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1. Introduction

By Dan. Francesca wrote an outline of the whole thing which is useful here.

The story begins with immediately inspiring lectures — two lectures by Vistoli and one
by Illusie.

I was a student in Joe Harris’s wonderful Moduli of Curves course in 1990, the course that
gave rise to [HM98]. Harris was aware that Angelo Vistoli was attending, and provoked him
enough to give a series of two lectures introducing algebraic stacks and their place in moduli
space. These ended up transforming my career later when Vistoli and I worked on twisted
stable maps — but that is a different story told elsewhere.

The summer I graduated I found myself at the Barsotti Memorial Symposium in Padova
(1991), where Illusie lectured on Logarithmic Spaces (according to K. Kato). It took longer,
but this lecture led to much of the work described in this lecture series.

Both stacks and logarithmic structures introduce hidden smoothness into algebraic geom-
etry.

Deligne–Mumford stacks were introduced into algebraic geometry expressly to encode
moduli spaces. But from the very beginning it was recognized that, at the same time,
they endow familiar singular spaces with a structure that has much of the benefits of smooth
spaces. Such is the case with the moduli spaces of stable curves, which, as stacks, are smooth
over Z, enabling Deligne and Mumford to deduce their irreducibility in any characteristic
from the characteristic 0 case.

Still, it took quite some time to realize that stacks can be used even for the general problem
of resolution of singularities. One of our goals here is to retell this story.

Logarithmic structures were introduced into algebraic geometry expressly to bring out
hidden smoothness: Kazuya Kato’s proverbial “magic powder” that makes any toroidal
variety, and any nodal curve, logarithmically smooth.

In this case, what took much longer was to develop a theory of moduli spaces — a task
that is still a work-in-progress. One of our goals here is to reach logarithmic and punctured
maps, which bring logarithmic geometry into Gromov–Witten theory, just as twisted stable
maps did with target stacks.

1.1. Sequence of lectures.

(1) Introduction (Dan, 30 minutes)
(2) Stacks 1 (Dan)
(3) Moduli 1 (Pierrick)
(4) Combinatorics 1 (Dhruv)
(5) Combinatorics 2 - Toric geometry (Dhruv)
(6) Stacks 2 (Dan)
(7) GW theory 1 (Francesca)
(8) GW theory 2 (Francesca/Dan)
(9) Log Geometry 1 (Navid)

(10) Log Geometry 2 (Navid/Dan)
(11) Log GW theory I (Hülya)
(12) Resolution 1 (Dan)
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(13) Moduli 2 (Pierrick/Dan)
(14) Log GW theory II (Hülya/Dan)
(15) Punctured GW invariants (Dan)
(16) Resolution 2 (Dan)
(17) Log limit linear series (Francesca 30 min)
(18) Punctured maps and mirror symmetry (Pierrick/ Hülya 30 min)
(19) Orbifolds and mirror symmetry (Hülya / Pierrick 30 min)
(20) Log Orbifold correspondence (Navid 30 min)
(21) LMNOP or Log Hilb (Dhruv 30 min)

Goals for April 18: read everything, propose length of lectures, propose division of labor.

2. Stacks, part 1

12
 1

 2By Dan. Intil 2.2 a sort of a newly written introduction. From 2.3 taken from the resolution
of singularities book.

2.1. Origins. Stack came about from two sources, both relevant to this lecture series.
One source is hidden smoothness, where the ideas first came about in geometry. It was

long recognized that the quotient of a manifold by a finite group is, in general, singular, but
retains many of the good properties of a manifold. In particular, the rational cohomology of
a compact orbifold without boundary satisfies Poincaré duality.

This point of view brings about a solid intuition, but is difficult to formalize directly.
The other source, which is far less intuitive, is that of stacks as representing moduli

problems. Its advantage is that it is quite natural to formalizing stacks this way.
We will therefore follow a long tradition and describe stacks from the moduli point of

view, as certain categories endowed with structure that imbues in them the life of a moduli
space.

2.2. A moduli space is encoded by a category. We set out to define certain objects —
algebraic stacks — that encode moduli problems, and in cases where the modili problem is
representable one naturally obtains a scheme, or more precisely, a category aturally associated
to a scheme.

Think about parametrizing smooth, projective, irreducible curves of genus g. If Mg were
represented by a scheme, then the data of a morphism S !Mg would be equivalent to a
family of curves C ! S of genus g. The outrageous, incredible, and yet magically successful
idea is to give up on representablity and simply define an object of Mg over a scheme S to
be a family of curves C ! S.

We want to elicit the relationships between these objects. We know what a morphism
of schemes S1 ! S2 is, and gien objects C1 ! S1 and C2 ! S2 we similarly know what a
morphism C1 ! C2 over S1 ! S2 should be — the diagram had better be commutative.
But keeping in mind that we would like to parametrize the fibers, it is natural to insist that

1(Hulya) discuss equivalence of categories fibered in groupoids? Specificaloy log curves over log schemes
2(Dan) Added in slides
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C1 should be isomorphic to the pullback S1×S2 C2, making the following diagram cartesian:

C1
//

��

C1

��

S1
// S2

Picking out just the pullback arrows — what the founders called cartesian arrows — makes
our category “moduli-like”. Why? consider the fiber of this category over the identity
S ! S. Saying that any morphism is cartesian implies that any morphism lying over
the identity is an isomorphism. In the special case where S is a point we are looking
at curves with isomorphisms between them; in general we look at families of curves with
fiberwise isomorphism. In ancient times one thought of moduli as parametrizing objects up
to isomorphisms. The categorical framwork is better: we parametrize objects, in a sense,
along with their isomorphisms.

What remains is the task of making the category sufficiently geometric so that one can
act as if it is a scheme.

2.2.1. Categories fibered in groupoids. Let us formalize what we have gotten so far. A moduli
problem is, in particular, a category M whose objects should behave like C ! S. Any such
object has an underlying scheme S over which it lies, and any arrow lies over an arrow of
schemes. In other words we should have a functor M! S to a suitable base category. This
is known as the structure functor. In much of our discussion S = Sch is just the category of
schemes. Moreover arrows should behave like pullbacks: given an arrow S1 ! S2 in S and
an object C2 ! S2 in M over S2 (we say an object in M(S2)), there is a suitably unique
pullback:

Definition 2.2.2. A functor F : M ! S is a category fibered in groupoints if for every
f : S1 ! S2 and every C2 ∈ M(S2) there is C1 ∈ M(S1) and an arrow C1 ! C2 over f , and
any other such C ′

1 ! C2 factor uniquely through an isomorphism C ′
1 ! C1 over the identity

of S1.

2.2.3. Schemes as categories fibered in groupoids. This is all very well for Mg, but stacks
are to generalize schemes, so in what way is a scheme a category fibered in groupoids?

The answer, as usual is the taulological answer given by Yoneda: a scheme V corresponds
to the category SchV of schemes over V . The functor F sents a scheeme over V say T ! V
to its underlying scource scheme T . And pullbacks are just compositions of arrows.

What’s moduli theoretic about this? Again, a scheme is just the parameter space for its
own points. You might think of an arrow f : T ! V as parametrizing the family of points
in T × V parametrized by T described by the graph of f .

2.2.4. Quotients. How about the quotient of a scheme V by the action of a group-scheme
G? Points of a quotient correspond to orbits of the action, and when the action is free these
are free orbits,. In other words, an arrow S ! V/G is a principal G-bundle P ! S with an
equivariant arrow P ! V . 3 45

3!
4!
5!

3(Dan) upgrade to a definition in slides
4(Navid) Would it be worth extending the discussion of quotients, perhaps by discussing a few examples?

E.g. a cyclic quotient singularity, and seeing how BG sits inside this?
5(Dan) done a bit in slides!
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2.2.5. Towards stacks: descent of morphisms and descent of objects. A scheme is obtained
by gluing together affine schemes. Similarly, a morphism S ! V in SchV is obtained by
gluing together morphisms on an affine cover of V which agree on overlaps. If stacks are to
generalize schemes, a topological feature such as this must be required.

We assume given a Grothendieck topology T on the base category S. For Deligne–
Mumford stacks the étale topology suffices. In general one uses either the smooth or fppf
topology.

A categor fibered in groupoid M! S satisfies descent for arrows if given
(AN UPGRADE OF TEH ABOVE FROM EARLIER TEXT)

2.3. Stacks as moduli. To really understand what stacks are about we change course.
Stacks really come about in order to understand moduli spaces, when the moduli problem
is not represented by a scheme.

We will have two key examples:

Example 2.3.1. The moduli stack Mg of curves of fixed genus g > 1, and

Example 2.3.2. the quotient [V/G] of a variety V by a finite group G.
Special cases of Example 2.3.2 are

(1) the quotient BG := [Spec k/G] of a point by the trivial action of G, and
(2) The quotient V = [V/{1}] of any variety by the trivial group.

2.3.3. Moduli of curves as a category. We consider example 2.3.1.
When we talk about moduli of curves, we want to classify curves of genus g up to isomor-

phisms.
For our discussion, we work over a field k and fix an integer g > 1, and a curve of genus

g is a smooth projective geometrically integral curve X of genus g over some field extension
of k. A family of curves of genus g is a projective flat morphism X ! S whose geometric
fibers are curves of genus g.

The great observation of Deligne and Mumford is that the moduli space Mg is the category
of families of curves of genus g. All that one needs to do is to make this category “geometric”.

How do we make families of curves of genus g into a category?
Say X1 ! S1 and X2 ! S2 are families of curves of genus g. A morphism between them,

for the purpose of classification, is a cartesian diagram of schemes

X1
//

��

X2

��

S1
// S2.

Note that this implies that the morphism X1 ! S1 ×S2 X2 is an isomorphism, whose
datum is equivalent to the datum of X1 ! X2 by the universal property of fibered products.

For the same reason note also that given X2 ! S2, a family of curves of genus g, and
given a morphism S1 ! S2, the cartesian product X1 = S1 ×S2 X2 sits in such a diagram,
in a way which is unique up to unique isomorphisms. That’s by the universal property of
fibered products.

Given a scheme S, the fiber of Mg over the identity morphism of S, denoted Mg(S), is
the subcategory of families X ! S where the morphisms fit over the identity of S:
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X1
//

��

X2

��

S S.

The definition implies that X1 ! X2 is necessarily an isomorphism. This fits with the
idea that we set out to classify curves up to isomorphisms.

2.3.4. A variety is a category. We consider example 2.3.2(2).
Stacks come to extend the category Sch of schemes. On the other hand, stacks come to

encode the idea of a moduli space. In what way is a scheme, or a variety V , a moduli space?
The answer is that any variety is the moduli space of its own points.
We know what a point on V is. What is a flat family of points? For a scheme S define

a family of points on V parametrized by S to simply be a closed subscheme S ′ ⊂ S × V
mapping isomorphically to S. Look at the picture - this is the right notion!

"¥t¥ fr
Figure 1. The graph of a morphism f : S ! V as a family of points on V
parametrized by S

Wait - in which way is this a category? If we have S ′
1 ⊂ S1 × X and S ′

2 ⊂ S2 × X then
we have a morphism precisely when S ′

1 = S1 ×S2 S
′
2 ⊂ S1 ×X. Here there is no choice for a

map since we are equating S1 ×X = S1 ×S2 S2 ×X.
This is equivalent to giving a section S ! S × V , which in turn is equivalent to giving a

morphism S ! V . In other words,

the moduli category of points on V is the category SchV of schemes
over V .

Exercise 2.3.5. Describe, as a category, the fiber SchV (S) of the category SchV over
the identity of a scheme S.

2.4. Categories fibered in groupoids. We can now generalize:

Definition 2.4.1. A functor F : C ! Sch from a category C to the category of schemes
makes C a category fibered in groupoids if for every object X2 ∈ C(S2) and any morphism of
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schemes f : S1 ! S2 there is a morphism f̃ : X1 ! X2 such that F (f̃) = f , which is unique
up to unique isomorphism.

Remark 2.4.2. This is not my fault - the notion of groupoid in a category fibered in groupoids
is not the same as the notion of groupoid in a groupoid in schemes. They are close enough
to cause likely confusion. Please be careful!

Exercise 2.4.3. Verify that Mg is a category fibered in groupoids.

(You should use the functor that takes a family of curves C ! S to its base scheme S.)

Exercise 2.4.4. Verify that SchV is a category fibered in groupoids.

(You should use the functor that takes a “family of points” S ! V to its base scheme S.)
Recall that a set Z gives rise to a category whose objects are the elements of Z and arrows

are declared to be just the ones needed, namely idz for all z ∈ Z. Also a category is said to
be a set if it is equivalent to a category associated to a set (so it is small and all arrows are
unique isomorphisms).

Exercise 2.4.5. Show that the fibers of SchV are sets.

We say that a category fibered in groupoids is fibered in sets if the fibers are sets. The
exercise shows that the category of points on a scheme is fibered in sets6.

2.4.6. Arrows. Let F1 : C1 ! Sch and F2 : C2 ! Sch be categories fibered in groupoids. A
morphism or base-preserving functor is a functor G : C1 ! C2 with F2 ◦G = F1.

Exercise 2.4.7. Show that a morphism SchS1 ! SchS2 is equivalent to a morphism
S1 ! S2. Show also it is equivalent to an object of SchS2(S1) and to an element of
S2(S1).

It thus makes sense to identify S with SchS.
For instance, suppose you have a morphism ξ : SchS ! C. Consider the final object

S
idS! S of SchS. Its image ξ(S

idS! S) is an object ξ̄ of C(S), and for any other object
g : T ! S of SchS its image is necessarily the pullback of ξ̄ by g. Conversely, given an
object ξ̄ of C(S) we obtain a morphism ξ : SchS ! C, assigning to g : T ! S the pullback
of ξ̄ by g.

Exercise 2.4.8. Draw a big diagram on a big page (or board, or flip chart) explaining
this sentence.

6It turns out these are not the only ones.
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It now makes sense to identify: morphisms S ! C, in other words morphisms SchS ! C,
with objects C(S).

2.4.9. Quotients of free actions. Consider now a scheme X with a free action of a group-
scheme G having a geometric quotient X ! Y . This precisely means X ! Y is surjective
and that G acts simply transitively on geometric fibers of X ! Y — we say that X ! Y is
a G-torsor or principal G-bundle.

We want to say that Y is the moduli space of orbits on X, which precisely means that its
category SchY is naturally equivalent to the “category of families of orbits”, which we must
now define.

First note: since the action is free, an orbit in X is a principal G-variety P and an
equivariant map P ! X.

This allows us to define, for such a free action, a “family of orbits” over a scheme S to be
a principal G-bundle P ! S with an equivariant map P ! X, a diagram like this

P

��

G-equivariant
// X.

S

A morphism from (P1 ! S1, P1 ! X) to (P2 ! S2, P2 ! X) is defined as a cartesian
diagram:

P1

��

G-equivariant
// P2

��

G-equivariant
// X.

S1
// S2

Note that whenever we have a morphism S ! Y we may form the principal bundle P :=
S ×Y X, which forms a diagram as above:

P

��

G-equivariant
// X

��

S // Y

Conversely, given a principal bundle P ! S and equivariant P ! X, the composite map
P ! Y is G-invariant. Now S is the categorical quotient of the action of G on P — this
follows for instance by flat descent — so the morphism P ! Y factors uniquely through a
morphism S ! Y . This implies that P = S ×Y X. It follows that

the category of families of orbits on X is equivalent to SchY .

Exercise 2.4.10. Complete a proof of this statement.
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2.4.11. Quotients in general. We come to example 2.3.2 in general.
Now let G act on X, not necessarily freely. We define a category fibered in groupoids

[X/G] whose objects are diagrams like this

P

��

G-equivariant
// X,

S

and whose arrows from (P1 ! S1, P1 ! X) to (P2 ! S2, P2 ! X) are cartesian diagrams

P1

��

G-equivariant
// P2

��

G-equivariant
// X.

S1
// S2

Exercise 2.4.12. (1) Verify that this is a category fibered in groupoids.
(2) Verify that [X/G] is equivalent to SchY if and only if G acts freely on X having

quotient scheme Y .

To introduce the following exercises, we need a definition that will serve us well later:

Definition 2.4.13. Given categories fibered in groupoids X,S, and Y , and morphisms
ψX : X ! Y, ψS : S ! Y , namely morphisms of categories compatible with the functors to
Sch, we define the fibered product S ×Y X to be the category whose objects over a scheme
T are

(1) morphisms T ! S and T ! X, equivalently objects ξS ∈ S(T ) and ξX ∈ X(T ), and
(2) an isomorphism ψS(ξS)! ψX(ξX).

Exercise 2.4.14. Write explicitly what this means when S,X are schemes.

Exercise 2.4.15. Check that this is compatible with pullbacks, making S ×Y X a cate-
gory fibered in groupoids.

Exercise 2.4.16. Going back to where X,S are schemes and Y = [X/G], check that the
resulting diagram

P

��

G-equivariant
// X

��

S // [X/G]

11



is cartesian.

In other words,

categories fibered in groupoids allow us to have true quotients in
general, extending the notion for free actions.

Example 2.4.17. Consider now the trivial action of a group-scheme on Spec k. It is cus-
tomary to write BG := [Spec k/G] — it is known as the classifying stack of G, at least once it
receives the structure of a stack. Objects over a k-scheme S are principal G-bundles P ! S,
and arrows are cartesian squares.

Exercise 2.4.18. Given a G-equivariant morphism X1 ! X2 construct a natural mor-
phism [X1/G]! [X2/G].

This in particular provides a morphism [X1/G]! BG for any k-scheme X.

Exercise 2.4.19. Given a homomorphism H ! G and an action of G on X construct a
natural morphism [X1/H]! [X2/G].

2.5. Stacks. The category Sch of schemes has some useful Grothendieck topologies - in
particular there is a sense in which a morphism ⊔Si ! S is étale or smooth; and if this
morphism is also surjective then it is an étale cover, or a smooth cover (namely a cover in
the smooth topology); if Si are Zariski open subsets you get, of course, a Zariski cover. To
avoid saying “Zariski or étale or smooth” all the time we might refer to a T -covering, with
T indicating the chosen topology.

2.5.1. Descent for morphisms of curves. Let C1 ! S and C2 ! S be two families of curves
of genus g. What would it take to show that they are isomorphic? Of course this requires
writing an S-morphism C1 ! C2 and an inverse, but to do it concretely — say to give a
dumb computer a morphism — we need to use a covering. After all morphisms are locally
defined.

Say we have a Zariski covering ⊔Si ! S and an isomorphism ϕi : C1i ! C2i of the
pullbacks of C1, C2 to Si, then by definition of a morphism this gives an isomorphism ϕ :
C1 ! C2 if and only if ϕi agree on the intersections: ϕi|Sij

= ϕj|Sij
.

It is not trivial, but not hard either, that the same is true for the étale or smooth topologies:
if ⊔Si ! S is a T -covering then a collection of isomorphisms ϕi : C1i ! C2i comes from a
morphism ϕ : C1 ! C2 if and only if ϕi agree on the “intersections”: ϕi|Sij

= ϕj|Sij
, where

Sij = Si ×S Sj.
It is customary to assign to C1 ! S and C2 ! S the functor IsomS(C1, C2) : SchS ! Sets.

For an S-scheme T its value is the set IsomT (C1T , C2T ) of isomorphisms of C1T ! C2T . The
discussion above says that this functor is a T -sheaf : for a T -covering ⊔Ti ! T we have an
equalizer sequence — the analogue of an exact sequence of sets:

12



IsomT (C1T , C2T ) �
�

//
∏

IsomTi
(C1Ti

, C2Ti
) //

//
∏

IsomTij
(C1Tij

, C2Tij
).

Exercise 2.5.2. Consider the case where Ci ! S is a family of curves of genus 0. What
does the sequence above say about comparing families of P1’s over a base S?

2.5.3. Descent for curves. Let S be a scheme. What would it take to construct a family of
curves C ! S? Again one needs to work locally. But now if we are given families of curves
Ci ! Si, their gluing requires the additional data of isomorphisms ϕji : Ci|Sij

! Cj|Sij
. And

such data ϕij must satisfy the proverbial cocycle condition on Sijk.
One can interpret this in terms of a longer, and categorical, “exact sequence”, but let’s

leave that to the ∞-categorists. The traditional, 1-category language is to say that “curves
satisfy effective descent”, namely the families Ci ! Si and isomorphisms ϕji give rise to
C ! S, unique up to a unique isomorphism, if and only if the cocycle condition holds.

This holds for the Zariski topology by the definition of a scheme (and set-theoretic gluing).
Again it is not trivial, but not hard either, that the same is true for the étale or smooth
topologies.

Exercise 2.5.4. Consider the case where Ci ! S is a family of curves of genus 0. What
does this discussion say about comparing families of P1’s over a base S, in the Zariski or
étale topology?

2.6. Stacks in general. Let us now fix T = Zariski, étale or smooth. A category fibered in
groupoids C is a stack if Isom functors are T -sheaves and if every descent datum is effective.

The discussion above says that Mg is a stack in any of these topologies. It is not too hard
to show that the same is true for the categories [V/G] we discussed earlier. In particular the
category SchV is a stack.

Exercise 2.6.1. Outline for yourself why indeed Mg,SchV , and [V/G] are stacks in the
étale topology.

2.6.2. Discussion. To summarize,

stacks allow us to put meaningful topological structures on cat-
egories fibered in groupoids, in particular those associated with
natural moduli spaces and with quotients.

This in particular means that objects of our category — or moduli problem — are local in
nature. For instance a family C ! S of curves of genus g over S can be recognized as such
by restricting it to a covering ⊔Si ! S. From a practical point of view, this also means that
our proverbial dumb computer can work with it, taking charts Si on S and families Ci ! Si,
with appropriate gluing data on the overlaps.

13



Note however that objects of stacks are one level more complex than sections of sheaves:
to give a section s ∈ F(S) of a sheaf of sets F on a scheme S covered by Si, it is equivalent
to give sections si ∈ F(Si) which agree on the overlap. The first sheaf axiom says that given
si such s is unique if it exists — a separatedness condition. The second sheaf axiom says
that if si agree on overlaps such s does exist — a locality condition. This is all that is needed
to glue sets, in essence since a bijective map of sets can be broken down to being injective
and surjective.

In the case of stacks, we are gluing categories. Keeping the analogy with bijections of sets,
here we are concerned with equivalences of categories, a slightly more subtle question. Recall
that to verify that a functor G : A ! B is an equivalence of categories, one checks three
conditions: two conditions on morphisms — that G is full (surjective on arrows) and faithful
(injective on arrows), and a third condition on objects — that G is essentially surjective.

For stacks, the analogy leads to the two sheaf conditions for arrows, and a third condition
on objects, requiring them to glue locally. This is necessarily more subtle — it involves triple
intersections and the cocycle condition.

2.7. Algebraic stacks.

2.7.1. Representability. A stack C is represented by a scheme S if it is isomorphic to SchS.
It is representable if it is represented by some scheme. A morphism C1 ! C2 of stacks is
representable if for any scheme S and any morphism S ! C2 the fibered product S ×C2 C1 is
a scheme.7

One can show that if T is a scheme, then a morphism ξ : T ! C is representable if and
only if for any scheme S and η : S ! C the sheaf IsomS×T (ξ, η) is a scheme.8

Exercise 2.7.2. Show that any morphism S ! C is representable if C = SchV is the
stack represented by a scheme V .

