vy,
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The surprising thing is that these equations have straightforward interpretation
in 7 and 8 dimensions. Consider the model R” = R* x A*(R*) for the imaginary
octonians. A 3-dimensional subspace of R” is called associative if it lies in the Go-
orbit of AT(R?) in the Grassmannian of 3-planes in R”. This leads to the notion
of an associative 3-dimensional submanifold of a manifold N7 with a Ga-structure.
In the same way the model R® = R* x S, (R*) leads to the notion of a Cayley
submanifold, of dimension 4, in an 8-manifold with a Spin(7) structure.

Suppose ¥; is a 1-parameter family of surfaces in Y. The family may be con-
sidered in an obvious way as a 3-dimensional submanifold I' of ¥ x R, and a little
thought shows the real gradient equation precisely goes over to the condition that
I' be an associative submanifold. Similarly for the complex gradient equation and
Cayley submanifolds of Y x C. In the same spirit, we can look at the space of
3-manifolds in a manifold N with a G5 structure, and get a gradient flow equation
whose solutions are the Cayley submanifolds in N x R. In sum, we might hope
that there are Floer theories etc. involving these special submanifolds in close par-
allel to the gauge theory structures we have discussed in this article. The “special
Lagrangian” submanifolds of Y can also be brought into this picture: they are just
the associative submanifolds in Y x R which lie in a single fibre Y x {t}: they
can be interpreted as gradient lines taking the empty set to itself. Similarly for
the co-associative submanifolds in a seven manifold N with a G5 structure, which
appear as the “vertical” Cayley submanifolds in N x R. In the analogy between the
gauge theory and submanifold theory, the L? curvature identities like (7) go over to
the familiar volume identities for calibrated submanifolds of Harvey and Lawson.
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