Exercise 2.7.3. Show that any morphism S ! C is representable if C = [V/G].

Exercise 2.7.4. Show, using Hilbert schemes, that any morphism S ! C is representable
if C = Mg.

2.7.5. Smooth and étale morphisms. A representable morphism C1 ! C2 is said to be smooth
if for every scheme S and S ! C2 the resulting morphism of schemes S×C2 C1 ! S is smooth.
Similarly for étale, smooth covering, étale covering, proper, etc.

7The standard terminology allows it to be an algebraic space. Our more restrictive notion will suffice for
our purposes.

8With the algebraic space terminology this is automatic, since reasonable sheaves are algebraic spaces.
14



2.7.6. Algebraic stacks. A stack C is T -algebraic if

(1) for any scheme S, any S ! C is representable; equivalently the diagonal morphism
C ! C × C is representable, and

(2) there exists a T -covering V ! C.

Generally, étale-algebraic stacks are known as Deligne–Mumford stacks, and smooth-algebraic
stacks are known as Artin stacks.

Exercise 2.7.7. Show explicitly that when C = SchV , a morphism S ! C is
smooth/étale etc. if and only if S ! V has the same property.

Deduce that SchV is algebraic.

Exercise 2.7.8. Show explicitly that when C = [V/G], a morphism S ! C is
smooth/étale etc. if and only if P ! V has the same property, where P = S ×C V .
Show that, if G is smooth, V ! C is a covering in the smooth topology. Deduce that

C is algebraic.

M. Artin has shown how to relax the requirement that G be smooth.

Exercise 2.7.9. Every smooth curve of genus 0 has an anticanonical embedding in P2.
Considering the Hilbert scheme of conics in P2, show that the locus of smooth conics is
open. Show that M0 is the quotient of this scheme by the action of a smooth group
scheme, hence is an algebraic stack. Is it a Deligne–Mumford stack?

Exercise 2.7.10. Can you repeat the discussion above for M1,1, the moduli stack of
elliptic curves?

What happens with M1, the moduli stack of curves of genus 1?

Exercise 2.7.11. This is the crux of Edidin’s paper [?], and you might wish to just read
Edidin’s account:

(1) Show using Riemann-Roch that the three-canonical linear series separates points
and tangent spaces: dimH0(C,OC(3KC)) = dimH0(C,OC(3KC − p− q)) + 2 for
any two points p, q. Deduce that every smooth curve of genus g has a complete
linear series giving a 3-canonical embedding into a projective space of dimension
5g − 6.

(2) Show that such curves form a locally closed subscheme H of the appropriate
Hilbert scheme, parametrizing curves of genus g of degree 6g − 6 inside P5g−6.

(3) Show that the quotient [H/G] with G = PGL5g−5 is isomorphic toMg, as follows:

15



• Given a family of curves π : C ! S, consider the locally free sheaf F =
π∗ω

⊗3
C/S and its projective frame bundle P(F) ! S. Show that this is a

G-bundle. Show that the pullback of the projectivization P(F) to P is a
trivial projective bundle, in which the pullback of C embeds as a 3-canonical
curve. Show that this gives a G-equivariant morphism P ! H, inducing a
morphism S ! [H/G]. In turn this defines a morphism Mg ! [H/G].

• There is a universal curve CH ! H embedded inH×P5g−6. Given a principal
G-bundle P ! S and equivariant P ! H, consider the pullback CP of this
universal curve. Show that G acts freely on CP ! P , and the quotient
is a family of genus g curves C ! S. This in turn defines a morphism
[H/G!Mg.

• One needs to show that these morphisms are quasi-inverses of each other (a
task rarely seen in writing).

(4) Deduce that Mg is algebraic.

2.7.12. Smoothness of quotients. Traditionally one defines a morphism f : C1 ! C2 of alge-
braic stacks to be smooth if it is of finite presentation and satisfies the infinitesimal criterion
for smoothness. A bit of diagram chasing allows one to circumvent this: the infinitesimal
criterion holds if and only if, given a smooth covering V ! C1, the morphism C1 ! C2 is
smooth if and only if the composite V ! C2 is smooth.

Let us now consider the quotient [V/G] of a k-variety V by a smooth group-scheme G. we
conclude that

[V/G]! Spec k is smooth if and only if V ! Spec k is smooth.

In other words, algebraic stacks are indeed a way to find hidden smoothness in quotients

3. Moduli spaces, part 1

By Pierrick.
The goal of this section is to provide examples of the general notion of moduli space

described in Stacks, part 1. These examples will also be used in the following chapters.
Since the moduli spaces described in this section parametrize objects with trivial group
of automorphisms, we will use the more traditional description of moduli problem as set-
valued functors instead of the more general approach based on fibered category in groupoids
introduced in Stacks, part 1.

3.1. The functorial point of view. We denote by Sch the category of schemes and by
Sets the category of sets. For every scheme X, the functor of points of X is the functor

hX : Schop −! Sets

S 7−! HomSch(S,X)

According to the Yoneda lemma reviewed below, a scheme is uniquely determined by its
functor of points.
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Lemma 3.1.1 (Yoneda Lemma). Let C be a category, and let Fun(Cop, Sets) be the category
of functors from Cop to Sets. Then, the functor

C −! Fun(Cop, Sets)

X 7! (hX : S 7! HomC(S,X))

is fully faithful.

Exercise 3.1.2. Prove Yoneda lemma.

Many moduli problems take the form of a functor h : Schop ! Sets: for every scheme S,
h(S) is the set of families of objects parametrized by S, and for every morphism S ! S ′,
the induced morphism h(S ′)! h(S) corresponds to a notion of pullback of families.

Definition 3.1.3. A functor h : Schop ! Sets is called representable if there exists a scheme
X such that h = hX .

Note that if h is representable, then, by Yoneda lemma, there exists a unique X such that
h = hX . If h describes a moduli problem and is representable, that is, h = hX , then we say
that X is a fine moduli space for the moduli problem. Note that in this case, the identity
morphism in HomSch(X,X) = hX(X) defines a family parametrized by X referred to as
the universal family over X. For every scheme S, a family over S is defined by a unique
morphism S ! X and is the pullback by this morphism of the universal family over X.

Remark 3.1.4. Representability of a moduli problem is in general obstructed if the parametrized
objects have non-trivial automorphisms. In such a case, it is more natural to replace the
category of sets by the category of groupoids and to view a moduli problem as a category
fibered in groupoids, as in Stacks, part 1.

3.2. Grassmannian schemes and moduli of marked genus 0 curves. In this section,
we describe two simple examples of fine moduli spaces: the Grassmannian schemes and the
moduli spaces of marked genus 0 curves. These moduli spaces can be described in relatively
explicit ways.

3.2.1. Grassmannian schemes. Fix integers 0 ≤ k ≤ n. For every field K, consider the set
Grass(k, n)(K) of k-dimensional linear subspaces of the n-dimensional vector space Kn. In
order to realize Grass(k, n)(K) as the set of K-points of an algebraic variety, one first needs
to define a “family” version of the notion of k-dimensional linear subspace of Kn. Given any
scheme S, we define Grass(k, n)(S) as the set of quotients

O⊕n
S −! Q ,

where Q is a locally free sheaf of rank n − k. When S = Spec K for a field K, one indeed
recovers the previous description of Grass(k, n)(K).

Given a morphism f : S ! S ′ and a quotient map u : O⊕n
S′ ! Q′, the pullback f ⋆u :

f ⋆O⊕n
S′ = O⊕n

S ! f ⋆Q′ is also a quotient map. Therefore, one can naturally view

S 7−! Grass(k, n)(S) ,

as a functor
Grass(k, n) : Schop −! Sets .
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Theorem 3.2.2. For every integers 0 ≤ k ≤ n, the functor Grass(k, n) is representable
by a scheme G(k, n). Moreover, G(k, n) is a smooth projective of dimension k(n − k) over
Spec Z.
Proof. We sketch a construction of G(k, n) by gluing of affine pieces. By definition, for every
base fieldK, the set ofK-points ofG(k, n) should be the set of k-dimensional linear subspaces
V of Kn. Choosing a basis of V , this set can be described as the set of k × n-matrices M ,
modulo the action of GL(k,K) by left multiplication. For every I = (0 ≤ i1 < · · · < ik ≤ n),
the minor pI of the k-columns of M of indices i1, . . . , ik is a well-defined function on this set,
modulo multiplication by a non-zero constant. In particular, UI := {M | pI ̸= 0} is a well-
defined subset. Moreover, if M ∈ UI , then, up to left multiplication by a unique matrix in
GL(k,K), one can assume that M is a k× (n−k) matrix XI such that the k×k sub-matrix
consisting of the columns of index i1, . . . , ik is the identity matrix. Hence, UI is parametrized
by the k(n − k) coefficients formed by the (n − k) columns of XI of index not equal to ij
for any 1 ≤ j ≤ k. Hence, UI ≃ Kk(n−k). Moreover, if M ∈ U I ∩ UJ , the corresponding
matrices XI and XJ are related by XJ = (XI

J)−1XI , where XI
J is the k × k-submatrix of

XI consisting of the columns of index j1, · · · , jk.
This construction actually makes sense over Z. For every I = (0 ≤ i1 < · · · < ik ≤ n),

denote by UI the affine space Ak(n−k), viewed as the space of k × (n− k) matrices XI such
that the k × k columns formed by the k columns of index i1, · · · , ik is the identity matrix.
We define the scheme G(k, n) by gluing the

(
n
k

)
affine spaces UI by XJ = (XI

J)−1XI , where

XI
J is the k×k-submatrix of XI consisting of the columns of index j1, · · · , jk. Note that this

is meaningful over Spec Z since matrix multiplication and matrix inverse are respectively
polynomial and rational over Z in the matrix coefficients. One can check that the functor
Grass(k, n) is indeed represented by the scheme G(k, n).

The scheme G(k, n) is clearly smooth since it is locally isomorphic to affine spaces. More-
over, one can show that G(k, n) is proper by checking the valuative criterion for properness:
if R is a valuation ring with fraction field K, the limit of a map SpecK ! G(k, n) is con-
tained in a chart UI such that pI(SpecK) has the smallest valuation. Actually, one can
check that the map

(1) (pI)I : G(k, n) −! P(n
k)−1

is a closed embedding, and so that G(k, n) is projective over Spec Z. ♣
Remark 3.2.3. The minors pI are called the Plücker coordinates and the embedding (1) is
called the Plücker embedding.

Example 3.2.4. Simple examples of G(k, n):

(i) G(1, n) ≃ Pn−1.
(ii) The Plücker embedding realizes G(2, 4) as a smooth quadric hypersurface in P5.

Exercise 3.2.5. Find the equation of G(2, 4) as a quadric in P5 in terms of the Plücker
coordinates.

The universal family of G(k, n) defines a tautological short exact sequence

0! E ! O⊕n
G(k,n) ! Q! 0
18



of vector bundles over G(k, n), where E is a rank k vector bundle over G(k, n), and Q is
a rank (n − k) vector bundle over G(k, n − k). The following result describes the tangent
bundle of G(k, n) in terms of the tautological bundles E and Q.

Theorem 3.2.6. The tangent bundle TG(k,n) of G(k, n) over Spec Z is the rank k(n − k)
vector bundle Hom(E,Q):

TG(k,n) = Hom(E,Q) .

Exercise 3.2.7. Prove Theorem 3.2.6.

3.2.8. Moduli spaces of marked genus 0 curves. We would like to parametrize smooth genus
0 with n distinct marked point. Given a scheme S, we define M0,n(S) as the set of flat
proper morphisms π : C ! S with n sections si : S ! C, 1 ≤ i ≤ n having disjoint images,
such that every geometric fiber π : Cs ! s is a smooth projective curve of genus 0. There
is a natural notion of pullback for such families, and so S 7! M0,n(S) naturally defines a
functor M0,n : Schop ! Sets.

Theorem 3.2.9. For every integer n ≥ 3, the functor M0,n is representable by a scheme
M0,n. Moreover, M0,n is irreducible and smooth of dimension n− 3 over Spec Z.
Proof. Sketch of proof: describe explictly M0,4 using the cross ratio. For n ≥ 5, realize M0,n

as an open subset in the product of n− 3 copies of M0,4. ♣
Example 3.2.10. Simple examples of M0,n:

(i) M0,3 = Spec Z.
(ii) M0,4 = P1 ∖ {0, 1,∞}, where 0, 1, and ∞ are three disjoint sections of P1 ! Spec Z.

Remark 3.2.11. For n < 3, the representability of M0,n is obstructed by the existence of
non-trivial automorphisms of P1 fixing n distinct points.

Exercise 3.2.12. Describe the group of automorphisms of P1 fixing n distinct points for
n = 0, n = 1, and n = 2.

3.3. Hilbert and Quot schemes. In this section, we introduce Hilbert schemes, and their
generalization given by Quot schemes. These moduli spaces are of fundamental importance
in algebraic geometry since they are often used as starting point of constructions of many
other moduli spaces.

3.3.1. Hilbert schemes. We would like to parametrize all possible closed subschemes Z ⊂ X
in a given scheme X. The Hilbert functor HilbX assigns to a scheme X the set of closed
subschemes Z ⊂ X × S which are flat over S.

Assume that X is projective over SpecZ and fix an ample line bundle L on X.

Definition 3.3.2. For every coherent sheaf E on X, the Hilbert polynomial pL,E is the
unique polynomial pL,E ∈ Q[x] such that, for all n ∈ Z, we have

(2) pL,E(n) = χ(X,E ⊗ L⊗n) =
∑

i∈Z
(−1)i dimH i(X,E ⊗ L⊗n) .
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Exercise 3.3.3. Prove the existence of the Hilbert polynomial pL,E. Hint: reduce to
the case where L is very ample, and then consider the restriction of E to an hyperplane
section defined by L, and proceed by induction.

Exercise 3.3.4. Show that the Hilbert polynomial pL,E of E is the unique polynomial
pL,E ∈ Q[x] such that pL,E(n) = dimH0(X,E ⊗ L⊗n) for all large enough n ∈ Z.

Exercise 3.3.5. Let Z ⊂ X be the scheme-theoretic support of E. Show that the Hilbert
polynomial pL,E of E has degree the dimension m of Z, and leading coefficient d

m!
, where

d is the degree of Z with respect to L, that is,

pL,E(x) =
d

m!
xm + o(xm)

Exercise 3.3.6. For X = Pm, L = OPm(1), and E = OZ , where Z is a degree d
hypersurface in Pm, show that

pL,E(x) =

(
x+m

m

)
−
(
x− d+m

m

)

Check explicitly in this case that the leading term is given as in Exercise 3.3.5.

A key propery of the Hilbert polynomial is that it stays constant for flat families of coherent
sheaves. In particular, the Hilbert polynomial pL,OZ

of the structure sheaf OZ of a subscheme
Z ⊂ X remains constant when Z varies in a flat family. It follows that, for every polynomial
P ∈ Q[x], there is a well-defined moduli functor HilbX,P for families of subschemes Z ⊂ X
such that pL,OZ

= P , and we have

HilbX =
⊔

P∈Q[x]

HilbX,P .

The following theorem is due to Grothendieck.

Theorem 3.3.7. Let X be a projective scheme and L an ample line bundle on X. Then,
for every polynomial P ∈ Q[x] the functor HilbX,P is represented by a projective scheme
HilbX,P , called the Hilbert scheme parametrizing subschemes of X with Hilbert polynomial
P .

Remark 3.3.8. In Theorem 3.3.7, the Hilbert scheme HilbX,P is projective, and so in
particular of finite type. The latter is already a remarkable fact: the space of all possible
subschemes of X is “finite dimensional” once we fix the Hilbert polynomial. Many arguments
in modern algebraic geometry rely on this finiteness statement.
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Proof. We provide a sketch of the proof of Theorem 3.3.7. It is enough to consider the case
X = Pm and L = O(1). For every coherent sheaf E and n ∈ Z, denote E(n) := E ⊗ L⊗n.
The basic idea is to try to “linarize” the difficult problem to describe the very non-linear
problems to describe all subschemes Z ⊂ Pm, that is, all short exact sequences

0! IZ ! O ! OZ ! 0 .

To do this, note that for every n ∈ Z, we have a short exact sequence

0! IZ(n)! O(n)! OZ(n)! 0 ,

and so an embedding of vector spaces

H0(Pm, IZ(n)) ⊂ H0(Pm,O(n)) .

Concretely, for every n ∈ Z, we are looking at the linear subspace of homogeneous degree
n polynomials which vanish on Z. Since IZ is finitely generated, it is clear that this linear
subspace determines Z uniquely if n is large enough. The non-trivial result is to show
that “large enough” only depends on the Hilbert polynomial of Z, and so can be taken
uniformly over Z. The required argument is a cohomological vanishing proved by induction
on the dimension and known as Castelnuovo-Mumford regularity. The upshot is that, given
P ∈ Q[x], there exists n large enough such that, for every Z with Hilbert polynomial P , Z
is uniquely determined by the subspace H0(Pm, IZ(n)) ⊂ H0(Pm,OZ(n)), and moreover, we
have a short exact sequence

0! H0(Pm, IZ(n))! H0(Pm,O(n))! H0(Pm,OZ(n))! 0 .

In particular, denoting V := H0(Pm,O(n)), and k = dimV −dimH0(Pm,OZ(n)) = dimV −
P (n), we obtain an embedding of HilbX,P into the Grassmannian of k-dimensional subspaces
of V . By Theorem 3.2.2, the Grassmannian is a projective subscheme, and so the repre-
sentability and projectivity of the Hilbert scheme follow by showing that the image of the
embedding in the Grassmannian is closed subscheme of the Grassmannian. ♣

Exercise 3.3.9. Show that for every k and n, the Grassmannian G(k, n) is an example
of Hilbert scheme HilbPn−1,P for some P ∈ Q[x].

Example 3.3.10. Hilbert schemes are not smooth in general. Describe the example of cubic
curves in P3 and briefly mention Murphy’s law.

The following result describes the tangent spaces of the Hilbert scheme.

Theorem 3.3.11. Let Z be a closed subscheme of X, with ideal sheaf IZ and structure sheaf
OZ = OX/IZ. The tangent space to HilbX at the point corresponding to Z is Hom(IZ ,OZ).

Remark 3.3.12. Given Exercise 3.3.9, Theorem 3.3.11 describing the tangent space of the
Hilbert scheme is a generalization of Theorem 3.2.6 describing the tangent space of the
Grassmannian.

Exercise 3.3.13. Prove Theorem 3.3.11.
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3.3.14. Quot schemes. A natural generalization of Hilbert schemes is given by Quot schemes:
instead of quotient OX ! OZ , one can consider quotients E ! Q where E is an arbitrary
coherent sheaf.

Let X be a projective scheme, L an ample line bundle on X and E a coherent sheaf on
X. Fix a polynomial P ∈ Q[x]. Let QuotX,E,P be the functor assigning to a scheme S the
set of quotients

p⋆XE −! Q ,

with Hilbert polynomial of Q equal to P , and where pX : X × S ! S is the projection on
S, and Q is a coherent sheaf on X × S, flat over S.

Theorem 3.3.15. Let X be a projective scheme, L an ample line bundle on X and E
a coherent sheaf on X. Then, for every polynomial P ∈ Q[x], the functor QuotX,E,P is
represented by a scheme QuotX,E,P .

Example 3.3.16. For E = OX , the Quot functor reduces to the Hilbert functor: QuotX,OX ,P =
HilbX,P .

The following result describes the tangent spaces of the Quot scheme.

Theorem 3.3.17. Let p : E ! Q be a quotient of E. The tangent space to QuotE,X at the
point corresponding to p : E ! Q is Hom(Ker(p), Q).

Remark 3.3.18. Given Exercise 3.3.16, Theorem 3.3.17 describing the tangent space of
the Quot scheme is a generalization of Theorem 3.3.11 describing the tangent space of the
Hilbert scheme.

Exercise 3.3.19. Prove Theorem 3.3.17.

4. Geometry and combinatorics of snc divisors

We will soon learn that statements in logarithmic geometry typically consist of two pieces
– one handled by the traditional algebro-geometric canon and another that is combinatorial
in nature. We will introduce the combinatorial players in this section.

But before we jump in, let’s outline the big picture of what’s coming. A smooth variety
X with a simple normal crossings divisor D will be our chief instance of a logarithmic
scheme. Associated to a pair (X,D) is a cone complex ΣX – an object very similar to a
simplicial complex. We will develop a dictionary that associates geometric structures on X
to combinatorial ones on ΣX . In particular, to each piecewise linear function φ on ΣX we
will associate a pair (Lφ, sφ) of a line bundle and a section.

Then later on, we’ll learn about logarithmic schemes, which rather than funding these
correspondences from some given geometry (such as a simple normal crossings divisor) will
simply add to a scheme the data of a choice of “cone complex” ΣX to a scheme X. It will
do so in such a way that piecewise linear functions again give line bundle-section pairs of
this form, subject to natural compatibilities. In fact, this is one among several equivalent
definitions of a logarithmic structure.

22



4.1. Simple normal crossings pairs. Let X be a smooth variety.

Definition 4.1.1. A simple normal crossings divisor on X is a divisor D with irreducible
components D1, . . . , Dk satisfying the followng two conditions:

(i) each irreducible component Di is smooth, and
(ii) the divisors meet transversally.

The condition (ii) is stated more precisely, if less succintly, as follows: for every point p
in X, the local equation for D is given by x1 · . . . · xr for independent local parameters xi in
the local ring OX,p, with r ≤ n.

The pair (X,D) is referred to as a simple normal crossings pair or snc pair for short.

The way to think about condition (ii) is that at every point p in X, some number of the
components Di pass through p. By reordering, we can call these D1, . . . , Dr. In a local
neighborhood of p, these are cut out by equations f1, . . . , fr. The simple normal crossings
condition is saying that these fi, form a partial coordinate system of X near p, and can
be augmented to a full system of coordinates by adding in n − r “other” functions. As a
consequence, étale locally (or in the analytic topology), there is a neighborhood of p that
looks like Ar ×Gn−r

m , and the fi are identified with the first r coordinate functions.

4.1.2. A few key examples. Of course, there are innumerable examples of snc pairs. However,
a handful of examples are worth keeping in mind as we work through the topics in these notes.

(i) Smooth pairs and products. The simplest example of a smooth pair is (X,D) where
X is smooth and D is a smooth divisor. These are called smooth pairs. Given two smooth
pairs (X,D) and (Y,E) one can construct an snc pair by taking their product X × Y and
endowing it with the divisor

π−1
X (D) ∪ π−1

Y (E),

where πX and πY are the projections onto X and Y respectively. We will shorten the nota-
tion to for the pair to (X × Y,D + E).

(ii) Hyperplane arrangement pairs. A very useful class of examples comes from hyper-
plane arrangements. Let X be Pn and let H be a generic union of k hyperplanes H1, . . . , Hk.
Generic here just means that all intersections have the expected codimension. The pair
(Pn,H) is an snc pair regardless of the value of k. We will refer to it as a hyperplane ar-
rangement pair.

(iii) Projective bundles. Another nice class of examples comes from projective bundles.
Let B be any smooth variety and let E be a direct sum of line bundles

E = L0 ⊕ · · · ⊕ Lr.

Let X be the Pr-bundle associated to E over B. Because E is a direct sum of line bundles,
there are r + 1 canonical “coordinate hyperplane bundles” which, in each Pr-fiber over B,
restrict to the coordinate hyperplanes.

If D is the union of these coordinate hyperplanes, then (X,D) is an snc pair. One can
play similar games by passing to different fiberwise compactifications of the line bundle, or
its associated torus bundle.
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These examples are worth keeping in mind as a “testing ground” for intuition.

(iv) Smooth toric varieties. We will discuss toric varieties in detail in a series of exercises
later on, but for readers that are already familiar with toric varieties, they also provide an
important source of examples. Precisely, if X is a smooth toric variety and D is a union of
invariant boundary divisors, (X,D) is an snc pair.

4.1.3. A few key non-examples. It is equally important to have in mind examples of things
that are not simple normal crossings. The next set of non-examples include some proximate
notions to snc pairs.

(i) Planar triple point. Let X be P2 and let D be a union of three lines through a point p.
The pair (P2, D) is not an snc pair. At the point of intersection p, the equations for the lines
do not form a regular sequence of parameters, simply because there are 3 equations, but in
a 2-dimensional space there should only be 2. In particular, in an snc pair, an intersection
of k divisor components is either empty or has codimension k.

(ii) Merely normal crossings. Let X be P2 and let D be a nodal cubic with affine equation
given by y2 = x2(x+ 1). Since D is not smooth, the pair (P2, D) is not snc.

However, this example is not so far off – it is an example of something that is normal
crossings but not simple normal crossings. A simple way to say this is that formally locally,
or locally in the analytic topology, around every point, the pair is isomorphic to a point on
the pair (A2,∆), where ∆ is the union of the coordinate axes.

It can be convenient, especially when working with objects like the moduli space of curves,
to say this in a slightly more technical way. If the function x2(x + 1) had a square root in
k[x], say u, then the equation would read y2 − u2. This is, in turn, isomorphic to union of
the coordinate axes. Although x2(x + 1) is not a square, we can pass to an étale cover on
which the square root exists.

Let us actually take a moment to record this definition, because it really is crucial.

Definition 4.1.4. Let X be a smooth variety. A divisor D ⊂ X is a normal crossings
divisor if it pulls back to a strict normal crossings divisor on an étale cover of X.

If we are working over the complex numbers are have access to the analytic topology, we
can replace the étale cover above with a cover by analytic opens.

(iii) Regular crossings pairs. Let X be any pure-dimensional variety (or even more
generally, a pure-dimensional scheme of finite type over an algebraically closed field). Let
D = ∪n

i=1Di be a union of effective Cartier divisors.
The pair (X,D) is said to have regular crossings if at every point p in X, the local equations

for the Di form a regular sequence. Intuitively, the different Di intersection “completely” at
every point.

Regular crossings pairs play an important role in the interaction between intersection the-
ory and logarithmic geometry, and many of the combinatorial constructions that we outline
here for snc pairs will work more generally for regular crossings pairs. Later on, simple
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normal crossings pairs will be regarded (together with some generalizations) as “smooth ob-
jects” in logarithmic geometry, while regular crossings pairs are “flat objects”.

(iv) Toroidal pairs. We noted that a key set of examples of simple normal crossings pairs
come from toric pairs (X,D). Conspicuously absent from our discussion are singular toric
pairs (X,D), where X is a singular variety and D is the torus invariant boundary divisor.
They are not simple normal crossings but they form a larger class of spaces called “toroidal
pairs”. More generally, these are pairs (X,D) that are étale locally modeled on singular
toric pairs such as the ones above.

4.2. Cone complexes. The main combinatorial structure associated to a simple normal
crossings is its cone complex. This combinatorial gadget keeps track of the combinatorics of
an snc divisor D and gives combinatorial access to certain aspects of the geometry of (X,D).

The objects themselves are analogous to simplicial complexes – one obtains simplicial
complexes by taking simplices of various dimension and gluing them along faces. Similarly,
cone complexes are obtained by taking cones and gluing them along faces. The pictures in

FIGUREBELOW

should give the reader a picture to keep in mind.
Let us now do this formally. In this section, we will focus on the special case where

the cones are orthants and come back to the general concept after we have discussed toric
varieties.

The standard k-dimensional orthant is Rk
≥0. It comes equipped with a natural collection

of linear functions:

Rk
≥0 ! R.

The linear functions with integer slopes are the subset of these that carry Nk ⊂ R≥0 to
Z ⊂ N. The group of linear functions is isomorphic to Zk. Inside this group is a monoid Nk,
consisting of non-negative linear functions.

More generally, an orthant is a pair (σ,M) of a topological space together with a finitely
generated free abelian group of functions that is isomorphic to the standard orthant such that
σ is homeomorphic to Rk

≥0 and pullback along the homoeomorphic carries M isomorphically
to the group of linear functions with integer slopes.

A face of an orthant is the vanishing set of a non-negative linear function. For the standard
orthant σ, the faces are simply the coordinate axes.

A morphism of orthants is a continuous map of topological spaces σ′ ! σ that is compatible
with the linear structure. Equivalently, after identifying the orthants with standard ones,
the maps are modeled on integer linear maps. A special class of morphisms are isomorphisms
onto faces, and we call these face maps.

Definition 4.2.1. A smooth cone complex Σ is the colimit of a partially ordered set of
cones, with transition maps given by face maps. A morphism of cone complexes is a map of
underlying topological spaces Σ′ ! Σ such that every cone of Σ′ maps to a cone of Σ, and
the restriction of the map to each cone of the source is linear.

The geometric relevance of cone complexes come from the fact that there exists a smooth
cone complex associated to any simple normal crossings pair (X,D).
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We first construct it with a mild simplifying assumption, called strata connectedness, and
then in general. The simple case has the advantage of being very explicit, while the second
definition we give generalizes well.

Let D1, . . . , Dk be the irreducible components of D. We make the assumption that for
any subset I ⊂ [k] the intersection

DI =
⋂

i∈I
Di

is either empty or connected9. If this condition holds, we say (X,D) has connected strata10.

Construction 4.2.2. Let (X,D) be a pair Now consider the cone complex Rk
≥0. The r-

dimensional cones of this cone complex are in bijection with the size r subsets of [k]. Thus,
via this bijection, given a pair (X,D) the non-empty intersections DI pick out a subset of the
cones of Rk

≥0. These form a smooth cone complex. We call this the cone complex associated
to (X,D) and denote it by Σ(X,D).

If (X,D) does not have connected strata then one should take a little more care in defining
the cone complex associated to (X,D). We keep the notation from before and let D1, . . . , Dk

be the irreducible components.

Construction 4.2.3. For each scheme theoretic point x ∈ X, let I ⊂ [k] be the subset
determined by those divisors Di that contain x. We can associate to each such point x a

smooth orthant RI(x)
≥0 and denote it by σx. By convention, if I(x) is empty, we take σx to be

a point. If there is a specialization x ⇝ x′ then we can identify σx with a face of σx′ . The
cone complex associated to (X,D) is the colimit

Σ(X|D) := lim−!
x∈X

σx.

Strictly speaking the indexing set is not a partially ordered set. However, one can readily
see that the diagram can be replaced with the set of generic points of connected components
of strata without changing the colimit.

The above presentation might seem slightly complicated but it is the “correct” way to
think about it for the purposes of generalizations. For (X,D) a simple normal crossings pair
one can give a more explicit presentation. As in the previous case, there is a map

Σ(X|D)! Rk
≥0,

but it is not an isomorphism onto a union of faces. The map is an isomorphism onto its
image after restriction to any cone of Σ(X|D). However, in general, a point inthe interior of
the cone corresponding to I ⊂ [k] has finitely many preimages, corresponding to the number
of connected components in DI .

9Several mathematicians, including the author of this section, have absolutely no idea whether the empty
set is connected and what’s worse, they are incapable of remembering it even after they are told. So the
adjective above may well be redundant, the author may never know.

10Note that simple normal crossings pairs need not have connected strata. For example, if X = P2 and
D is a union of distinct curves that meet at least twice, the condition fails. Nevertheless, the condition can
always be achieved after blowup, so it is not so restrictive in practice.
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4.3. Variants: toroidal models and self-intersecting divisors. The cone complex asso-
ciated to a simple normal crossings pair is a very useful gadget when it comes to manipulating
the geometry of a pair, and it functions very similarly to the fan of a toric variety.

In fact, the construction goes much further: one can ask for similar structures that keep
track of the combinatorics of more general spaces: toroidal pairs, pairs that are merely normal
crossings, regular crossings pairs, and most generally, “logarithmic schemes”. Toroidal pairs
are the simplest generalization, and their theory is sketched at the end of the guide on toric
geometry that follows this chapter.

We will come to these generalizations in due course, but let us note the two key ways in
which the combinatorics might be genralized.
(i) If the divisor D can be modeled locally on a toric variety, then at every point x ∈ X we
can take σx to be the cone of the toric local model, and the resulting colimit is built up from
polyhedral cones that are more complicated than orthants. We will make this precise after
we have recalled some of the basic of toric varieties. As noted, you will encounter these in
the toric section.
(ii) One can admit the case where D has components that self-intersect, that is if (X,D)
is merely normal crossings. At every point x ∈ X, one can still associate an orthant to x
by using the fact that étale (or analytically, or formally) locally near x, the pair (X,D) is
simple normal crossings. However, the resulting colimit need not be equivalent to a colimit
over a partially ordered set and one ends up with a generalized cone complex or a cone stack
depending on the chosen formalism.

4.3.1. Subtleties of self-intersections. A key example to keep in mind is the following. If D
is an irreducible nodal cubic in P2, then the generic point of the cubic specializes to the
singular point in two different ways. This leads to two arrows:

R≥0 ⇒ R2
≥0,

which is the inclusion of a ray as the two different axes of R2
≥0. The colimit is a “cone

complex” consisting of a single vertex, a single ray, and a single two dimension cell.

FIGURE

The example above gives one key way in which self-intersections change the picture: there
can be multiple arrows between two cones in the diagram that defines Σ(X,D). There is
another key way in which self-intersections complicate the picture: there can be self-arrows
in the diagram. An explicit example may be found in [ACP15, Example 6.1.7] but we explain
the qualitative features. It is possible to have a pair (X,D) that is merely normal crossings
with D being irreducible but intersecting itself (once). An étale local chart can be given by

the simple normal crossings pair (X̃ = A2 × Gm, D̃) where D̃ is the toric boundary. The

étale map X̃ ! X is unramified of degree 2, and the deck transformation group interchanges
the divisors corresponding to the two coordinates in the A2-direction.

In this situation, the appropriate diagram that is needed to form Σ(X,D) is

R2
≥0 ⟲,
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where the arrow is an automorphism that interchanges the two axes of the orthant.11 One can
either take the colimit, which is a “half quadrant” which is the approach followed by [ACP15]
or enlarge the category of cone complex to include these new basic objects of “cones with a
group action”. The latter approach is taken by [CCUW20].

These two examples essentially capture all the phenomena that one needs to account for
to go from smooth cone complex associated to simple normal crossings pairs to the appro-
priate generalization (called cone stacks or generalized cone complexes) needed to associate
analogous objects to toroidal pairs.

Remark 4.3.2. Looking at the constructions above, one might observe that the main struc-
ture needed to associate a cone complex-like objects to a scheme is the collection of cones σx
for x ∈ X and the maps σx ! σy under specialization. This is one of the structures provided
by a logarithmic structure, which will be explained later in these notes.

4.4. Foreshadowing the Artin fan. Let (X,D) be a simple normal crossings pair and let
Σ be its cone complex, as above. The cone complex has a well-defined set of faces, ordered
by inclusion. The set of faces forms a partially ordered set, which we will denote P(Σ).
Given a simple normal crossings pair (X,D) has a natural “map”

X ! P ,
which is defined as follows. Given a point x in X, it is contained in a well-defined subset
of the divisor components of D, and remembering that the points of P are indexed by non-
empty intersections of the components, the map simply records the deepest (i.e. smallest
dimensional) intersection of divisors in which x lies.

There is no obvious map from X to the cone complex Σ, so this makes P perhaps more
natural to think about. But what kind of map is this? Every partially ordered set has
a natural topology where the “upper sets”, namely the sets that are closed under taking
elements that are larger in the poset, are open. Given this topology, one can check the map

X ! P ,
is continuous, where X is given the Zariski topology.

Exercise 4.4.1. When X is a smooth proper toric variety and D is the toric boundary
divisor, identify P with the topological orbit space X/T .

This leads us to a strange situation, where we have a map from an algebro-geometric
object to a partially ordered set P . One can ask: is there a natural algebraic structure on P
making this map into a morphism.

Remarkably, the answer is yes! But in order to find the appropriate algebraic structure,
we will need to pass to the world of algebraic stacks. Making this precise is another path
that leads inevitavly to the notion of a logarithmic structure.

11This is our first hint that there is something stacky about these colimits – the partially ordered set that
indexes the colimit is a particularly simple category. If we allow mroe complicated categories, we discover
“cone stacks”.
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4.5. Geometric correspondences. Let (X,D) be a simple normal crossings pair and let Σ
be its cone complex. The presence of D equips X with a distinguished subvarieties: namely
the connected components of the intersections DI for I ⊂ [k]. We call these strata.

Geometric constructions having to with the strata can often be encoded by Σ. We build
these up in stages. We start with a basic bijection:

{k-dim’l connected components of DI}↔ {k-dim’l orthants between the rays ρi, i ∈ I}.
This bijection interacts with the Picard group of X. Specifically, to an assignment of integers
(mρ) to the rays we can associate a divisor

∑

ρ

mρDρ ∈ Div(X).

This can also be encoded by a piecewise linear function

α : Σ! R≥0.

Indeed given (mρ) there is a unique continuous function that is (i) linear upon restriction to
every orthant in Σ, and (ii) has slope mρ upon restriction to ρ.

Remark 4.5.1. Just as piecewise linear functions give divisors, piecewise polynomial func-
tions on Σ give rise to cycles (or more honestly, refined cycle classes) of higher codimension.

4.5.2. Functoriality. The association of Σ(X,D) to (X,D) has some functoriality properties,
which, in a sense, generalize the discussion above12.

Definition 4.5.3. Let (X,D) and (Y,E) be simple normal crossings pairs. A morphism
X ! Y is a morphism of pairs if the preimage of E is contained in D.

Consider a morphism of pairs f : (X,D)! (Y,E) between pairs with cone complexes ΣX

and ΣY . The induced morphism
Σ(f) : ΣX ! ΣY

is defined as follows. In order to describe the morphism, it suffices to describe the pullback
of every piecewise linear function on ΣY to ΣX . Let φ be such a piecewise linear function. It
determines a divisor on Y , supported on E, by the discussion above. Since f is a morphism
of pairs the pullback of this divisor is supported on D. This again corresponds to a piecewise
linear function, and this we have determined the pullback.

Exercise 4.5.4. Let Y be a smooth variety and let D be a union of two divisors meeting
transversely. Let X be the blowup at their intersection. Compute ΣY , ΣX , and the map
ΣY ! ΣX .

One can be a little more explicit. Let σ be a cone corresponding to a stratum with generic
point pσ. The image of pσ in Y is contained in a unique minimal stratum, which corresponds
to a cone δ in ΣY . We determine the map of cones

σ ! δ.

12In essence, the above discussion is about functoriality with target [A1/Gm]. The latter is a simple
normal crossings pair in the smooth topology. This will come up again later on.
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Since we are only interested in the map on these cones, we can pass to the open subschemes
obtained by deleting all closed strata that do not meet the one dual to σ, resp. to δ. Shrinking
further if necessary, we can assume the divisors D and E become principal on these opens.
The map is now pulled back from a monomial map between affine spaces, which is exactly
given by a matrix (recording the exponents of the pullbacks coordinate functions).

Another natural set of operations are blowups at strata. Let W ⊂ X be a stratum of
(X,D). By blowing up, we obtain:

π : X ′ = BlWX ! X.

What’s better, the (reduced) preimage D′ of D ⊂ X is also a divisor with simple normal
crossings. The divisor D′ has one more irreducible component than D does, namely the
exceptional divisor E. The intersection pattern also changes: if W is a connected com-
ponent of DI the exceptional divisor E meets the strict transforms of Di for i ∈ I, while
∩i∈IDi contains one fewer connected component (if (X,D) is strata connected, then the
strict transforms no longer intersect).

The cone complex Σ′ of the blowup can be described by a subdivision. A morphism of
cone complexes Σ′ ! ΣX is a subdivision if it is a bijection on the underlying sets.

The basic subdivision is stellar subdivision.

Definition 4.5.5. Given a cone σ with primitive generators u1, . . . , uk the stellar subdi-
vision at σ is the unique cone complex that refines ΣX and has precisely one more ray,
namely the one spanned by

∑k
i=1 ui.

It is a simple exercise from the description above to observe a natural bijection:

{Blowups of X along a single stratum}↔ {Stellar subdivisions of Σ along a single cone}
More generally, using a little bit of toric geometry that we will cover in the next section, this
extends to:

{Proper bir. maps of pairs X ′ ! X, with X ′ smooth}↔ {Subdivisions Σ′ ! Σ, with Σ′ smooth}
This gives a very powerful way of constructing proper birational models of a given simple
normal crossings pair.

For example, one can iterate stellar subdivisions to form new to describe the cone com-
plexes associated to iterated blowups, so iterated blowups along strata (which include both
strict transforms and genuinely new strata at each step) are matched with iterated setllar
subdivisions.

Example 4.5.6. A particularly useful subdivision of this kind is called barycentric subdivi-
sion. Given Σ, the barycentric subdivision is obtained by iterated stellar subdivision of all
cones in order of descreasing dimension.

Barycentric subdivision can be defined for an arbitrary cone stack, and one particularly
useful fact is that the barycentric subdivision of a cone stack is equivalent to a cone complex.

A simpler, though extremely useful, bijection is the bijection between conical subcomplexes
– namely, unions of cones in Σ – and certain open subschemes of X. A toroidal open
subscheme of (X,D) is any open obtained by deleting a union of closed strata. There is a
natural bijection

{Toroidal open subschemes of X}↔ {Conical subcomplexes of Σ.}
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4.5.7. Further geometric operations. We introduce two additional geometric operations on
pairs (X,D) that come from manipulating the cone complex. The first is of a stack theoretic
nature: root constructions. We have encountered root stacks in SECTION XYZ. Recall that
given a Cartier divisor E on a scheme Y , we can perform the rth root construction of Y
along E to obtain a stack Y ! Y with a Cartier divisor E that “adds stabilizer µr” along
E. Precisely, it is the universal object living over Y such that the pullback of E (as a line
bundle-section pair) has an rth-root.

On affine space, the operation is particularly simple. Let Y = An and E be the first
coordinate hyperplane.

Definition 4.5.8. Let Σ be a cone complex. A combinatorial root construction is another
cone complex Σ′ together with a map

Σ′ ! Σ

that is (i) a bijection on underlying topological spaces, and (ii) maps each cone σ′ surjectively
onto a cone σ′ by an integer linear map with nonzero, possibly rational, determinant.

A particularly simple instance of this is to take Σ and pick a ray ρ in it. If we choose a
lattice point r on ρ, we can construct a combinatorial root construction

Σ′ ! Σ

as follows. Abstractly Σ = Σ, and the morphism is uniquely specified by sending every ray
except ρ identically to itself, and on ρ sending the generator of ρ to the lattice point r.

One way to visualize this is to consider the case Σ = Rk
≥0. If r is the point r · e1, this can

be seen as changing the integral points – in the new Σ′, which is topologically just Rk
≥0, the

integral points are k-tuples of natural numbers whose first coordinate is divisible by r.
There is a natural bijection

{Generalized root constructions of X along D}↔ {Combinatorial root constructions of Σ.}

4.6. The moduli space of curves. We now come to the key example to which the theory
above applies: the pair (Mg,n, ∂g,n) consisting of the moduli space of curves together with
the divisor parameterizing singular curves. A basic result in the deformation theory of curves
(and of logarithmic curves) implies that this divisor is merely normal crossings.

Since the divisor is not simple normal crossings, we need the more sophisticated theory
of cone stacks alluded to above. Using this, we associate a cone stack denoted Mtrop

g,n .
The theory of cone stacks requires a lot of formal development, but the basic picture is
summarized as follows.

A pre-stable (g, n)-graph is a connected finite graph G, possibly with loops and multiple
edges, equipped with a marking function:

m : {1, . . . , n}! V (G),

and a genus function

g : V (G)! Z≥0,

subject to the constraint that

h1(G) +
∑

v∈V (G)

g(v) = g.
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Here h1(G) is the first Betti number of the geometric realization of G. A pre-stable (g, n)-
graph is called stable if at every vertex v with g(v) = 0, the sum of the valency at v and the
size of m−1(v) is at least 3.

The following exercise should be quite enjoyable.

Exercise 4.6.1. The set of (g, n) stable graphs is finite.

It is traditional to visualize the n markings as being “half edges” or “legs” emanating from
the vertex determined by the function m.

The object Mtrop
g,n is a cone stack associated to the pair (Mg,n, ∂g,n). The key points to

keep in mind in working with this object are the following.

(i) The collection of stable (g, n)-graphs forms a category. The objects are stable (g, n)
graphs and morphisms are given by automorphisms and by (sequences of) edge con-
tractions. We note that if a loop edge based at a vertex v is contracted, the genus at
the vertex is increased by 1.

(ii) We can associate, to each (g, n)-stable graph G, an orthant RE(G)
≥0 .

(iii) Each graph contraction/automorphism G! G′ determines

RE(G′)
≥0 ! RE(G)

≥0 ,

obtained by setting the length of all contracted edges to 0.
(iv) The cone stack Mtrop

g,n is a colimit – in an appropriate category – of the diagram of cones
indexed by the category of stable (g, n)-stable graphs. The colimit in the category of
topological spaces can be given the structure of a generalized cone complex – a gluing
together of finite quotients of cones by subgroups of their automorphism groups. The
colimit can also be taken in the category of stacks over cone complexes.

(v) One has to remember that there are two types of “weird cells” in Mtrop
g,n , and they can

both be seen in curves of genus 1. The first is the dumbbell graph depicture on the
left in the figure below. There are two edge length, both not a preferred labelling of
the edges, so the moduli space looks like “R2

≥0/µ2” where the group action flips the
coordinates. The second is the lollipop graph, which has an automorphism that flips
the edge, leading to “R≥0/µ2” where the group acts trivially.

The object Mtrop
g,n is a moduli space in its own right. In the construction, for a fixed graph

G we can view the interiors RE(G)
>0 of the cells as parameterizing edge lengths for the graph G.

Indeed, given a point in this cell, we can metrize G by geometrically realizing an edge e with
an interval of length determined by this point. With this in mind, we make the following:

Definition 4.6.2. A pre-stable (g, n) tropical curve Γ is a pre-stable (g, n) graph together
with a metrization of the edge lengths

ℓ : E(G)! R>0.

It is stable if the (g, n) graph is stable.

Each point of Mtrop
g,n (i.e. of the topological colimit above) can be viewed as (g, n)-stable

graph, defined up to automorphism, together with a choice of length for each edge – that is,
a stable (g, n) tropical curve.
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The topological colimit |Mtrop
g,n | can therefore be viewed as a coarse moduli space of tropical

curves. However the colimit carries more structure: the most important fact is that one can
map cones into Mtrop

g,n .

Exercise 4.6.3. Draw the tropical moduli spaces Mtrop
1,1 and Mtrop

1,2 . Pay special attention
to the automorphisms.

In the definition of a tropical curve, the length function ℓ takes value in R≥0. We can,
more generally, allow the length to take values in an arbitrary monoid.

Definition 4.6.4. Let σ be an orthant (or more generally, a cone) and let Sσ be the monoid
of positive linear functions (or that is, the dual cone). A family of stable (g, n) tropical
curves over σ is a stable (g, n)-graph G with marking and genus function as in Definition ??,
and whose length function takes values in Sσ.

To make the connection to actual “families”, observe that a point of σ is a monoid homo-
morphism φ : Sσ ! R≥0. If this homomorphism is applied to the edge length ℓ(e) ∈ Sσ, we
obtain a positive real length for each edge and thus a tropical curve.

By definition of the cone stack Mtrop
g,n , the collection of morphisms

σ !Mtrop
g,n

is precisely the groupoid of families of stable (g, n) tropical curves over σ.

Exercise 4.6.5. What happens if stability is dropped from the discussion above? Work
out the details and explicitly describe the resulting tropical moduli space Mtrop

0,3 .

4.7. Maps from tropical curves. A topic that we will discuss in detail in later parts of
these lectures is the theory of logarithmic stable maps. In this theory, there is an interaction
between the logarithmic structure (i.e. the normal crossings divisor) of the space Mg,n of
stable curves and the logarithmic structure on a pair (X,D).

The key combinatorial structure is that of a tropical map. Let Γ be a (g, n) prestable trop-
ical curve and let Sigma. A continuous function Γ! R is piecewise linear if its restriction to
every edge/leg of Γ is linear and has integer slope. It will also be useful to recall here that the
group of piecewise linear functions on Σ is generated additively by distinguished functions
that have slope 1 on some ray and slope 0 along all others. Let us call these “coordinate
functions”.

Definition 4.7.1. A prestable tropical map or simply tropical map is a continous map

Γ! Σ

such that the pullback of every piecewise linear function on Σ is piecewise linear on Γ.

One can similarly consider a family of tropical curves over a base σ, and equip the total
space with a map to Σ. And just as there is a moduli space of (i.e. a cone stack parame-
terizing) abstract tropical curves there is also a moduli space parameterizing tropical maps.
We will not develop this theory in full detail, but here are the highlights.

33



For simplicity, let us assume Σ is equal to R≥0; the general case works similarly, working
with coordinate functions one at a time.
The type of a tropical map. If we fix a map Γ! R≥0 there is a natural set of “discrete”
data: in addition to the unerlying (g, n) graph of Γ, we can record (i) the cone in R≥0 to
which each vertex/edge/ray maps to, and (ii) the slope of the map along each edge/leg. We
call these the cone decoration and the slope data respectively.
Moduli with fixed type. If we fix all the discrete data, call it Θ, we can consider the
“moduli space” σΘ of tropical curves Γ together with a map to R≥0 with discrete data Θ.
To construct it, we will describe via linear equations in a large orthant (and then quotient
by a suitable group).

In more detail: fix a prestable graph G and the cone and slope data (i) and (ii) above,
consider the orthant with one coordinate for each edge of G and with one coordinate for
each vertex of G whose cone decoration is the full R≥0. Let us call the cone σbig. Each point
in this cone specifies a position for a vertex and a length for an edge. A map Γ! R≥0 with
these specifications may not exist, but if it exists it is unique. However, fixing the graph,
the cone decorations, and the slope data, one can prove the following.

Proposition 4.7.2. The set of points in σbig that correspond to continuous piecewise linear
maps Γ with data Θ is given by a linear subset, i.e. it is a cone.

Exercise 4.7.3. Prove the proposition.

We have seen that in the case of tropical curves, if we fix a graph G, the automorphism

group of G acts on the cone RE(G)
≥0 . If we fix the combinatorial type Θ of a tropical map,

a subgroup of Aut(G) will respect the additional cone decorations and slope data. The
quotient of the cone above by this group Aut(Θ), is the local model for the tropical moduli
space of maps.

Completing the construction. One can now range over all types Θ; to each type we can
associate a cone. It comes with a natural automorphims group and its faces comes from
cones of “smaller” types Θ′. Altogether, these can be arranged into a diagram category.

We call the output of this construction Mtrop
g,n (R≥0) and refer to it as the moduli stack of

tropical maps to R≥0.

Exercise 4.7.4. Make the above construction precise (or at least as precise as you made
it for Mtrop

g,n ).

Exercise 4.7.5. Generalize the construction above to construct the space of maps to an
arbitrary cone complex Σ.
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4.8. Some concluding mysteries. We have phrased things so far via “correspondences”
between operations on the cone complex ΣX and geometric operations on a space X. How-
ever, there is a no map as yet of the form:

X“!′′ ΣX .

We will, in due course, learn that one can make sense of such a map, somewhat tautologically,
as precisely the data of these bijections above. The cleanest way to do this is via Artin stacks.
Once we do, we will see that if Σ′ ! ΣX is a subdivision, then the corresponding blowup
can be defined as the fiber product

X ′ := X ×ΣX
Σ′.

We will be able to make sense of more general fiber products of this form. One that is
exceptionally valuable is the following. Accepting that we don’t quite know what maps of
this kind are like, one can consider a the diagram:

Mg,n

Mtrop
g,n (ΣX) Mtrop

g,n .

The fiber product is a new type of moduli space – birational but distinct from the stack
of prestable curves. We will later relearn this object as the stack of logarithmic maps to
the Artin fan. This construction alone has been at the center of a lot of progress in our
understanding of Gromov–Witten theory and the moduli space of curves REFERENCES.

But there are some hints as to what it might mean. Take, for instance, the case of ΣX .
A point of the fiber product F should certainly give an algebraic curve and a tropical curve
equipped with a piecewise linear function. The algebraic and tropical curves should be
connected in some way. ‘But taking this for granted and recalling what we learned about
piecewise linear functions and Cartier divisors, one might guess that the fiber product should
parameterize a curve together with a Cartier divisor on it. We will see later on that the the
fiber product F is an algebraic stack, and it has a map to

Mg,n([A1/Gm]) = {(C, p, L, s) : (C, p) a nodal pointed curve, L a line bundle, s a section}.

The space F is arguably the most important object in logarithmic Gromov–Witten theory.

Exercise 4.8.1. Come back to this discussion after you have learned about logarithmic
Gromov–Witten theory and re-understand it in the terms described above.

5. Toric geometry: an example-based guide

In the following series of exercises, we will take a look at toric geometry from a perspective
that is closley aligned with our goals for learning logarithmic geometry.
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5.1. Monomials, binomials, and toric varieties. We start by making a few elementary
observations about some familiar spaces. The ring of polynomial functions in k variables is
isomorphic to the monoid ring C[Nk], defined as

C[Nk] =

{∑

u∈Nk

auχ
u, au ∈ C

}
.

Similarly, the group ring C[Zk] is the Laurent polynomial ring in k variables.
These two rings are, respectively, the ring of functions on affine space Ak and on the

algebraic torus Gk
m. Furthermore, the obvious inclusion

C[Nk] ⊂ C[Zk]

can be understood geometrically as the subring of regular functions on Gk
m that extend to

regular functions on Ak. We can examine what happes to the monomial functions on each
side:

C⋆ ⊕ Nk ⊂ C⋆ ⊕ Zk.

The group C⋆ ⊕ Zk is exactly the group of invertible functions on Gk
m, while C⋆ ⊕ Nk is the

group of invertible functions on Gk
m that extend to regular functions on Ak.

Algebraic varieties are constructed by specifying the ring (or sheaf of rings) polynomial
functions on them. Toric varieties are constructed by specifying the monomial polynomial
functions.

Exercise 5.1.1. Consider the quotient algebra

C[x, y, t]/(xy − tn).

For each n find a finitely generated monoid Pn such that C[Pn] is isomorphic to the
algebra above. By choosing generators, draw the points of Pn inside Z2.

This is the coordinate ring of the An−1 surface singularity. Observe that the groupifi-
cation of Pn is Z2 and the inlcusion

Pn ⊂ Z2

identifies a distinguished immersion

G2
m ⊂ SpecC[Pn] =: An−1.

This is an example of a cyclic quotient surface singularity. One of the objects we will
later see really wants to be a stack.

Two key points to take away from the example above. First, the subset of monomial
functions

C⋆ ⊕ Pn ⊂ C[Pn]

can again be identified with the monoid of invertible functions on the distinguished open
torus that extend to a regular functions on the full space An−1.
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Exercise 5.1.2. Consider the square in the height 1 plane in R3 with coordinates square
with vertices (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1). The ray between each of these vertices
and (0, 0, 0) is the cone over this square. Let C1,1 ⊂ N3 be the monoid of positive integer
points in this cone. Draw it.

Identify the ring C[C1,1] with the quotient algebra

C[x, y, t, u]/(xy − ut).

In particular, this is the coordinate ring of the cone over the Segre surface (i.e. P1 × P1

in its (1, 1) embedding). Once again, observe that the inclusion

C1,1 ⊂ Z3

identifies an immersion
G3

m ⊂ SpecC[C1,1]

of an algebraic torus of dimension 3.

If one takes seriously the principle that schemes with a notion of monomial function are
worth studying, the following construction is natural. Let I ⊂ C[Nk] be a binomial ideal
– that is, an ideal obtained by setting two monomials equal to each other. The schemes
obtained from the quotients, namely SpecC[Nk]/I are very interesting, but are a little too
wild to work with in practice.

Exercise 5.1.3. Give examples to show that binomial ideals can be reducible, non-
reduced, and non-normal.

One of the many equivalent characterizations of affine toric varieties is that they are
(normal) integral binomial schemes.

A toric monoid P is the submonoid of Zk of lattice points in the positive real span of a
finite set of vectors {v1, . . . , vm} ⊂ Zk.

Exercise 5.1.4. Show that the monoid ring C[P ] is irreducible and its Zariski spectrum
contains an algebraic torus as a dense open.

5.2. Global theory. We have understood the basic theory of affine toric varieties. There are
two basic approaches to the global theory: the intrinsic approach via equivariant geometry
and the extrinsic approach via gluing constructions. In fact, it is the latter that is more
relevant for us, but let us say a few words about the former.

A toric variety is a normal equivariant compactification of an algebraic torus – that is, it
is a variety X containing a dense torus T ⊂ X such that the action of T on itself extends to
an action of T on X.

The key classification theorem in the theory of toric varieties states that every such variety
is obtained by gluing T -stable affine varieties, which are in turn exactly the objects described
in the previous section.
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Sumihiro’s theorem states that any normal algebraic variety X with a torus action can be
covered by torus invariant affine opens.

Exercise 5.2.1. By constructing an example, prove that the normality in Sumihiro’s
theorem cannot be dropped.

In order to globalize, we need to be more careful with keeping our lattices straight. We
will fix a free abelian group of rank k and will identify it as the group of pure (i.e. coefficient
1) monomial functions on an algebraic torus T .

The group of algebraic homomorphisms:

Gm ! T

is canonically identified with the dual lattice N = Hom(M,Z). After choosing coordinates,
they are given by t 7! (ta1 , . . . , tak), for ai ∈ Z.

Exercise 5.2.2. Given a monomial function χ on T and a map φ ∈ N defining Gm ! T
the composite is a an element

χ ◦ φ : Gm ! Gm.

Viewing this as a rational function on P1, show that the valuation at 0 is exactly the
natural pairing ⟨v, φ⟩. (Hint: Choose coordinates and express the composite rational
map in terms of the exponents appearing in χ and φ.)

Given a toric monoid P ⊂ M the dual cone is the set of points in NR = N ⊗ R whose
value on P is non-negative. It will be denoted σP .

The monoid P can be recovered as the monoid of elements in M that are positive on σP ,
so these are essentially equivalent. To make this point honest, we should define a cone in
NR independently of being the dual cone of a monoid. A cone in NR

13 is defined to be the
intersection of finitely many half-spaces defined by ⟨u, x⟩ ≥ 0 for some fixed u ∈M .

The dual cone of a monoid has essentially one advantage over the monoid picture: it is
naturally covariant for morphisms. This should not be surprising: morphisms out of a variety
(in this case Gm) are naturally covariant.

The next two exercises work towards gluing. Given a cone σ in NR, a hyperplane in NR is
defined by the orthogonal to a fixed u ∈M . Such a hyperplane Hu is a supporting hyperplane
if σ lies on the positive side of Hu.

A face of σ is the intersection of σ with a supporting hyperplane.

Exercise 5.2.3. Make sense of the faces of the cone σ in R2 given by the first quadrant.
Specifically, make sure it tells you what you expect. To make really sure, repeat the
exercise for the dual cones of the monoids Pn defining the An−1 surfaces described above.

13A strictly convex rational polyhedral cone, to be precise.
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We come to the key definition. Fix the lattices M and N . A fan in NR Σ is a collection
of cones σ in NR, such that the intersection of any two cones is a face of each.

Let P be a toric monoid with dual cone σ. If τ is a face of σ with supporting hyperplane u,
then the dual monoid Q of τ is generated by P and −u. In turn, there is an open immersion

SpecC[Q]! SpecC[P ]

obtained by localizing at the monomial χu.
Let Σ be a fan in NR. Its collection of cones are indexed by a partially ordered set – the

arrows are given by inclusions of faces. By the discussion above, we obtain a corresponding
diagram of affine toric varieties, equipped with open immersions. The toric variety of a fan
Σ is the colimit

XΣ := lim−!
σ∈Σ

Uσ

of the affine toric varieties Uσ over σ in Σ.
It follows quickly from this that a toric variety XΣ is smooth if and only if the primitive

elements of the rays of every cone σ are Z-linearly independent.

Exercise 5.2.4. Identify the toric variety of the fan in Figure 1 with P1. Identify the
toric variety of the fan in Figure 2 with P2. Identify the toric variety of the fan in Figure-3
with the blowup of A2 at a point.

If X is a toric variety, it turns out to come from a fan ΣX . The intrinsic description of
this fan is as follows. Given a point v ∈ N , there is an associated 1-parameter subgroup

φv(t) : Gm ! T ⊂ X.

We can ask: (i) does the limit exist as t ! 0, and if so (ii) what is it? The answer to
(i) picks out a distinguished subset of N , and (ii) produces an equivalence relation on this
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subset, where two points are equivalent if the corresponding limits are equal. The equivalence
relation gives a fan, with cones whose interiors are the set of subgroups that are equivalent.

Exercise 5.2.5. Using the description above, calculate the intrinsic fan of A1, A2, P2,
and the blowup of A2 at the origin. Convince yourself that a product of toric varieties is
described by the product of the corresponding fans.

Another consequence of the above characterization of the fan is about properness: a toric
variety XΣ is proper if and only if every lattice point in N lies in some cone of Σ. Note that
one direction is obvious! The other direction is true, but we take it on faith.

A fan is called complete if every point of N lies in some lattice point.
A well-known trait of toric geometry is that the subject is filled with many interesting

geometric bijections. We mention two. First: the T -orbits of a toric variety XΣ are in
natural inclusion-reversing bijection with the cones of Σ. Second: there is a natural inclusion-
preserving bijection between the cones of Σ and the affine T -stable open subschemes of XΣ.

Example 5.2.6. Verify the above bijections for products of projective spaces.

5.3. Functoriality. Just as the basic example for a toric variety is an algebraic torus, the
basic example of a morphism between toric varieties is an algebraic homomorphism of tori:

φ : T ′ ! T.

These morphisms are precisely given by homomorphisms of lattices

M !M ′

given by pullback of homomorphisms T ! Gm, or equivalently by

N ′ ! N

given by pushforward/post-composition of homomorphisms Gm ! T ′.
A toric morphism of toric varieties X ′ ! X is a homomorphism of tori T ′ ! T that

extends to a morphism X ′ ! X that is compatible with the actions.

Exercise 5.3.1. LetX andX ′ be toric varieties and let ∂X and ∂X ′ denote the respective
complements of their dense tori. Observe that if f : X ′ ! X is a toric morphism, then
φ−1(∂X ′) is contained in ∂X. Suppose f : X ′ ! X is any morphism that satisfies this
latter property. Show that it is not necessarily toric. By analyzing your counterexample,
relate such morphisms to toric ones.

In combinatorial terms, a morphism T ′ ! T extends to X ′ ! X if and only if the induced
map

N ′
R ! NR

carries each cone of ΣX′ into a cone of ΣX .
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Exercise 5.3.2. By using the characterization above, prove that there are no torus
equivariant morphisms Pn ! Pm unless n ≤ m. Similarly, show that a complete fan does
not admit any torus equivariant morphisms to A1.

5.4. Singularity theory and subdivisions. We have already noted that XΣ is smooth if
and only if for every cone σ in Σ, the rays of σ are a subset of a lattice basis for N .

Exercise 5.4.1. Let P ⊂ Zn be a monoid. Assume that P gp is equal to the full lattice.
Prove that there is a unique closed torus orbit p in the associated toric variety, which is
a point. Give a basis for the cotangent space mp/m

2
p.

Let X be a toric variety with fan Σ in NR. A modification is a proper birational morphism
X ′ ! X. A subdivision of Σ is a new fan Σ′ in the same space NR equipped with a morphism

Σ′ ! Σ

that is a refinement – the fans share the same support.

Exercise 5.4.2. Prove that a subdivision gives rise to a modification. Harder: In fact,
every equivariant modification is a subdivision.

A piece of terminology: a cone σ is called simplicial if the generators of its rays are
Q-linearly independent.

Exercise 5.4.3. Let σ be a simplicial cone and let Xσ be the associated toric variety.
Find a finite and surjective torus equivariant morphism X ′ ! Xσ, with smooth domain.
We say for ths reason that toric varieties of simplicial cones have “at worst finite quotient
singularities”.

If you have learned about stacks when you see this: go further and produce a smooth
Deligne–Mumford stack Xσ with a proper and birational map Xσ ! Xσ

An important instance of a projective birational map is barycentric subdivision. Let σ be
a cone as above, e1, . . . , ek integral generators of its rays. The barycenter of σ is the ray
b(σ) = R≥0

∑
ei. The barycentric subdivision of a polyhedral complex ∆ of dimension m is

the minimal subdivision B(∆) in which the barycenters of all cones in ∆ appear as cones
in B(∆). It may be obtained by first taking the subdivision centered at the barycenters
of m dimensional cones, then the decomposition of the resulting complex centered at the
barycenters of the cones of dimension m− 1 of the original complex ∆, etc.

Exercise 5.4.4. Let Σ be any fan. Prove that the fan Σ′ obtained by barycentric
subdivision of all cones is simplicial. Deduce from this and the previous exercise that
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every toric variety has an equivariant toric modification by one that has at worst finite
quotient singularities

If you have learned about stacks when you see this: go further and deduce that every
toric variety admits an equivariant resolution by a smooth toric Deligne–Mumford stack.

Parallel to the singularity analysis of toric varieties, one has a singularity analysis for
maps.

Exercise 5.4.5. Give examples of maps of fans Σ′ ! Σ that give rise to dominant
morphisms of toric varieties whose fiber dimensions jump. Similarly, give an example of
such a morphism where some fibers are non-reduced.

If you have completed the exercise, the following two criteria will come as no surprise. A
morphism Σ′ ! Σ is said to be combinatorially equidimensional if every cone of Σ′ maps
surjectively onto a cone of Σ. Such a morphism is said to be combinatorially reduced if the
inverse image of every lattice point in Σ contains a lattice point of Σ′.

For the following two stated exercises, the real point is to play with enough examples to
convince yourself that the statements are plausible.

Exercise 5.4.6. Let Σ′ ! Σ be a morphism of toric varieties. Show that it is dominant
if and only if the associated map of vector spaces N ′

R ! NR is surjective. Prove that
the associated morphisms X ′ ! X have equidimensional fibers if and only if Σ′ ! Σ is
combinatorially equidimensional. Similarly prove that the fibers of such a morphism are
reduced if and only if the map is combinatorially reduced.

The following exercise is half of the “toric weak semistable reduction theorem”.

Exercise 5.4.7. Given a morphism of fans Σ′ ! Σ, there are subdivisions ∆′ and ∆
such that the natural induced map

∆′ ! ∆

is combinatorially equidimensional.

One can also make the fibers reduced, but the best way to do this is using toric Deligne–
Mumford stacks and root constructions. For a classical approach, you may look up “Kawa-
mata’s cyclic covering trick”.

5.5. Cartier divisors. Recall that on a general scheme X, a Cartier divisor is can be
desribed by a collection of principal divisors (so rational functions, well-defined up to scalar)
on open sets with the condition that they glue on overlaps (i.e. the choices for the functions
can be made to match up to scalar).
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In the toric setting, one can make everything torus equivariant: the open sets can be
chosen to be T -stable and the rational functions can be chosen to be monomials.

Exercise 5.5.1. Let Σ be a fan in NR. Observing that a character is exactly a linear
function on N , argue that a continuous function

|Σ|! R
that is linear on each cone of σ gives rise to a Cartier divisor.

It is less obvious, but true, that every Cartier divisor class on a toric variety can be
represented by T -invariant Cartier divisor. Part of this includes the statement that the
principal divisors are exactly the characters. Together with basic results comparing the
Cartier class group with the Picard group, this leads us to the following fact:

Pic(XΣ) = {Piecewise linear functions on Σ}/{Linear functions on Σ}.

Exercise 5.5.2. Verify that this description above correctly computes the Picard group
of products of projective spaces. Use this description to compute the integral Picard
group of of the An−1 surface singularity.

5.6. Toroidal embeddings. In the lectures, we have come across the notion of an snc pair
(X,D). At each point p ∈ X on such a pair, some number of components of D, say r of
them, pass through p. The local parameters cutting out these components give a morphism
from an open neighborhood:

(f1, . . . , fr) : Up ! Ar,

carrying p to 0. This is well-defined up to the unit choices for each function. A sufficiently
small neighborhood of Up (in the étale or analytic topology, say) is naturally isomorphic
to AdimX We can enhance the collection of functions with additional ones until we have a
complete set of local parameters. However, these additional parameters do not vanish on D,
so more appropriately, we get an isomorphism:

Up ! Ar ×Gn−r
m .

The varieties Ar × Gn−r
m are local models for (X,D), and we notice that Ar × Gn−r

m are
precisely the smooth affine toric varieties.

Exercise 5.6.1. Prove the claim above that smooth affine toric varieties are all of the
form Ar ×Gn−r

m .

The theory of toroidal embeddings generalizes this, by allowing any affine toric variety to
play the role of the local model above. Here is the complete definition:
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Exercise 5.6.2. A toroidal embedding is a pair (X,D) consisting of a normal variety
and a Weil divisor D with open complement U , such that for every point p ∈ X, there
exists an open (or étale) neighborhood φ : Vp ! X and an étale map

ψp : Vp ! Vσ(p)

for some toric variety σ(p), that is compatible with the respective divisors, i.e.

ψ−1T = φ−1U

where T is the dense torus.
The exercise is to make sense of this definition. In particular convince yourself of the

following: (i) given (X,D) and a point p ∈ X, the toric cone σ(p) is well-defined, (ii)
the interior X ∖D is automatically smooth, and come up with an example of a toroidal
embedding that is neither toric nor snc.

The compatibility of the open set U with the torus T in the local model is crucial – it means
that under the natural isomorphism of completed local rings (induced by the étale map),
the ideal of functions vanishing on the toric boundary is carried to the ideal of functions
vanishing on D.

Exercise 5.6.3. Let X be a (possibly singular) toric variety and let D be a divisor
supported on the toric boundary. Prove that not all pairs (X,D) are toroidal embeddings.
Classify the divisors D that make (X,D) into a toroidal embedding.

We have seen/asserted above that given a toroidal embedding (X,D) and a point p on X,
the local cone σ(p) is well-defined.

Exercise 5.6.4. Let p and q be scheme theoretic points of X. Prove that if p specializes
to q, then the cone σ(p) is a face of the cone σ(q).

As a result, given (X,D) we can form a well-defined “cone complex” by taking the limit

Σ(X,D) := lim−!
p∈X

σ(p)

where the arrows are given by specialization. The cone complex Σ(X,D) bridges the gap
between the cone complex associated to an snc pair and the fan associated to a toric variety.

Many of the common properties carry over: piecewise linear functions on Σ(X,D) corre-
spond to Cartier divisors, subdivisions correspond to blowups, and there is a certain amount
of functoriality. The precise level of functoriality is a subject of ongoing confusion, but the
following is true: let X ′ ! X be a morphism of toroidal embeddings such that the preimage
of the divisor on X is contained in the divisor on X ′. Assume that the irreducible components
of these divisors are normal. Then there is an induced morphism

Σ(X ′, D′)! Σ(X,D),
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given by gluing the maps between cones coming from local toric models.
A few warnings are in order: (i) unlike the fan of a toric variety, a pair Σ(X,D) is not

naturally embedding in a vector space and there is no natural supply of “characters”, (ii)
the fan of a toroidal embedding Σ(X,D) rarely determines X unlike in the toric case, and
(iii) the general issue of functoriality of the maps on cone complexes remain something of a
mystery.
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6. Stacks, part 2

By Dan. This should include whatever notions and constructions are needed for the rest
of the series.

Much of this is from the resolution volume.

6.1. Moduli of curves as an algebraic stack. 14 The moduli space of curves is a key
14!

example where a moduli problem is naturally exhibited as an algebraic stack. One can
imagine proving that all the defining criteria of an algebraic stack are satisfied, and this is
sometimes done, typically for more difficult situations. But here we have a bag of tricks we
can use.

Theorem 6.1.1. The stack Mg is an algebraic stack.

Sketch of proof. Every stable curve admits a three-canonical embedding. Consider the Hilbert
scheme of 3-canonical nodal curves in projective space. Techniques involving upper-semicontinuity
of cohomology allow one to show that this is a locally closed subscheme H0 of a Hilbert
scheme H. The dimension N of the projective space as well as the Hilbert polynomial are
determined by Riemann-Roch, hence this is a quasi-projective scheme. There is a natural
action of PGLN+1 on H0, and one shows that

Mg = [H0/PGLN+1].

♣
Theorem 6.1.2. The stack Mg,n is an algebraic stack.

Sketch of proof. One can imagine repeating the proof above, and it does work. Alternatively,
fix n distinct 1-pointed smooth curves (Ei, qi) of genus G ≫ g. There is an equivalence of
fibered between Mg,n and the closed substack of Mg+nG of stable curves consisting of the
gluing of a variable stable n-pointed curve (C, p1, . . . , pn) at pi with each Ei, qi). ♣
Theorem 6.1.3. The stack Mg,n of pre-stable curves is an algebraic stack.

Proof. Again one may struggle with a direct verification. . . but do not despair! Olsson gave
the following simple argument:

Consider the universal family Cg,n ! Mg,n and its fibered product C
k

:= (C
k

g,n)Mg,n
!

Mg,n, with k large. It parametrizes k-tuple of points on the fiberes of Cg,n !Mg,n.
There is an open locus where, first, the points are distinct, and do not collide with nodes

or the original marked points, and where each component of each prestable curve carries so
many of the k points so that it has no automorphism as a marked curve.

If k is large enough this open locus is dense, and, as a category, coincides with an open
asubstack U ⊂ Mg,n+k which is actually representable by a quasi-projective scheme, since
there are no automorphisms and Mg,n+k has p[rojective coarse moduli space!

In other words, we have a smooth morphism U ! Mg,n. The fibered product R =
U ×Mg,n

U is the scheme over U ×U parametrizing isomorphisms between the two universal

families of curves, usually constructed as a Hilbert scheme. It follows that Mg,n = [R⇒ U ]
is the stack associated to the groupoid given by the action of R on U , so it is algebraic, as
needed. ♣

14(Hulya) I was just looking where the definition of a “stable curve” first appeared in the paper as I want
to refer to it, but can not find it – might be good to add somewhere?
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6.2. Stable maps as an algebraic stack. We are in the business of Gromov–Witten
theory, so how about stable maps?

Once again our bag of tricks helps us avoid trouble, in a way which, unfortunately, does not
fully extend to orbifold or logarithmic worlds. (The orbifold world is somewhat simoplified
using Olsson’s bnotion of log twisted curves. The logarithmic world still requires hard and
direct arguments. We will ignore things and just assume given that the needed stacks exist.)

Theorem 6.2.1. Let X be a projective scheme. Then the space Mg,n(X, d) of stable maps
of degree d in X is an algebraic stack.

Proof. We consider the forgetful morphism

Mg,n(X, d)!Mg,n.

Its fiber over a scheme S ! Mg,n is the space of maps HomS(CS, X), which is a Hilbert
scheme. The following lemma shows that Mg,n(X, d) is an algebraic stack. ♣
Lemma 6.2.2 (Give reference). Assume given a functor F ! G, where G is an algebraic
stack and for every S ! G, with G a scheme, the fibered product S ×G F is an algebraic
stack. Then F is an algebraic stack.

6.3. Quotients and coarse moduli spaces. Consider now a scheme X with an action of
a group G. A quotient scheme X ! Y = X/G is a G-invariant morphism of schemes such
that

(1) if X ! Z is another G-invariant morphism of schemes then it factors uniquely as
X ! Y ! Z, and

(2) For any algebraically closed field K, the map X(K)/G(K)! Y (K) is bijective.

The first condition shows that a quotient is unique up to unique isomorphism, and the second
says that in a sense points of the quotient are orbits of points on X.

Symmetric functions allow you to prove:

Exercise 6.3.1. Let X = SpecA be an affine scheme and G a finite group. Show that
the natural morphism X ! X/G := SpecAG is a quotient scheme.

In general quotients do not exist in the category of schemes. If G is finite then quotients
exist in the category of algebraic spaces, but this is a cheat: in a sense it is an outcome of
the existence of the quotient stack.

Exercise 6.3.2. Let X be a scheme with an action of a group G, and assume a quotient
scheme X/G exists. Show that X ! X/G factors uniquely as X ! [X/G]! X/G.

So in a sense X/G is the best schematic approximation (from below) of the stack [X/G].
What can we do in general? Consider a stack X . In analogy to the definition of a quotient,

Mumford defined the following:

Definition 6.3.3. A coarse moduli space X ! X is a morphism to a scheme or algebraic
space X such that
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(1) if X ! Z is another morphism to a scheme then it factors uniquely as X ! X ! Z,
and

(2) For any algebraically closed field K, the map X (K)! X(K) is bijective.

This is quite relevant to our volume, especially the following:

Exercise 6.3.4. Let X be a scheme with an action of a group G, and assume a quotient
scheme X/G exists. Show that [X/G]! X/G is a coarse moduli space.

There is a general result. One defines a stack to be separated if the same definition as for
schemes applies. Keel and Mori [KM97] proved the following fundamental result:

Theorem 6.3.5. Let X be a separated Deligne–Mumford stack. Then it admits a separated
coarse moduli space X ! X.

This applies to Mg, g ≥ 2 and to [X/G], with G a finite group. It means that any
separated Deligne–Mumford stack can be well-approximated (from below) by an algebraic
space.

6.4. Root constructions. Suppose S is a scheme, and f ∈ γ(OS) a function. A classical
construction is the n-th order cyclic cover S ′ ! S along the divisor D = V (f) given by the
equation yn = f . In other words T = SpecOS[y]/(yn − f).

This is a very useful construction in geometry, but there is something unsatisfying about
it: it really does depend on f , not only on V (f): Say you replace f by f ′ = uf , where
u is unit. Unless u happens to be an n-th power, the s-schemes T = SpecOS[y]/(yn − f)
and T ′ = SpecOS[y]/(yn − f ′) are simply not isomorphic. This means that one needs to be
careful to globalize the construction.

Classically one globalizes the situation by choosing a line bundle L and an isomorphism
Ln ≃ O(D), which one rather writes as ϕ : L−n ! ID ⊂ OD. In this case T is the quotient
of the algebra R =

⊕
n≥0 L−n by the equations sn − fs where s is a local section of L−1 and

fs = ϕ(sn) is the corresponding local function vanishing on D.

Exercise 6.4.1. By choosing a generating section of L, show that locally this construc-
tion coincides with the scheme T constructed above. What happens if one replaces ϕ by
uϕ for a unit u?

Even putting units aside this still depends on a choice - replacing L by another n-th root
of O(D) changes the cover. Even worse — an n-th root L might not exist globally.

The Cadman–Vistoli root stack comes to fix these issues.

Exercise 6.4.2. (1) Consider the category whose objects over S are line bundles
on S and arrows are pullback diagrams. Show that it is equivalent to BGm, in
particular an Artin stack. Show that the functor sending L to Ln corresponds to
the n-th power map Gm ! Gm.
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(2) Now consider the category whose objects over S are pairs (L, s) consisting of a
line bundle L and a section s. Show that it is equivalent to A1 := [A1/Gm] with
the natural action. Show that the functor A1 ! A1 sending (L, s) to (Ln, sn)
corresponds to teh n-th power map on A1 ! A1, with the corresponding n-th
power map on Gm.

Exercise 6.4.3. Consider a scheme V , and a line bundle L on V with section s — for
the discussion let us assume giving a Cartier divisor D — and a positive integer n. Let
n
√

(V,D) be the category whose objects over S are triples (f,M, ϕ, t) where f : S ! V is a
morphism, M an invertible sheaf on S with section t, and ϕ : Mn ! f ∗L an isomorphism
carrying tn to s. Show that this is an algebraic stack, isomorphic to V ×A1 A1, where the
map on the right is the n-th power map.

Exercise 6.4.4. Suppose D is the vanishing locus of a function g. Let T be the scheme
defined at the beginning of the section. Show that (f,M, ϕ, t) is isomorphic to the
quotient [T/µn], where µn acts on y by multiplication, in particular it does not depend
on the choices discussed above..

6.5. Coherent sheaves. This is definitely a topic that deserves thorough attention, but
not in a light-touch document such as this. The ideas are natural and mostly extend what
you know about varieties smoothly.

As Deligne–Mumford stacks admit étale covers by schemes, they have a well defined élate
topology. This in particular means that one can consider sheaves in the étale topology of a
Deligne–Mumford stack.

One simple example is the structure sheaf OX of a stack X , represented by the structure
sheaf on an étale covering V ! X , with trivial gluing data on the overlaps. This manifests
again the observation that a stack is just a bunch of rings with rings homomorphisms between
them. . .

One can similarly consider sheaves of OX-modules, quasicoherent and coherent sheaves of
OX-modules. Ideals, differential forms, and other related notions, such as the spectrum and
projective spectrum of a sheaf of algebras, are studied as for schemes.

The situation is not quite as simple for Artin stacks, but this difficulty is better swept
under the rug in the present exposition.

6.6. Stack theoretic Proj. Let V be a scheme and A = ⊕m≥0Am a finitely generated quasi-
coherent OV -algebra, with its natural ideal A+ = ⊕m≥1Am. Consider SpecS A with its vertex
V+ = V (A+). The grading gives a Gm-action. Define ProjV (A) := [(SpecV (A)∖V+) / Gm].
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Exercise 6.6.1. Consider the special case where A is generated by A1 as an A0-algebra.
Show that in this case ProjV (A) = ProjV (A), the standard relative projective scheme
construction found, for instance, in Hartshorne’s book.

6.7. Weighted projective stacks. The Proj construction gives something new already
when V = Spec k is a point. Consider the algebra A = k[x1, . . . , xn], but with the variables
xi placed in degree wi > 0. In other words, the multiplicative group Gm acts on xi via
xi 7! twixi.

Note that SpecA is just affine space, and V (A+) is the origin. The quotient stack
ProjV (A) := [(SpecV (A) ∖ V+) / Gm] is the weighted projective stack P(w1, . . . , wn) of
dimension n − 1. Its coarse moduli space (SpecV (A) ∖ V+) / Gm is the classical weighted
projective space P(w1, . . . , wn).

6.8. Blowups and weighted blowups. Consider now the situation where A = ⊕Im,
where I is a sheaf of ideals. Then ProjA = ProjA is the blowup of the subscheme V (I) in
the classical case. When V and X = V (I) are smooth, namely I is everywhere generated
by a partial local system of parameters x1, . . . , xk on the smooth variety V , we obtain the
familiar smooth blowup of X on V .

A somewhat more general stack theretic construction is associated with Rees algebras. Say
the graded pieces of A = ⊕Im are nested ideals sheaves with Im ⊃ Im+1, and multiplication
is given by multiplication of ideals, in particular ImIn ⊂ Im+n. This is the stack theoretic
blowup of the Rees algebra A. Finite generation implies that its coarse moduli space coincides
with the blowup of Im for some large and divisible m, but the stack has richer structure.

A central object of this book are smooth weighted blowups. It is discussed in several
sections with different emphases, different levels of generality, and different points of view.
We describe here only the local case, where the center is V (x1, . . . , xk), with xi a partial
regular system of parameters, and xi given weight ai.

This is obtained by the Rees algebra A = ⊕Im described as follows: one starts with the
algebra B over OV where xi is placed in Iwi

. This is already an algebra of ideals, but to make
it a Rees algebra one needs to enforce the condition Im ⊃ Im+1, in essence by replacing Bm

by the ideal Im =
∑

j≥m Bm.
More natural presentations, involving valuations or extended Rees algebras, are presented

in the following chapters.

6.9. Destackification. With the exception of the classical method described in [FKP06],
there is one point in all the recent work which we have found challenging to explain, and
I wish to try to dispell this challenge. The point is that all the new methods start with a
scheme X and end up with a smooth stack X ′ resolving it. Evidently algebraic geometers
want resolution of singularities to end up with a scheme, no matter how useful stacks may
be. Have we ended up short of this goal?

Our answer is, and always has been, that the smooth stack X ′ always admits a destackifi-
cation, which is an easily understod and computationally feasible task. This task works even
in positive characteristics, as long as the stack X ′ is tame, a condition which is automatic in
characteristic 0.

What is destackification?
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Definition 6.9.1. Let X ′ be a smooth Deligne–Mumford stack. A destackification of X ′

is a proper birational morphism X ′′ ! X ′ from another stack, such that the coarse moduli
space X ′′ of X ′′ is smooth.

The universal property of coarse moduli spaces implies that, if X ′ is the coarse moduli
space of X ′, there is a proper birational morphism X ′′ ! X ′ induced by X ′′ ! X ′. In
particular X ′′ ! X ′ ! X is a resolution of singularities in the classical sense.

One can envision stronger statements. For instance one may wish the stack X ′′ to also be
smooth, and one may wish it to be obtained by a sequence of simple operations like smooth
blowups and smooth root constructions. One may further wish X ′′ ! X ′′ to be very simple
- a sequence of smooth root constructions. All these do hold true, and were developed in
different works. For the present discussion all we need is the existence of a destackification,
and its inherent simplicity, in particular it is much simpler than any general algorithm of
resolution of singularities.

For the sake of discussion, let us note that all the stacks X ′ appearing in our work have at
most finite abelian (and tame) stabilizers, acting faithfully on tangent spaces. One can say
a whole lot in greater generality, but let us stick with this situation for simplicity.

There are several ways to achieve destackification.

6.9.2. Direct resolution. Over the years people have devised, again and again, methods for
resolving varieties with finite abelian tame quotient singularities, such as the space X ′.
An early work in this direction is due to Bogomolov [Bog92, Lemma 8.2], which addresses
global quotients. Such resolution X ′′ ! X ′ is all we need, but in fact it does provide a
destackification, with possibly singular X ′′, if one simply takes X ′′ = X ′′ ×X′ X ′, whose
coarse moduli space is X ′′.

6.9.3. Torification and toroidal resolution. When passing to strict henselizations, the action
of the stabilizers of X ′ on the tangent spaces can be diagonalized, but this diagonalization
is not canonical and cannot be glued to a global structure. However, the works [AdJ97,
AKMW02, ATW20b] provide the following result:

Theorem 6.9.4. The stack X ′ admits a canonically defined ideal sheaf Itor whose blowing
up X ′

tor ! X ′, endowed with its exceptional divisor, is toroidal, and the stabilizers on X ′
tor

are globally diagonalized with respect to this divisor.

The ideal Itor, the so-called torific ideal, is obtained locally as the product of ideals of the
form Iχ, where χ runs over the characters of the local stabilizer Gx:

Iχ =
(
f ∈ Osh

X,x : g∗f = χ(g) · f ∀g ∈ Gx

)
.

This implies that the coarse moduli space X ′
tor is toroidal, and its resolution of singularities

X ′′ ! X ′
tor, with pullback stack X ′′ = X ′′ ×X′ X ′, provides a very simple destackification as

above.
A similar procedure was devised by Gabber, see [IT14].

6.9.5. Strong destackification. The works [Ber17, BR19] provide the strongest destackifica-
tion result, with all steps being simple operation. It is, however, significantly more costly in
computational terms:
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Theorem 6.9.6. There exists a sequence of proper birational maps X ′′ = X ′
n ! · · ·! X ′

1 !
X ′

0 = X ′ each of which being either a smooth blowup or a root consstruction along a smooth
divisor, and a sequence of root constructions along smooth divisors X ′′ = X ′′

n ! · · ·! X ′′
0 =

X ′′, In particular X ′′ ! X ′ is a destackification.

A computer implementation of this algorithm in oscar [OSCARdt22] is underway, see
[ABB+21].

6.10. Quotients by groupoids [R ⇒ V ]. Kai Behrend gave an elegant description of the
stack associated to a groupoid in general. First we note the following: for any scheme X
and any étale surjective V ! X, one can write RV = V ×X V and the two projections give a
groupoid RV ⇒ V . If, as suggested above, RV is to be considered as an equivalence relation
on V , then clearly the equivalence classes are just points of X, so we had better define things
so that X = [RV ⇒ V ].

Now given a general groupoid R⇒ V , an object over a base scheme B is very much like a
principal homogeneous space: it consists of an étale covering U ! B, giving rise to RU ⇒ U
as above, together with maps U ! V and RU ! R making the following diagram (and all
its implicit siblings) cartesian:

RU
//

����

R

����

U //

��

V

B

There is an important object of X = [R ⇒ V ] with the scheme V as its base: you take
U = R above, with the two maps U ! B and U ! V being the source and target maps
R ! V respectively. What it does is it gives an étale covering V ! X , as required in the
definition of an algebraic stack. The existence of such a thing is in fact an axiom required
of a fibered category to be a Deligne–Mumford algebraic stack, but since I have not gotten
into details you’ll need to study this elsewhere. The requirement says in essence that every
object should have a universal deformation space.

7. Logarithmic geometry I: divisors and monomials

In our discussion of the moduli space of curves (Section 4.6) we witnessed the key role played
by compactifications. The compactification

Mg,n ↪!Mg,n

opens up a rich universe of intersection theory, topology, and birational geometry, while also
providing a tool to probe the original space Mg,n.

However, we are not interested in arbitrary compactifications: following Section 4.1 we
focus exclusively on compactifications where the boundary is a normal crossings divisor.
This condition is special enough to produce a workable theory, but general enough to en-
sure such compactifications always exist (this is essentially a consequence of resolution of
singularities [Hir64] which we will discuss in Section 15).

Logarithmic geometry is a robust language for keeping track of such compactifications.
It achieves this by recording monomials in the functions cutting out the components of the
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boundary divisor. This is consonant with the function-theoretic perspective which has dom-
inated algebraic geometry since the 1950s. Being a theory of compactifications, logarithmic
geometry automatically includes a treatment of degenerations as well. We will encounter
both perspectives in the sequel.

Disclaimer. This is a user’s guide, not a sacred text. We do not develop the theory in
its maximal generality, but rather in the generality that we need. Sometimes we are a bit
sloppy about assumptions in the pursuit of clarity and its cousin, brevity.

7.1. Divisorial logarithmic structures: first approximation. Fix a simple normal
crossings pair (X|D) as in Section 4.1 and write the boundary divisor as

D = D1 + . . .+Dk

where each Di is irreducible. If you find this obscure, think of the pair (X|∂X) where X is a
smooth toric variety, or the pair (M0,n |M0,n ∖M0,n). Since X is smooth, each component
Di is a Cartier divisor and is hence cut out by a single function, or more precisely a section
of a line bundle:

si ∈ H0(X,OX(Di)).

This section si is unique up to scaling by units.

Idea. A logarithmic structure on a scheme X is a collection of certain special functions,
which we think of as monomials.

In our case, we are interested in the functions sc11 · · · sckk . We record these as follows. Let
Div(X) denote the set of generalised Cartier divisors on X, i.e. pairs consisting of a line
bundle and a section:

Div(X) := {(L, s) : L is a line bundle on X, and s ∈ H0(X,L)}.
We then record our desired monomial functions via the following map:

Nk ! Div(X)(3)

(c1, . . . , ck) 7! (OX(c1D1 + . . .+ ckDk), sc11 · · · sckk ).

This is the prototype of a logarithmic structure. It furnishes X with the chosen monomial
functions, with Nk functioning as the indexing set. A morphism of logarithmic structures
is required to pull back monomials to monomials.

Monomials are not closed under sums, but are closed under products. Thus the algebraic
structure governing monomials is the monoid: a set with a single binary operation, satisfying
all the axioms of an abelian group except the existence of inverses. Notice that (3) is a map
of monoids, and is hence determined by its action on the generators of the free monoid
Nk: once we have s1, . . . , sk the monoid operation automatically produces the monomials
sc11 · · · sckk . The appearance of monoids is the root of the deep interplay between logarithmic
and toric geometry, which we explore in Section 8.

7.2. Divisorial logarithmic structures in full. The above definition is a valiant first
attempt, but it is deficient in several respects. It is inflexible: it cannot be restricted to an
open set, or more generally pulled back along a morphism of schemes.

The solution is to replace the global structure with a local one. The indexing monoid Nk

will be replaced by an indexing sheaf MX , and the map (3) will be replaced by a map of
sheaves.

53



Step I: Indexing sheaf. We begin by constructing the indexing sheaf MX . This is called
the ghost sheaf or the characteristic sheaf of the logarithmic structure. It is a con-
structible sheaf on X whose stalks are constant on each locally closed stratum of the pair
(X|D). To illustrate, choose a point

p ∈ (D1 ∩D2) ∖ (D3 ∪ · · · ∪Dk).

We say that p belongs to the locally closed stratum of (X|D) corresponding to the subset
{1, 2} ⊆ {1, . . . , k}. We will now define the stalk

MX |p.
Remember that this is supposed to index monomials in the si. In an open neighbourhood of
p, the divisor D = D1 + . . . + Dk is indistinguishable from the divisor D1 + D2. Function-
theoretically, the equations s3, . . . , sk are invertible in a neighbourhood of p, and since each
si is only well-defined up to scaling by units anyway, this means that each of s3, . . . , sk is
indistinguishable from the constant function 1. Consequently we should identify

sc11 s
c2
2 s

c3
3 · · · sckk = sc11 s

c2
2 .

In summary: local to p, the only monomials we have are sc11 s
c2
2 . The stalk of the ghost sheaf

gives the corresponding local indexing set:

MX |p = N2.

Generalising, let [k] = {1, . . . , k} be the set indexing the divisor components, fix a subset
I ⊆ [k], and consider a point in the corresponding locally closed stratum

p ∈
(
∩i∈I Di

)
∖
(
∪i∈[k]∖I Di

)
.

Then the stalk of the ghost sheaf is given by

MX |p = NI

and indexes the monomials Πi∈Is
ci
i . These local stalks glue: if ξ and ξ′ are the generic points

of locally closed strata, with ξ′ ∈ ξ, then there is a generisation map

MX |ξ′ !MX |ξ.
Precisely, ξ and ξ′ correspond to subsets I, I ′ ⊆ [k], and the condition ξ′ ∈ ξ is equivalent to
I ⊆ I ′. The generisation map is simply the projection

NI′ ! NI .

This data — stalks on strata, connected by generisation maps — produces what is known
as a constructible sheaf on X. As you can see, this is a very combinatorial object. For
example, its global sections are given by the inverse limit of the diagram of stalks connected
by generisation maps:

Γ(X,MX) = lim
 −
p∈X

MX |p.

Being an indexing sheaf for monomial functions, MX is a sheaf of monoids. We have suc-
cesfully upgraded our indexing set Nk to an indexing sheaf MX .
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Step II: Monomials associated to indices. It remains to upgrade the map (3) associating
to each index its actual monomial. This is straightforward: Div(X) is replaced by DivX , the
sheaf of generalised Cartier divisors on X. This is defined by

DivX(U) = Div(U)

for every open U ⊆ X. The scary font is to warn you that this is no ordinary sheaf: it is
actually a symmetric monoidal stack over X. This extra layer of theory has to do with the
fact that each si is only well-defined up to scaling by units, and we need some way of keeping
track of different choices. Ultimately this turns out to be important, but we won’t worry
about it too much in these lectures.

Putting everything together, we have a sheaf MX indexing the monomials, and a morphism
recording the monomial associated to each index:

MX ! DivX .

This generalises, and we finally arrive at our general definition:

Definition 7.2.1. A prelogarithmic structure on a scheme X consists of a constructible
sheaf of monoids MX on X, and a morphism of symmetric monoidal stacks:

(4) δ : MX ! DivX .

To align with existing notation, we write MX for a prelogarithmic structure. At the moment
this is simply a wrapper for the data (MX , δ).

This “definition” is really a theorem, due to Borne–Vistoli [BV12] and anticipated by
Olsson [Ols03].15 The “usual” definition of a prelogarithmic structure looks quite different.
We will discuss the equivalence of the two definitions in Section 7.4, where we will also
explain what distinguishes a logarithmic structure from a prelogarithmic structure (don’t
worry about the “pre” for now: the above definition captures the key ideas).

7.3. Non-divisorial examples. The key benefit of Definition 7.2.1 is that it pulls back:
given a morphism f : Y ! X of schemes and a prelogarithmic structure MX on X, we obtain
a prelogarithmic structure MY := f ⋆MX on Y as follows. The ghost sheaf is taken to be the
pullback:

MY := f−1MX

and the map MY ! DivY is obtained by composing the map f−1MX ! f−1DivX with the
map

f−1DivX ! DivY

(L, s) 7! (f ⋆L, f ⋆s).

This is a bit abstract, and is best understood via examples. We now present two. Both
are non-divisorial, and hence fall outside the scope of the previous section. They share a
common theme: both are obtained from a divisorial prelogarithmic structure by pullback
(and as a result encode information concerning a deformation of the underlying scheme). In
a sense which will be made precise in Section 8.2.4 , all sensible prelogarithmic structures
can be obtained from a divisorial prelogarithmic structure by pullback.

15This was in turn inspired by earlier work of Deligne and Faltings [Fal90], see [Kat89, Complement 1].
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7.3.1. Logarithmic points. Consider X = A1
t equipped with the prelogarithmic structure

associated to the divisor D = (t = 0). This means that ghost sheaf MA1 has stalk N at the
origin and 0 elsewhere, and the map MA1 ! DivA1 is given by

N! Div(U)

1 7! (OU , t)

for every open set U ⊆ A1
t containing the origin. Consider now the inclusion of the origin

ι : Spec k ↪! A1
t.

We pull back the prelogarithmic structure from A1
t to Spec k. The ghost sheaf MSpec k has

a single stalk, namely N. Since the function t on A1
t restricts to 0 on Spec k, the map

δ : MSpec k ! DivSpec k is defined on the unique nonempty open subset of Speck by:

δ : N! Div(Speck)

n 7!

{
1 if n = 0,

0 if n ̸= 0.

The scheme Speck equipped with this prelogarithmic structure is known as the standard
logarithmic point. We denote it (Spec k,N). Conceptually, it is the scheme Spec k
equipped with the monomial function t. This function happens to vanish identically on
Spec k, but this is unimportant: the logarithmic structure still treats it as a monomial. We
see that for a logarithmic scheme there can actually be more monomials than functions. No-
tice in particular that this logarithmic structure does not arise from any divisor on Speck.
Rather, the logarithmic structure is “remembering” the fact that Speck once sat inside the
larger scheme A1

t.
This generalises: we can embed Spec k as the origin in Ak and pull back. The resulting

prelogarithmic structure can be defined intrinsically on Spec k by taking MSpec k = Nk and
taking δ to be the map

δ : Nk ! Div(Speck)

m 7!

{
1 if m = (0, . . . , 0),

0 if m ̸= (0, . . . , 0).

Again, the prelogarithmic structure is remembering the fact that Speck once sat inside a
larger scheme. We denote this prelogarithmic scheme (Speck,Nk).

7.3.2. Logarithmic curves. Now consider a curve consisting of two irreducible components
meeting at a node:

C = C1 ∪q C2.

We can smooth out the node in a one-parameter family, producing a smooth surface S and
a flat morphism

S

Spec kJtK

π
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whose general fibre is a smooth curve and whose central fibre is identified with C. The
central fibre π⋆(0) = C1 + C2 is a simple normal crossings divisor in S and we equip S with
the divisorial prelogarithmic structure. We then pull this back along the inclusion C ↪! S
of the central fibre. This produces a prelogarithmic structure on the curve C whose ghost
sheaf is illustrated below:

(5) N2

π1

π2

q

N
C1

N
C2

The stalks are interpreted as follows:

• At the node q the stalk of the ghost sheaf is N2. This indexes monomials in the
functions z1, z2 cutting out the irreducible components C1, C2. Pure powers zc11 and
zc22 define interesting functions, but any multiple of the product z1z2 will vanish
identically. Nevertheless, the logarithmic structure encodes all these monomials,
vanishing and nonvanishing.

• Away from the node, the stalk of the ghost sheaf is N. This indexes powers of the
function zi cutting out the irreducible component Ci on which we find ourself. This
function vanishes identically on the given irreducible component, similar to what we
saw for logarithmic points above.

As with the logarithmic points above, we think of the prelogarithmic structure here as
remembering the fact that C once sat inside a large scheme, namely S. In this case, it is
simply remembering the fact that C came with a smoothing.

In this specific example, the prelogarithmic structure does not actually carry any extra
information: there is a unique way to smooth out a curve with a single node in such a way
that the total space S is smooth. There are two generalisations we can consider, both leading
to prelogarithmic structures carrying interesting information:

(1) We could allow the total space S to be singular (see Section 7.6). This amounts
to allowing different speeds of node smoothing. This speed will be recorded in the
logarithmic structure.

(2) We could start with a more complicated curve. If C contains multiple nodes, then in
a one-parameter family we get to decide the relative speeds of the node smoothings.
Again these speeds will be recorded in the logarithmic structure.

These two extensions concern two orthogonal notions of speed: we refer to them as the
absolute exponential speed and the relative multiplicative speed, respectively. We
will explore both of these: the former in Section 7.6.4 and the latter in Exercise 8.8.6.

7.4. Units and logarithmic structures. Let us return to Definition 7.2.1 of a preloga-
rithmic structure. We already noted that this differs from the “usual” definition, see e.g.
[Kat89, Ogu18]. We now explain the connection.
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Definition 7.4.1 (The “usual” definition). A prelogarithmic structure on a scheme X
consists of a sheaf of monoids MX on X and a morphism of monoid sheaves

α : MX ! OX

where OX is viewed as a sheaf of monoids under multiplication. A prelogarithmic structure
is a logarithmic structure if and only the restriction of α induces an isomorphism:

(6) α−1(O⋆
X)

∼=
−! O⋆

X .

Unlike MX , the sheaf MX is not constructible, and is rarely even finitely-generated. The
relationship between MX and MX is encoded in a short exact sequence. Given a logarithmic
structure, the isomorphism (6) gives an inclusion O⋆

X ↪! MX and we obtain a short exact
sequence of monoid sheaves:

1! O⋆
X !MX !MX ! 0.

In short:

• MX indexes all monomials, including unit factors.
• MX indexes monomials modulo units.

The condition for a prelogarithmic structure to be a logarithmic structure implies that the
units in MX are precisely a copy of O⋆

X :

M⋆
X = α−1O⋆

X
∼= O⋆

X .

This means that nontrivial elements of MX should not index units. This leads to the
following:

Definition 7.4.2. Let MX = (MX , δ) be a prelogarithmic structure in the sense of Defini-
tion 7.2.1. This prelogarithmic structure is a logarithmic structure if and only if

δ(m) ∼= (OU , 1) ⇒ m = 0

for every open set U ⊆ X and section m ∈MX(U).

All prelogarithmic structures we have considered so far have in fact been logarithmic
structures. Every prelogarithmic structure induces a logarithmic structure which satisfies a
universal property. Using Definitions 7.2.1 and 7.4.2 this is very easy: simply quotient MX

by the kernel of δ. For the construction using Definition 7.4.1, see [Kat89, Section 1.3].

7.5. Morphisms. Since logarithmic structures encode monomials, it stands to reason that
a morphism of logarithmic schemes should pull back monomials to monomials. The defini-
tion consists of two steps: we first encode how the indices pull back, and then encode an
identification between the associated monomial functions.

Definition 7.5.1. A morphism of logarithmic schemes f : (X,MX)! (Y,MY ) consists of
a morphism of schemes f : X ! Y , a morphism of sheaves

(7) f ♭ : f−1MY !MX

and a system of isomorphisms in DivX

(8) f ⋆δ(m) ∼= δ(f ♭m)
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for all sections m ∈MX , compatible with the monoid structure. In fancy language, the data
of (7) and (8) consist of the data of a 2-commuting diagram of monoidal stacks:

f−1MY MX

f−1DivY DivX .

f♭

δ ⇒ δ

f⋆

Note that the isomorphisms (8) are part of the data: sometimes there is a unique choice,
but sometimes there is continuous moduli of choices. We will encounter this phenomenon
when we explore morphisms of logarithmic schemes, in Exercises 8.8.1 and 8.8.2.

7.6. Singular monoids. We have introduced monoids and explained how they are well-
adapted to studying monomials. However, we haven’t used monoids to their full potential:
so far we have only considered free monoids Nk. This’d be a bit like working in algebraic
geometry and only ever considering smooth varieties (in turn, this’d be a bit like visiting the
Philippines and spending all your time in the resort; you’d enjoy a well-deserved break, but
you’d be missing out on so much).

7.6.1. A singular monoid. Consider the subset Q ⊆ Z2 consisting of the lattice points con-
tained in the following convex cone:

(0, 0) a

c

b

Convexity implies that this is closed under addition, and hence forms a monoid. As a monoid,
it is generated by a = (1, 0), b = (1, 2), c = (1, 1). These satisfy the single relation a+ b = 2c.
This establishes an isomorphism:

Q ∼= N3
abc/(a+ b = 2c).

One way to see that Q is not isomorphic to a free monoid is to consider the monoid ring
k[Q]. This exponentiates16 the linear relation amongst generators, giving

k[Q] ∼= k[x, y, z]/(xy = z2).

The corresponding variety has a singularity at (0, 0, 0), and hence k[Q] is not isomorphic
to the monoid ring k[Nk] ∼= k[x1, . . . , xk] arising from a free monoid. We think of Q as a
singular monoid.

16We see here a possible origin of the term “logarithmic geometry.” We pass from monoids to rings by
exponentiating the generators and relations, and conversely given a ring defined using binomial relations, we
pass to the associated monoid by taking the logarithm of the generators and relations.
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7.6.2. A singular logarithmic scheme. We have constructed a singular monoid Q. What is
this good for? Remember that we wish to use our monoids to index monomials. Consider
the variety:

W = Speck[Q] = (xy = z2) ⊆ A3
xyz.

The variety W contains a bounary divisor (z = 0) which decomposes into two irreducible
components:

(z = 0) = (z = x = 0) ∪ (z = y = 0) ⊆ W.

We wish to equip W with the divisoral logarithmic structure corresponding to the divisor
(z = 0). Since W is singular, this falls outside the scope of the simple normal crossings
divisorial logarithmic structures constructed in Section 7.2.

In this more general setting, the monomials we wish to index are precisely the functions
which vanish away from the divisor (z = 0). Of course we have the function z itself, but we
also have the functions x and y, since

z ̸= 0 ⇒ x ̸= 0 and y ̸= 0.

Therefore the logarithmic structure encodes precisely the monomials in the functions x, y, z.
Crucially, however, these functions have a dependency, namely xy = z2 (this did not occur
for simple normal crossings divisors). Instead of the indexing monoid N3, we thus obtain the
indexing monoid

N3
abc/(a+ b = 2c) ∼= Q.

This gives the stalk of the ghost sheaf at the singular point (0, 0, 0). The other stalks are
illustrated in the following diagram:

W = (xy = z2) ⊆ A3
xyz

Q(0, 0, 0)

N
(z=x=0)

N
(z=y=0)

0

Exercise 7.6.3. Describe the two generisation maps Q! N for the ghost sheaf above.

More directly, and closer in spirit to Definition 7.4.1, the logarithmic structure on W is
given by specifying a submonoid of the coordinate ring, namely the image of the map

Q! k[Q].
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Although W is singular, when it is equipped with this logarithmic structure it becomes
logarithmically smooth. This is an instance of the phenomenon of hidden smoothness in
logarithmic geometry (see Section 14.1).

7.6.4. Logarithmic curves revisited. In the previous section we constructed a singular monoid
Q and studied the associated variety W = Speck[Q]. Here is an important situation in which
Q arises naturally.

Consider again the nodal curve C = C1 ∪q C2 from Section 7.3.2. As before we will take
a one-parameter smoothing of C:

S

Spec kJtK.

However, unlike before, we will not assume that the total space S is smooth. Rather we will
assume that, local to the node q ∈ C, S is defined by the equation

z1z2 = t2.

Therefore, locally, S is isomorphic to the variety W = Spec k[Q] considered in the previous
section. Here t is the equation of the central fibre, while z1, z2 are the equations of the
components C1, C2 inside the central fibre C. Compared to the previous model (z1z2 = t),
we think of the new model (z1z2 = t2) as smoothing the node slower : when t2 = 0 the old
model is already smooth, whereas the new model doesn’t become smooth until t3 = 0, which
we think of as requiring that t is further from 0.

As in Section 7.3.2, we equip S with the divisorial logarithmic structure corresponding to
the central fibre and then pull it back to the central fibre. The logarithmic structure on S is
essentially described in the previous section. When we pull back to the central fibre C, we
obtain a logarithmic structure whose ghost sheaf is:

Q = N3
a1a2c

/(a1 + a2 = 2c)q

N
C1

N
C2

Thus we have two different logarithmic structures on the same underlying curve C. They
can be distinguished already at the level of ghost sheaves. They both encode smoothings of
C, but differ because these smoothings have different (exponential) speeds.

In Section 7.3.2 we also had monomials in z1, z2, t. However the relation t = z1z2 allowed
us to eliminate a variable and express all our monomials as monomials in z1, z2. This is how
we ended up with free monoids. In the current setting we cannot eliminate any variables.

A more complicated example is explored in Exercise 8.8.6.
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7.7. History and references. Logarithmic structures were introduced in unpublished work
of Fontaine and Illusie, motivated by arithmetic geometry. The theory was first written
down and developed by K. Kato [Kat89]. F. Kato studied logarithmic deformation and the
important case of logarithmic curves [Kat00]. The subject was revolutionised by the work of
Olsson connecting logarithmic structures to algebraic stacks [Ols03]. The unusual definition
of logarithmic structures given above, and its equivalence with the usual definition, appears
in work of Borne and Vistoli [BV12]. For modern references, see [ACG+10] or [Ogu18].

8. Logarithmic geometry II: toric models and Artin fans

8.1. Toric varieties. The treatment of the monoid Q in Section 7.6.1 may have felt familiar:
we have seen very similar constructions in our treatment of toric varieties. In fact, there is
a bijective correspondence:

{toric monoids} ! {normal affine toric varieties}
Q ! Spec k[Q].

A monoid Q is toric if it appears as

Q = σ∨ ∩M
where M is a lattice and σ ⊆ NR is a convex rational polyhedral cone. A monoid is toric if and
only if it is finitely-generated, torsion-free, integral, and saturated; for a list of terminology
see [Che14b, Appendix A]. Given a toric monoid Q = σ∨ ∩M we write

Uσ = Speck[Q]

for the corresponding affine toric variety. This variety carries a natural collection of monomial
functions, given by the image of the map:

Q! k[Q].

Thus every affine toric variety Uσ carries a natural logarithmic structure. This is precisely
the divisorial logarithmic structure corresponding to the boundary ∂Uσ ⊆ Uσ given by the
complement of the dense torus. In fact, Spec k[Q] is the universal scheme which carries
monomial functions indexed by Q. Because of this, affine toric varieties form the fundamental
building blocks for all logarithmic schemes. This is expressed through the notion of toric
models, which we now turn to.

8.2. Toric models. Given a logarithmic scheme (X,MX) and a point p ∈ X we can extract
a monoid, namely the stalk of the ghost sheaf:

Q = MX |p.
If we insist that all stalks are toric monoids, then Q is dual to a cone σ and produces an
affine toric variety:

Uσ = Speck[Q] = Speck[MX |p].
Thus, we have a cone and a corresponding affine toric variety attached to every point p ∈ X.
We now explore these in more detail. Some of the following will be familiar from Sections 4
and 5.
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8.2.1. Simple normal crossings pairs. We begin in a familiar setting. Consider, as in Sec-
tion 7.2, a simple normal crossings pair

(X|D = D1 + . . .+Dk).

Fix a subset I ⊆ [k] and a point p in the corresponding locally-closed stratum:

p ∈ (∩i∈IDi) ∖
(
∪i∈[k]∖IDi

)
.

Let n = dimX. Since the pair (X|D) is simple normal crossings, there is an open neigh-
bourhood V ⊆ X of p and an isomorphism

V ∼= An

which sends p to the origin and identifies the divisor components {Di : i ∈ I} with the first
|I| coordinate hyperplanes. The divisorial logarithmic structure on V is pulled back from the
divisorial logarithmic structure on An corresponding to the first |I| coordinate hyperplanes.
Unless |I| = n this is not quite the toric boundary, but this is easily remedied. We replace
V by a slightly smaller open set and obtain an isomorphism

V ∼= A|I| ×Gn−|I|
m

which sends p to the point (0, . . . , 0, 1, . . . , 1). Again this identifies the divisor D with the
first |I| coordinate hyperplanes, but now this is the entire toric boundary! To summarise, X
is covered by open sets V equipped with isomorphisms

(9) V ∼= Uσ

which identify D with the toric boundary ∂Uσ. Here σ is a rational polyhedral cone and Uσ

is the associated affine toric variety. The isomorphism (9) is called a local toric model.

8.2.2. Toroidal embeddings. In the above the cones σ are all smooth, but there is no reason
to impose this. This leads us to the following definition, which dates back to the earliest
days of toric geometry but has been somewhat forgotten over the years.

Definition 8.2.3 ([KKMSD73]). A toroidal embedding is a pair (X|D) such that, locally
on X there exists an isomorphism to an affine toric variety

V ∼= Uσ

which identifies D with the toric boundary ∂Uσ. In other words, a toroidal embedding is a
pair (X|D) produced by patching together local toric models.

8.2.4. Logarithmic schemes. In the previous definition, requiring that the isomorphism iden-
tifies the boundary divisors is equivalent to requiring that it identifies the associated divisorial
logarithmic structures. Viewing a general logarithmic structure as the pullback of a divisorial
one, we are led to the following definition:

Definition 8.2.5. An fs logarithmic scheme17 (X,MX) is a logarithmic scheme such that,
locally on X, there exists a morphism to an affine toric variety

(10) V ! Uσ

17“Fs” stands for “fine and saturated” which itself stands for “coherent, integral and saturated”. “Coher-
ent” is the condition that finitely-generated local models exist, whilst “integral and saturated” is a condition
on the monoids giving those models, which guarantees that they are toric.
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such that the logarithmic structure MX |V is the pullback of the logarithmic structure on Uσ

corresponding to ∂Uσ. The morphism (10) is called a local toric model. Note that it is
not necessarily an isomorphism.

How do we find the local toric model Uσ around a point p ∈ X? For simple normal
crossings pairs, the corresponding monoid is given by NI which is the stalk of the ghost
sheaf. More generally, given any logarithmic scheme we consider:

Q = MX |p.
The local toric model near p ∈ X is then given by the affine toric variety Speck[Q]. The
local toric model

(11) V ! Spec k[Q]

is obtained from the generalised Cartier divisors associated to the elements of Q, by restrict-
ing to an open set on which they trivialise. The morphism (11) is referred to as an atomic
chart, see [MW22, Proposition 2.2.2.5].

8.3. Artin cones. Fix an fs logarithmic scheme (X,MX). The local toric models for
(X,MX) are precisely that: local. There is no sensible way to glue the toric varieties Uσ into
a toric variety Z and obtain a global morphism X ! Z. This is because each local toric
model is not unique: given a local toric model

V ! Uσ

and any element of the dense torus Tσ we can use the action Tσ ↷ Uσ to obtain another,
distinct model. Artin cones provide a formalism for producing unique local models, and
mediate the close relationship between logarithmic geometry and the theory of stacks.

Definition 8.3.1. Given a cone σ the associated Artin cone is the stack quotient

Aσ := [Uσ/Tσ]

where Uσ is the toric variety associated to σ and Tσ ↷ Uσ is the dense torus.

The stack quotient was defined in Section 2.4.11, but don’t worry too much about the
formal definition right now; we will demystify it shortly. Consider instead what happens
when we postcompose the local toric model with the quotient morphism:

V ! Uσ ! Aσ.

However the quotient Aσ is defined, any sensible definition must identify all the previously
distinct models, giving rise to a unique morphism

(12) V ! Aσ.

This is not technically a toric model since Aσ is not a toric variety. However it clearly
exhibits toric aspects: Aσ is constructed directly from the cone σ. Moreover Aσ carries
a logarithmic structure induced by the boundary ∂Aσ = [∂Uσ/Tσ], and pulling back this
logarithmic structure along (12) produces the logarithmic structure MX |V .
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Example 8.3.2. Consider a simple normal crossings divisor of the following form:

(13)

D1

p12

D2

p23

D3

We choose open sets V12, V23 around the closed points p12, p23, such that Vij only intersects
the locally closed strata containing pij. Then V2 := V12∩V23 is an open set around an interior
point of D2:

V12 V23

V2 := V12 ∩ V23

Examining the local models, we obtain unique local maps to Artin cones:

V12 ! [A2/G2
m],

V23 ! [A2/G2
m],

V2 ! [A1/Gm].

We have actually already encountered these maps, in disguise. Recall that the morphism
MX ! DivX in Section 7.2 encoded a collection of generalised Cartier divisors on X. On
the other hand, a map

X ! [A1/Gm]

is precisely the data of a generalised Cartier divisor (L, s) on X. This follows formally from
the definition of the stack quotient, but it is also easy to justify intuitively. A section of a
line bundle is equivalent to a collection of local functions which differ by units on overlaps
(these units define the transition functions for the line bundle). Since a function is the same
thing as a morphism to A1 we see see that a collection of local functions differing by units on
overlaps (and well-defined up to global multiplication by a unit) is precisely the same thing
as a global map X ! [A1/Gm].

Thus, the above maps Vij ! [A2/G2
m] = [A1/Gm]2 precisely encode the monomials in the

equations of the local divisor branches, as discussed in Section 7.2. We thus observe an
equivalence of data {

toric models
}
 !

{
monomial functions

}

which unites Sections 7 and 8. Philosophically this equivalence makes sense: because toric
varieties are the universal schemes equipped with monomial functions, giving a toric model
is equivalent to giving a collection of monomial functions.

In summary, we have modified the notion of “toric model” to mean a map to an Artin
cone, instead of a map to an affine toric variety. Doing so produces a unique toric model
around each point. Uniqueness is the key ingredient which we now use to glue the local

65



models Aσ into a global model. To achieve this, we first need to understand how the local
cones σ vary as we move around X. This is captured in the notion of tropicalisation.

8.4. Tropicalisation. We saw the divisorial case of this construction in Sections 4 and 5.

8.4.1. Construction. Recall from Section 8.2.4 that the cones σ defining the local models Aσ

are dual to the stalks of the ghost sheaf. Given generic points ξ, ξ′ of locally closed strata in
X, with ξ′ ∈ ξ, there is a generisation map:

MX |ξ′ !MX |ξ.
By assumption the stalks are toric monoids, hence the above map dualises to a map of cones:

σ′  σ.

A key fact, which follows from the definition of fs logarithmic scheme (Definition 8.2.5), is
that σ ! σ′ is always a face inclusion.

Exercise 8.4.2. Prove that σ ! σ′ is a face inclusion.

Ranging over generic points of locally closed strata in X, we obtain a diagram of cones
connected by face inclusions. We refer to this as the tropicalisation of the logarithmic
scheme (X,MX) and denote it:

Trop(X,MX) or Σ(X,MX).

8.4.3. Examples and properties. The tropicalisation is an abstract cone complex: it resembles
the fan of a toric variety, however it does not come with a preferred embedding into a vector
space. Two simple cases are already familiar:

(1) Consider a logarithmic scheme (X,MX) arising from a simple normal crossings divisor
D ⊆ X. Then Trop(X,MX) is the cone over the dual intersection complex of D.

(2) Consider a logarithmic scheme (X,MX) arising from a toric pair (X, ∂X). This
is included in the previous case if X is smooth, but otherwise it is new. Then
Trop(X,MX) is the fan of X, viewed as an abstract cone complex (i.e. without its
preferred embedding into N ⊗ R).

By construction, the cones of Trop(X,MX) are in inclusion-reversing bijection with the
strata of (X,MX), generalising the orbit-cone correspondence in toric geometry. Many other
features of fans generalise, most notably: subdivisions of the tropicalisation induce birational
modifications of the scheme, and piecewise-linear functions on the tropicalisation induce gen-
eralised Cartier divisors on the scheme (see Section 4.5 for a discussion in the case of simple
normal crossings paris). These are crucial techniques, underpinning the myriad applications
of logarithmic geometry to moduli theory.

8.4.4. Tropicalising a logarithmic curve. Recall the logarithmic curve (C,MC) constructed
in Section 7.3.2. This was obtained by choosing a smoothing π : S ! Spec kJtK of C, taking
the divisorial logarithmic structure on S with respect to the central fibre C, and then pulling
back along the inclusion C ↪! S of that central fibre.
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Equipping the base SpeckJtK with the logarithmic structure corresponding to (t = 0) we
see that π pulls back monomial functions to monomial functions, hence gives a logarithmic
morphism. Restricting to the central fibre, we obtain a logarithmic morphism

(14) (C,MC)! (Spec k,N)

where the target is the standard logarithmic point (see Section 7.3.1). We will now tropicalise
this map: tropicalisation is functorial, so we will obtain a map between the tropicalisations.

The target is easy: the ghost sheaf constitutes a single stalk, namely N. The corresponding
cone is σ = R⩾0 and therefore

Trop(Spec k,N) = R⩾0.

The source is almost as easy. The stalks of the ghost sheaf are illustrated in (5). There is a
single maximal cone σ = R2

⩾0 attached to the node, and we obtain:

Trop(C,MC) = R2
⩾0.

What about the map between tropicalisations? The logarithmic morphism (14) induces a
pullback of stalks of ghost sheaves. Since (t = 0) ⊆ Spec kJtK pulls back to the reduced
union of the two central fibre components in S, the pullback map on ghost sheaves is:

N! N2

1 7! (1, 1).

Dualising, we obtain the following map of cones:

Trop(C,MC) = R2
⩾0 ! R⩾0 = Trop(Spec k,N)

(a1, a2) 7! a1 + a2.

We illustrate this as follows:

Trop(C,MC)

Trop(π)

Trop(Spec k,N)

A fibre is indicated in blue. This fibre is a tropical curve: a finite metrised graph. Notice
that the graph is precisely the dual graph of C: the vertices correspond to the irreducible
components, the edge corresponds to the node. The fact that the edge contracts as we
move towards zero in the base records the fact that the node smooths out in the family
S ! Spec kJtK.
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We conclude that tropicalising a logarithmic curve produces a tropical curve. This is an
instance of faithful tropicalisation. Note that tropicalising a single logarithmic curve gave
rise to a family of tropical curves. This is because, as already discussed in Section 7.3.2, the
logarithmic structure captures remnants of a smoothing.

8.5. Artin fans. We now use the data of the tropicalisation to glue the local Artin cones
discussed in Section 8.3. The result will be a global object, called the Artin fan. This is
constructed, in a canonical way, from the tropicalisation. To see how it works, consider a
simple normal crossings divisor as in Example 8.3.2. We first construct the tropicalisation.
There are generisation maps of monoids

M ξ1 Mp12 M ξ2 Mp23 M ξ3

N N2 N N2 Nπ1π2 π1 π2

giving rise to face inclusions of cones:

R⩾0 R2
⩾0 R⩾0 R2

⩾0 R⩾0
i2 i1 i1 i2

The tropicalisation is give by the following cone complex. Each cone is labelled by the
corresponding stratum in (X,MX):

D3

D2

D1

p23p12

This cone complex is constructed by gluing two copies of R2
⩾0 along a face R⩾0. Likewise,

the Artin fan will be constructed by gluing two copies of [A2/G2
m] along an [A1/Gm]. The

trick here is to recognise that

[A1/Gm] = [(A1 ×Gm)/G2
m] = [(Gm × A1)/G2

m].

From this, we obtain open embeddings, which we use to glue:

(15) [A2/G2
m] [A1/Gm] [A2/G2

m].

Gluing via (15), we obtain an Artin stack contaning both copies of [A2/G2
m] as dense opens.

We refer to the result as the Artin fan of (X,MX) and denote it

A(X,MX).

It is profitable to think of this as a finite topological space, whose points correspond to the
cones in Trop(X,MX) and carry isotropy depending on the dimension of the cone. In our
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example we have

BGm BG2
mBG2

m

BGmBGm Spec k

where the arrows indicate specialisation. Now, the unique local models V ! Aσ constructed
in Section 8.3 glue to a unique global morphism

X ! A(X,MX)

which encodes the logarithmic structure MX , in the sense that MX is the pullback of the
toric logarithmic structure on A(X,MX).

Remark 8.5.1. The construction of the Artin fan from the tropicalisation can be reversed.
Modulo certain subtleties and caveats, [CCUW20, Theorem 3] establishes an equivalence of
categories: {

cone complexes
}
 !

{
Artin fans

}
.

8.6. History and references. As remarked, toroidal embeddings date to the origins of toric
geometry [KKMSD73, Oda81]. Artin fans were introduced by Abramovich–Wise in [AW18]
based on ideas of Olsson [Ols03]. They play a key role in Gromov–Witten theory where they
function as universal targets (more on this later). For an overview of tropicalisations, Artin
fans, and related structures, see [ACM+16].

8.7. Where to from here? The best way to gain an appreciation for logarithmic geometry
is to see it in action. Applications are manifold, and later lectures will focus on two important
instances of very different flavours: Gromov–Witten theory and resolution of singularities.

8.8. Exercises. These exercises pertain to both Section 7 and Section 8.

Exercise 8.8.1 (Morphisms of divisorial logarithmic schemes). Fix two simple normal
crossings pairs equipped with their associated divisorial logarithmic structures:

(X|D) = (X|D1 + . . .+Dk), (Y |E) = (Y |E1 + . . .+ El).

Given a morphism of schemes f : X ! Y , prove the following:

(1) If f−1E ⊆ D18, there is a unique enhancement of f to a logarithmic morphism.
(2) If f−1E ̸⊆ D, there is no enhancement of f to a logarithmic morphism.

Exercise 8.8.2 (Morphisms of logarithmic points). Recall that (Speck, Q) denotes the
logarithmic point with ghost sheaf given by the monoid Q.

18Set-theoretically, i.e. ignoring the non-reduced structure of f−1E.
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(1) Show that there exists a unique logarithmic morphism

(Spec k,N)! (Spec k, 0).

(2) Show that there is no logarithmic morphism

(Spec k, 0)! (Spec k,N).

(3) Show that there exists a Gm of distinct logarithmic morphisms

(Spec k,N)! (Spec k,N)

covering the identity N! N on ghost sheaves.
(4) Find the moduli of distinct logarithmic morphisms

(Spec k,N)! (Speck,Nk)

covering the sum map Nk ! N. Interpret this in terms of tangent vectors in Ak.

Exercise 8.8.3 (Logarithmic regularity). Fix a logarithmic scheme (X,MX) and a point
x ∈ X. Working locally, each element m ∈ MX,x defines a generalised Cartier divisor,
whose line bundle we may trivialise to obtain a function

fm ∈ OX,x

well-defined up to units. We define the logarithmic ideal at x as follows:

IX,x := (fm | m ∈MX,x ∖ {0}).

The logarithmic nucleus at x is the vanishing of this ideal:19

V(IX,x) ↪! SpecOX,x.

(1) Let X = A2
xy and let D ⊆ X be the union of the two coordinate axes. Equip

X with the associated divisorial logarithmic structure. Compute the logarithmic
nucleus V(IX,x) for all x ∈ X and thereby show that V(IX,x) is always non-
singular.

We now introduce a mildly pathological logarithmic structure on X = A2
xy which differs

from the divisorial logarithmic structure considered above. The union D of the two
coordinate axes is defined by a single equation:

D = V(xy) ⊆ A2
xy = X.

We define a logarithmic structure on X encoding this single equation. To achieve this
we take MX = ND, with associated monomial function:

N! Div(X)

1 7! (OX , xy).

(2) Contrast this with the divisorial logarithmic structure considered in (1). The
difference is visible already at the level of ghost sheaves.

(3) Compute the logarithmic nucleus V(IX,x) for all x ∈ X and thereby find an x ∈ X
such that V(IX,x) is singular.
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A logarithmic scheme is logarithmically regular at x ∈ X if V(IX,x) is non-singular
and:

dimxX = dimxV(IX,x) + rkMX,x.

To quote Ogus, a logarithmic scheme is logarithmically regular if “its singularity is com-
pletely accounted for by its logarithmic structure” [Ogu18, III.1.11].

(4) Let X = (Speck,N) be the standard logarithmic point. Compute V(IX,x) and
thereby show that X is not logarithmically regular.

(5) Let X be a normal toric variety (not necessarily smooth) equipped with the
divisorial logarithmic structure associated to the toric boundary. Prove that X
is logarithmically regular.

Regularity is the logarithmic notion of smoothness. This is smoothness in the absolute
sense, which in logarithmic geometry means smoothness of the structure morphism X !
(Spec k, 0) to the trivial logarithmic point.

Relative notions of smoothness are also important: for example, logarithmic curves
are typically singular over the trivial logarithmic point (Speck, 0), but smooth over the
standard logarithmic point (Spec k,N). We will encounter these relative notions in Sec-
tion 14.

Exercise 8.8.4 (Logarithmic differentials). There is an alternative characterisation of
logarithmic regularity/smoothness, namely that the sheaf of logarithmic differentials
is locally free. This exercise explores logarithmic differentials on singular affine toric
varieties, thereby showing that these spaces are logarithmically smooth.

(i) Given a ring R, remind yourself how the R-module ΩR of Kähler differentials is
defined.

Now take R = k[x, y, z]/(xy − z2) and let X = SpecR (this is a singular toric variety).

(ii) Find a presentation for ΩR.

(iii) Prove that ΩR is not locally free, and hence that X is not smooth. (Hint: compare
the stalks ΩR ⊗R R/m for different maximal ideals m◁R.)

As in Section 7.6, we equip X with the logarithmic structure corresponding to the toric
boundary ∂X. This gives rise to an R-module Ωlog

R of logarithmic differentials. Instead
of formally defining this module, we present an ad hoc method for computing it:

• Generators: dx/x, dy/y, dz/z (differentials with “logarithmic poles” along D).
• Relations: Obtained from the relation(s) in ΩR by dividing through by arbitrary

monomials in x, y, z (provided that the result is still an R-linear combination of
the above generators).

Using this method:

19If you are unhappy with Spec of the local ring, simply choose a small open set U around x and replace
MX,x and OX,x with MX(U) and OX(U) respectively.
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(iv) Write down a presentation for the R-module Ωlog
R and thereby show that it is free

of rank 2.

It follows that X = SpecR equipped with the toric logarithmic structure is logarithmi-
cally smooth (although X itself is singular). Now repeat the above steps for the following
affine toric varieties:

(v) R = k[x, y, z]/(xy − zn) for n ⩾ 2.

(vi) R = k[x, y, z, w]/(xy − zw).

The way we have introduced logarithmic differentials is a bit ad hoc, though tremendously
useful in practice. There is of course a more conceptual approach.

(vii) Look up the formal definition of logarithmic differentials (see e.g. [ACG+13,
Proposition 3.4]) and relate it to the presentations you found above.

Exercise 8.8.5 (Logarithmic modifications). Consider the logarithmic curve (C,MC)
from Section 7.3.2. Recall from Section 8.4.4 that its tropicalisation is a quadrant:

Σ = Σ(C,MC) = R2
⩾0.

Subdivide this tropicalisation by introducing a diagonal ray:

Σ′ Σ = R2
⩾0

This induces a logarithmic modification (C ′,MC′) ! (C,MC), generalising the cor-
respondence between birational modifications and subdivisions discussed in Section 4.5.
The logarithmic modification is defined by fibring over the induced map of Artin fans:

C ′ C

AΣ′ AΣ.

□

Describe the underlying scheme C ′.
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Exercise 8.8.6. Let C be a nodal curve consisting of a chain of three P1s:

C1

q1

C0 C2

q2

We will enhance C to a logarithmically smooth curve over the standard logarithmic point
(Spec k,N). We take the ghost sheaf to be

N

N2

N N

N2

with the obvious generisation maps. This sheaf arises by choosing a regular smoothing
of C (a smooth surface S ! A1 whose general fibre is smooth and whose central fibre is
C), taking the divisorial logarithmic structure associated to the central fibre, and pulling
back to the central fibre.

(1) Describe the global sections of MC .

(2) Using the above interpretation via regular smoothings, describe the generalised
Cartier divisors associated to each global section of MC . (For an alternative
approach, describe them by imposing the condition given in Definition 7.4.2.)

(3) Conclude that there is a Gm worth of pairwise non-isomorphic logarithmic struc-
tures with this ghost sheaf.

(4) Generalise the above to arbitrary chains of rational curves.

Exercise 8.8.7. Fix a normal toric variety X with dense torus action T ↷ X and
toric boundary D = ∂X. We write (X|D) to denote X equipped with the logarithmic
structure corresponding to D.

(i) Prove that the Artin fan of the logarithmic scheme (X|D) is identified with the
global quotient:

AX|D = [X/T ].

(ii) Deduce that, for any two Hirzebruch surfaces Fa and Fb we have

[Fa/T ] ∼= [Fb/T ].

(iii) Give an alternative proof of the above fact using toric GIT (i.e. without patching
an open cover).

Exercise 8.8.8 (Bad monoids). We explore pathological monoids, gradually introducing
conditions which lead to an intrinsic characterisation of toric monoids. All monoids
will be finitely-generated, commutative and unital.

You should employ two different ways of constructing monoids: (i) via a presentation
(quotients of free monoids by relations make sense), and (ii) as a submonoid of a lattice
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(not necessarily the integral points of a rational polyhedral cone). If you need help, a list
of interesting monoids is provided at the end of the exercise.

(i) Given a monoid Q, construct the groupificationQgp (this is the universal abelian
group admitting a map Q! Qgp).

A monoid Q is integral if the map Q! Qgp is injective.

(ii) Find an example of a monoid which is not integral.

(iii) Prove that if k[Q] is an integral domain than Q is integral. Show that the converse
does not hold and interpret the discrepancy.

An integral monoid Q ↪! Qgp is saturated if and only if the following condition holds:
for all q ∈ Qgp, if nq ∈ Q for some n ∈ N, then q ∈ Q.

(iv) Find an example of a non-saturated monoid.

(v) (Bonus) Related saturatedness of Q to integral closedness of k[Q].

A monoid Q is sharp if the only invertible element is the identity: Q⋆ = {0}.

(vi) Prove that if Q is integral, saturated and sharp then Qgp is torsion-free. Show
that saturatedness is essential here.

A monoid is toric if it is integral, saturated, and sharp.

(vii) Prove that if Q is toric then Q ∼= σ∨∩M for a strictly convex rational polyhedral
cone σ.

For a general monoid, the map Q! Qgp induces a morphism Speck[Qgp]! Spec k[Q].

(viii) Describe this morphism for a toric monoid, then describe it for the non-toric
examples you have found above. Always keep in mind the important role played
by monomial functions.

Here is a short list of relevant monoids:

• N2/(e1 + e2 = e1).
• N2/(2e1 = 2e2).
• N∖ {1} (exercise: find a presentation for this monoid).

9. Moduli spaces, part 2

By Pierrick
Moduli spaces 2: Moduli spaces of varieties.
Prerequisite: Toric geometry, resolutions of singularities.

9.1. Introduction. The main goal of this section is to describe some aspects of the moduli
theory of varieties. The main issue is the construction of separated and proper moduli spaces.
Concretely, given a family X◦ ! C◦ of “nice” varieties that one tries to parametrize, over a
punctured smooth curve C◦ = C ∖ {0}, one would like to be able to extend it uniquely into
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a family X ! C of “nice” varieties. By the valuative criteria for separation and properness,
the existence of such an extension is related to the properness of the moduli space of “nice”
varieties, whereas the uniqueness of the extension is related to the separation of the moduli
space.

Given a smooth family X◦ ! C◦ over a punctured smooth curve, it might not be possible
to find an extension X ! C with smooth central fiber. For example, over C, there is a
purely topological obstruction given by the monodromy, viewed as an element in the mapping
class group of the general fiber [TO DO: ADD EXPLANATIONS]. Correspondingly, moduli
spaces of smooth varieties are typically non-proper. For example, the moduli spaces Mg,n

of n-marked genus g curves are non-proper for (g, n) ̸= (0, 3).
Since one cannot in general extend a smooth family X◦ ! C◦ into a smooth family

X ! C, one can ask how to guarantee the existence of such an extension by allowing
the mildest possible types of singularities in the central fiber and in the total space of the
extended family. A general answer to this question is provided, in characteristic zero, by
the semistable reduction theorem, reviewed in §9.2. The semistable reduction theorem is an
existence result and there is no uniqueness result for such an extension. In particular, this
result is not enough to construct separated and proper moduli spaces.

To construct separated and proper moduli spaces, one would like to produce a “canonical”
extension starting from any of the extensions given by the semistable reduction theorem. This
question is can be reformulated as asking for a “canonical” birational model of the total space
of the one-parameter family. For varieties of (log-) general type, such model can be taken
as the “canonical model” of the total space in the sense of birational geometry. We describe
in §9.3 how the notion of stable curve can be recovered from the birational geometry of the
2-dimensional total space of one-paramter families of curves. In §9.4, we introduce KSBA
stable varieties, which are higher dimensional versions of the stable curves, and we state the
existence of separated and proper moduli spaces of KSBA stable varieties, generalizing the
Deligne–Mumford moduli spaces Mg,n. Finally, we present in §9.5 an explicit combinatorial
description of moduli spaces of KSBA stable toric varieties. In particular, we will illustrate
the particularly nice interplay between the general notion of KSBA stable variety coming
from birational geometry, and combinatorial objects naturally attached to toric varieties,
such as the secondary fan and the secondary polytope.

9.2. Semistable reduction. We first state the general semistable reduction theorem of
Kempf–Knudsen–Mumford–Saint-Donat [KKMSD73]. We then illustrate the general theo-
rem in the context of toric families of toric varieties, where the main issues can be reformu-
lated combinatorially.

9.2.1. The semistable reduction theorem. Let C be a smooth curve, 0 ∈ C be a marked point,
and C◦ := C ∖ {0} the corresponding punctured curve. We consider families of varieties
with base C. As reviewed in §9.1, a smooth family X◦ ! C◦ might not extend to a smooth
family X ! C. In the following definition, we define a class of “semistable families”, which
contains the class of smooth families, but allow some very restricted class of singularities for
the central fiber and the total space.

Definition 9.2.2. A semistable family over the marked curve (C, 0) is an onto morphism
f : X ! C, with smooth total space X, and with central fiber X0 := f−1(0) which is
reduced, and with smooth irreducible components crossing normally.
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We can now state the semistable reduction theorem of Kempf–Knudsen–Mumford–Saint-
Donat [KKMSD73].

Theorem 9.2.3. Let k be a field of characteristic 0. Let (C, 0) be a smooth marked curve
over k, and f : X ! C be an onto morphism of varieties over k such that the restriction
X◦ ! C◦ is smooth. Then, there exists a finite morphism π : C ′ ! C, with π−1(0) = {0′},
and a projective morphism p : X ′ ! X ×C C

′, such that:

(i) p is an isomorphism over (C ′)◦,

(ii) the morphism f ′ : X ′ ! C ′, obtained as the composition X ′ p
−! X ×C C

′ ! C ′, is a
semistable family.

By Hironaka’s resolution of singularities, given f : X ! C as in Theorem 9.2.3, there
exists a projective morphism p : X ′ ! X, which is an isomorphism over C◦, such that X ′

is smooth, and the reduced central fiber (f ′)−1(0)red of f ′ := f ◦ p : X ′ ! C is a simple
normal crossing divisor on X ′. What is missing to obtain the semistable reduction theorem
is to have a reduced central fiber (f ′)−1(0). It is for this last step that a finite ramified cover
C ′ ! C is needed in general.

Example 9.2.4. The following example is the simplest illustration of the role of the finite
base change C ′ ! C in the semistable reduction theorem. Consider X = A1, C = A1, and

f : A1 −! A1

x 7−! xn ,

for some n > 1. Then, f−1(0) is the subscheme of X = A1 defined by xn = 0, that is, a
non-reduced 0-dimensional subscheme of length n. Under the base change

π : C ′ = A1 −! C = A1

t 7−! tn ,

we have X ′ := X ×C C
′ = A1, and the base change f ′ : X ′ ! C ′ is given by

π : X ′ = A1 −! C ′ = A1

x 7−! x ,

with obviously reduced central fiber (f ′)−1(0).

9.2.5. Example: toric varieties. We illustrate Theorem 9.2.3 in the context of toric varieties.
In fact, to prove Theorem 9.2.3 for toric morphisms is the heart of the proof of the general
case, and many foundational notions in toric geometry were introduced by Kempf–Knudsen–
Mumford–Saint-Donat in [KKMSD73].

Let P be a compact lattice polytope in Rn. Denote by C(P ) the cone in Rn+1 = Rn × R
over P ×{1}. Denote by X P the (n+ 1)-dimensional affine toric variety with fan the strictly
convex cone C(P ). The projection C(P )! R≥0 on the last factor of Rn ×R induces a toric
morphism

fP : X P −! A1 .

Denoting Gm := A1∖{0} ⊂ A1, we have f−1
P (Gm) = Gm×Gn

m = Gn+1
m ⊂ X P . In particular,

fP is smooth over Gm

Example 9.2.6. The polytope P is a standard simplex of dimension n, that is, P is of
volume 1

n!
, if and only if the affine toric variety X P is non-singular.
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Let P be an integral lattice polyhedral decomposition of P . Then, the cone C(P) over P
is a fan with support C(P ). We denote by XP the corresponding toric variety and XP ! X P

the corresponding toric morphism.

Definition 9.2.7. An integral lattice polyhedral decomposition P of P is unimodular if all
the n-dimensional faces of P are standard simplices.

The decomposition P is unimodular if and only if the toric variety XP is non-singular.

Exercise 9.2.8. For n = 2, show that every compact lattice polytope admits a unimod-
ular decomposition. Hint: Pick’s formula.

Exercise 9.2.9. For n ≥ 3, show that there exists compact lattice polytope which do
not admit unimodular decompositions.

The following key result of [KKMSD73] guarantees that unimodular decompositions always
exist after rescaling P .

Theorem 9.2.10. Let P be a compact lattice polytope in Rn. Then, there exists an integer
N ∈ Z>0 such that the scaled polytope NP admits an unimodular decomposition.

Theorem 9.2.10 implies the semistable reduction theorem for the toric morphism fP :
X P ! A1. Indeed, fNP : XNP ! A1 is the order N base change of fP , and, if P is an
unimodular decomposition of NP , then XP ! XNP is a simple normal crossing resolution
of XNP with reduced central fiber.

Remark 9.2.11. For every P , the affine toric variety X P has canonical singularities. If P is
an unimodular resolution of P , then XP ! X P is a crepant resolution of X P . The existence
of polytopes without unimodular decompositions in dimension n ≥ 3 implies the existence
of canonical singularities without crepant resolutions.

9.3. Stable reduction for curves and birational geometry of surfaces. The key to
the existence of the moduli stack Mg,n of n-marked genus g stable curves as separated and
proper Deligne–Mumford stack is the stable reduction theorem: possibly after a finite base
change, every one-parameter family of stable curves over a punctured curve admit a unique
extension over the puncture with a stable central fiber. In this section, we describe how to
understand this result in terms of birational geometry of the surface obtained as total space
of the one-parameter family of curves.

Let (C, 0) be an affine smooth marked curve and let f : X ! C be an onto morphism
such that the restriction f : X◦ ! C◦ away from 0 is a smooth projective family of curves
of genus g ≥ 2. By the semistable reduction theorem, modulo a finite base change of (C, 0)
and without changing X◦ ! C◦, one can assumme that X is smooth and that the central
fiber X0 := f−1(0) is reduced normal crossing in X. However such an X is very far from
unique. For example, blowing-up a point contained in X0 produces a new X with the
same properties. For moduli purposes, one would like to find a distinguished X so that the
corresponding central fiber X0 could be viewed as “the” limit of the family X◦ ! C◦. In
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other words, one would like to find a distinguished surface among all the surfaces birational to
X. The birational geometry of surfaces provide an answer: every smooth surface of general
type admits a unique “canonical model” characterized by the property that its canonical
divisor is ample. Note that such result is usually stated for projective surfaces, but there is
a direct generalization applying to surfaces projective over an affine curve, as X ! C. Since
the general fibers are curves of genus g ≥ 2, X is a surface of general type over C, and so
admits a canonical model Xcan ! C given explicitly by

(16) Xcan = ProjC
⊕

n≥0

f⋆(K
⊗n
X ) .

Birational geometry of surfaces guarantees that
⊕

n≥0 f⋆(K
⊗n
X ) is a sheaf of finitely generrated

algebras, and so the above Proj construction indeed defines Xcan as an algebraic surface.
The canonical model Xcan can be constructed explicitly starting from X, then successively
contracting all rational (−1)-curves, and then successively contracting all rational (−2)-
curves. Unlike X, the canonical model Xcan is typically singular: the contraction of a chain
of n (−2)-curves leads to an An surface singularity locally given by

xy = tn+1 .

In general, canonical models of projective surfaces of general types of “canonical singulari-
ties”, given by DuVal/ADE quotient singularities and obtained by contracting collections of
(−2)-curves with ADE Dynkin dual graphs. In our relative situation, only type A singular-
ities appear.

Now is the key point: one can check that the central fiber Xcan,0 of the canonical model
Xcan is always a stable curve. Indeed, contracting the (−1)-curves amounts to contracting
rational components of X0 with only one special point, and contracting the (−2)-curves
amounts to contracting rational components of X0 with only two special points. In other
words, the correct notion of “stable curve” is whatever appeared as central fiber of canonical
models of one-parameter families of smooth curves.

9.4. Canonical models and KSBA stable varieties. In 1988, motivated by progress in
higher-dimensional birational geometry, Kollár and Shepherd-Barron [KSB88] suggested to
generalize the logic summarized in the previous section 9.3 from curves to higher dimensional
varieties – see also Alexeev [Ale96] for the case of pairs. In the last 30 years, a general
theory of KSBA (Kollár–Shepherd-Barron–Alexeev) moduli spaces has been established, as
described in the book [Kol23].

Looking at central fibers of canonical models of one-parameter families of smooth vari-
eties of general type leads to the notion of stable pair, generalizing stable curves to higher
dimension.

Definition 9.4.1. Let X be a projective variety and D a Q-divisor on X. The pair (X,D)
is stable if:

i) (X,D) has semi-log-canonical (slc) singularities.
ii) KX +D is Q-Cartier and ample.

We now define moduli spaces of stable poairs. Let w = (w1, . . . , wn) be a sequence of
weights 0 < wi ≤ 1, and v ∈ Q>0. Let Md,w(v) be the moduli space of d-dimensional stable
pairs (X,D), endowed with a decomposition D =

∑n
i=1wiDi where Di are effective reduced
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divisors, and such that (KX + D)d = v. The correct definition of a “family” of stable pairs
is actually quite sublte – see [Kol23].

Theorem 9.4.2. The moduli space Md,w(v) is a proper Deligne–Mumford stack.

Example 9.4.3. For d = 1, w = (1, . . . , 1) and v = 2g−2+n > 0, we have Md,w(v) = Mg,n.

9.5. Secondary fan and moduli space of KSBA stable toric varieties. In this section,
we present an explicit example of the KSBA moduli spaces Md,w(v) in the context of toric
varieties.

Let P be a lattice polytope in Rn, that is the convex hull of finitely many points in Zn.
Denote by PZ the set of integral points in P , and |PZ| its cardinality. We first define a fan

S̃ec(P ) in the real vector space R|PZ|. For every point h = (hp)p∈PZ ∈ R|PZ|, the lower convex
hull of the points (p, hp) in P × R is a piecewise linear function φh on P . The domains
of linearity of φh define a polyhedral decomposition P = ∪iPi into lattice polytopes Pi.
Moreover, each polytope Pi is naturally marked by the subset Qi of integral points p ∈ (Pi)Z
such that (p, hp) belongs to the graph of φh over Pi. Hence, for every h ∈ R|PZ|, we obtain a
decomposition of P into marked polytopes (Pi, Qi).

Definition 9.5.1. A decomposition of P into marked polytopes (Pi, Qi) is called regular if
it is induced by some h ∈ R|PZ|.

For every regular decomposition D of P , the closure in R|PZ| of the set of points h inducing
the regular decomposition D of P is a cone CD in R|PZ|. These cones fit together into a

complete fan S̃ec(P ) on R|PZ|.
If f is an affine linear function on Rn, then the points h = (h(p))p∈PZ and (h(p)+f(p))p∈PZ

define the same polyhedral decomposition of P , and so are contained in the same cone of

S̃ec(P ). In other words, the fan S̃ec(P ) is naturally invariant under the action on R|PZ|

of the space Rn+1 of affine linear functions on Rn, and so defines a complete fan Sec(P )
in R|PZ|/Rn+1 ≃ R|PZ|−n−1, called the secondary fan. By construction, the cones of the
secondary fan are indexed by the regular decompositions of P . The maximal dimensional
cones are indexed by the regular triangulations of P , that is, the regular decompositions of
P into simplices.

Let Y be a projective toric variety, with boundary toric divisor D, and L an ample line
bundle. Denote by P the corresponding momemtum polytope, and MP the toric variety
with fan the secondary fan Sec(P ).

Lemma 9.5.2. Let H be a divisor in the linear system of L. Then the pair (Y,D + ϵH)
is semi-log-canonical for 0 < ϵ << 1 if and only if H is does not contain a 0-dimensional
strata of D.

Proof. TO DO. Recall first that the pair (Y,D) is always canonical since KY +D = 0. ♣
Let M(Y,D,L) be the KSBA compactification of the moduli space of semi-log-canonical

pairs (Y,D + ϵH). It is a proper Deligne-Mumford stack, with projective coarse moduli
space.

Theorem 9.5.3. The toric variety MP is the normalization of the coarse moduli space of
M(Y,D,L).
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Proof. TO DO: Include a sketch of proof. Explain the link between polyhedral decomposi-
tions of P and irreducible components of degenerations of (Y,D + ϵH). ♣

For recent non-toric generalizations of Theorem 9.5.3 motivated by mirror symmetry, see
[HKY20] and [AAB24].

10. Preamble: Towards stable maps

By Dan

10.1. Kontsevich’s formula. THIS TEXT IS TAKEN FROM: Lectures on GW invariants
of orbifolds

Let us step back to the story of Gromov–Witten invariants. Of course these first came
to be famous due to their role in mirror symmetry. But this failed to excite me, a narrow-
minded algebraic geometer such as I am, until Kontsevich [Kon95] gave his formula for the
number of rational plane curves.

This is a piece of magic which I will not resist describing.

10.1.1. Setup. Fix an integer d > 0. Fix points p1, . . . p3d−1 in general position in the plane.
Look at the following number:

Definition 10.1.2.

Nd =#




C ⊂ P2 a rational curve,
degC = d, and
p1, . . . p3d−1 ∈ C



 .

Remark 10.1.3. One sees that 3d − 1 is the right number of points using an elementary
dimension count: a degree d map of P1 to the plane is parametrized by three forms of degree
d (with 3(d + 1) parameters). Rescaling the forms (1 parameter) and automorphisms of P1

(3 parameters) should be crossed out, giving 3(d+ 1) − 1 − 3 = 3d− 1.

10.1.4. Statement.

Theorem 10.1.5 (Kontsevich). For d > 1 we have

Nd =
∑

d = d1 + d2
d1, d2 > 0

Nd1Nd2

(
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

))
.

Remark 10.1.6. The first few numbers are

N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87304.

The first two are elementary, the third is classical, but N4 and N5 are nontrivial.

Remark 10.1.7. The first nontrivial analogous number in P3 is the number of lined meeting
four other lines in general position (the answer is 2, which is the beginning of Schubert
calculus).

10.2. Set-up for a streamlined proof.
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10.2.1. M0,4. We need one elementary moduli space: the compactified space of ordered
four-tuples of points on a line, which we describe in the following unorthodox manner :

M0,4 =

{
p1, p2, q, r ∈ L

∣∣∣ L ≃ P1

p1, p2, q, r distinct

}

The open set M0,4 indicated in the braces is isomorphic to P1 ∖ {0, 1,∞}, the coordinate
corresponding to the cross ratio

CR(p1, p2, q, r) =
p1 − p2
p1 − r

q − r

q − p2
.

The three points in the compactification, denoted

0 = (p1, p2 | q, r),
1 = (p1, q | p2, r), and

∞ = (p1, r | p2, q),

4 D. ABRAMOVICH

The three points in the compactification, denoted

0 = (p1, p2 | q, r),

1 = (p1, q | p2, r), and

∞ = (p1, r | p2, q),

0 1 ∞

p1

p2

r

p1p1

p2

q

r

q

q

p2

r

describing the three different ways to split the four points in two pairs
and position them on a nodal curve with two rational components.

1.2.2. A one-parameter family. We now look at our points p1, . . . p3d−1 in
the plane.

We pass two lines !1, !2 with general slope through the last point p3d−1 and
consider the following family of rational plane curves in C → B parametrized
by a curve B:

• Each curve Cb contains p1, . . . p3d−2 (but not necessarily p3d−1).
• One point q ∈ Cb ∩ !1 is marked.
• One point r ∈ Cb ∩ !2 is marked.

In fact, we have a family of rational curves C → B parametrized by B,
most of them smooth, but finitely many have a single node, and a morphism
f : C → P2 immersing the fibers in the plane.

describing the three different ways to split the four points in two pairs and position them on
a nodal curve with two rational components.

10.2.2. A one-parameter family. We now look at our points p1, . . . p3d−1 in the plane.
We pass two lines ℓ1, ℓ2 with general slope through the last point p3d−1 and consider the

following family of rational plane curves in C ! B parametrized by a curve B:

• Each curve Cb contains p1, . . . p3d−2 (but not necessarily p3d−1).
• One point q ∈ Cb ∩ ℓ1 is marked.
• One point r ∈ Cb ∩ ℓ2 is marked.

In fact, we have a family of rational curves C ! B parametrized by B, most of them
smooth, but finitely many have a single node, and a morphism f : C ! P2 immersing the
fibers in the plane.

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 5

q

r

p3d−2

p2

p1

ℓ1

ℓ2

1.2.3. The geometric equation. We have a cross-ratio map

B
λ−→ M0,4

C #→ CR(p1, p2, q, r)

Since points on P1 are homologically equivalent we get

degB λ−1(p1, p2|q, r) = degB λ−1(p1, q|p2, r).

1.2.4. The right hand side. Now, each curve counted in degB λ−1(p1, q|p2, r)
is of the following form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have p1 ∈ C1 as well as 3d1 − 2 other points among the 3d − 4
points p3, . . . p3d−2.

• We have p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C2 ∩ ℓ2.
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10.2.3. The geometric equation. We have a cross-ratio map

B
λ
−!M0,4

C 7! CR(p1, p2, q, r)

Since points on P1 are homologically equivalent we get

degB λ
−1(p1, p2|q, r) = degB λ

−1(p1, q|p2, r).

10.2.4. The right hand side. Now, each curve counted in degB λ
−1(p1, q|p2, r) is of the fol-

lowing form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying d1 + d2 = d.
• We have p1 ∈ C1 as well as 3d1− 2 other points among the 3d− 4 points p3, . . . p3d−2.
• We have p2 ∈ C2 as well as the remaining 3d2 − 2 points from p3, . . . p3d−2.
• We select one point z ∈ C1 ∩ C2. where the two abstract curves are attached.
• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C2 ∩ ℓ2.

6 D. ABRAMOVICH

ℓ1

ℓ2

C1

C2

p1
p2

zr

q

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−2

)
ways to choose

the set of 3d1 − 2 points on C1 from the 3d − 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d2 for r. This gives the term

degB λ−1(p1, q|p2, r) =
∑

d = d1 + d2

d1, d2 > 0

(
3d − 4

3d1 − 2

)
· Nd1 Nd2 · d1d2 · d1·d2.

A simple computation in deformation theory shows that each of these
curves actually occurs in a fiber of the family C → B, and it occurs exactly
once with multiplicity 1.

1.2.5. The left hand side. Curves counted in degB λ−1(p1, p2|q, r) come in
two flavors: there are irreducible curves passing through q = r = ℓ1 ∩ ℓ2 This
is precisely Nd.

For every choice of splitting d1 + d2 = d we have
(
3d−4
3d1−2

)
ways to choose the set of 3d1 − 2

points on C1 from the 3d− 4 points p3, . . . p3d−2. We have Nd1 choices for the curve C1 and
Nd2 choices for C2. We have d1 · d2 choices for z, d1 choices for q and d2 for r. This gives the
term

degB λ
−1(p1, q|p2, r) =

∑

d = d1 + d2
d1, d2 > 0

(
3d− 4

3d1 − 2

)
· Nd1 Nd2 · d1d2 · d1 · d2.

A simple computation in deformation theory shows that each of these curves actually
occurs in a fiber of the family C ! B, and it occurs exactly once with multiplicity 1.

10.2.5. The left hand side. Curves counted in degB λ
−1(p1, p2|q, r) come in two flavors: there

are irreducible curves passing through q = r = ℓ1 ∩ ℓ2 This is precisely Nd.
Now, each reducible curve counted in degB λ

−1(p1, p2|q, r) is of the following form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying d1 + d2 = d.
• We have 3d1 − 1 points among the 3d− 4 points p3, . . . p3d−2 are on C1.
• We have p1, p2 ∈ C2 as well as the remaining 3d2 − 2 points from p3, . . . p3d−2.
• We select one point z ∈ C1 ∩ C2. where the two abstract curves are attached.
• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C1 ∩ ℓ2.
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ℓ1

ℓ2q = r = p3d−1

p2 p1

Now, each reducible curve counted in degB λ−1(p1, p2|q, r) is of the fol-
lowing form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have 3d1 − 1 points among the 3d − 4 points p3, . . . p3d−2 are on
C1.

• We have p1, p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C1 ∩ ℓ2.

ℓ1

ℓ2

r

q

z

p1 p2

C2

C1

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−1

)
ways to choose

the set of 3d1 − 1 points on C1 from the 3d − 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d1 for r. This gives
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ℓ1

ℓ2q = r = p3d−1

p2 p1

Now, each reducible curve counted in degB λ−1(p1, p2|q, r) is of the fol-
lowing form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have 3d1 − 1 points among the 3d − 4 points p3, . . . p3d−2 are on
C1.

• We have p1, p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C1 ∩ ℓ2.

ℓ1

ℓ2

r

q

z

p1 p2

C2

C1

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−1

)
ways to choose

the set of 3d1 − 1 points on C1 from the 3d − 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d1 for r. This givesFor every choice of splitting d1 + d2 = d we have

(
3d−4
3d1−1

)
ways to choose the set of 3d1 − 1

points on C1 from the 3d− 4 points p3, . . . p3d−2. We have Nd1 choices for the curve C1 and
Nd2 choices for C2. We have d1 · d2 choices for z, d1 choices for q and d1 for r. This gives

degB λ
−1(p1,p2|q, r)

= Nd +
∑

d = d1 + d2
d1, d2 > 0

(
3d− 4

3d1 − 1

)
· Nd1 Nd2 · d1d2 · d21

Equating the two sides and rearranging we get the formula. ♣
Gromov–Witten theory allows one to systematically carry out the argument in general,

without sweeping things under the rug as I have done above.
The next lecture series will show how to do it!

11. Gromov–Witten theory I: geometry of the moduli & genus zero
invariants

11.1. Moduli of stable maps. We recall the moduli functors introduced in Section 6.2
Mg,n(X, β) and Mg,n(X, β) parametrizing family of maps from smooth pointed curves and
stable maps respectively.

More precisely:

Mg,n(X, β)(S) := {f : C/S ! X × S :
C

π−!S is smooth with geometric fibers of genus g
(p1,...,pn) : S!C markings

fs,∗[Cs]=β
}.

Where f1 and f2 are isomorphic if f2 = f1 ◦α for α : C ! C an authomorphism of C over
S We say that f has an authorphism if there exist α : C ! C such that f = f ◦ α
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Example 11.1.1. Consider f ∈ M0(P2, 2[L]) given by f([t0 : t1]) = [0 : t20 : t21]. Then f has
an authorphism of order 2 α([t0 : t1]) = [t0 : −t1]

In order to compute enumerative invariants we will need to perform intersection theoretic
computations on the parameter spaces. To do so, we want to work with proper moduli
spaces.

The solution is to allow both the curve and the map to degenerate:

Mg,n(X, β)(S) := {f : C/S ! X×S :
C

π−!S is flat with geometric fibers at most nodal (connected) curves of genus g
(p1,...,pn) : S!C smooth markings

fs,∗[Cs]=β
fsis stable

}

where fs : Cs ! X is said stable if for any irreduible component D ⊆ C contracted by f ,
i.e. f(D) = pt the curve D marked with {p1, . . . , pn} ∩D and with the nodes D ∩ C ∖D is
stable in the Deligne-Mumford sense, namely it has at least 3 special point if D is rational
and at least 1 if it has genus one.

Remark 11.1.2. The stability ensures that f : C ! X has finite autorphism group, i.e.
|Aut(f)| <∞.

One can rephrase stability of a family f : C/S ! X of stable maps as follows: the line
bundle ωπ(

∑
σi) ⊗ f ∗OX(1) is ample, where π : C ! S, σi are the n distinct sections and

OX(1) is an ample line bundle on X.

We learnt that moduli functors are rarely representable to schemes due to the presence of
automorphisms, but for the moduli space of stable maps the next best thing holds:

Theorem 11.1.3 (Kontsevich). Mg,n(X, β) is a proper, Deligne-Mumford stack.

11.2. Tautological maps. Moduli spaces of stable maps, much like moduli spaces of curves
comes equipped with tautological morphisms:

forgetful morphism: The morphism

fti : Mg,n+1(X, β)!Mg,n(X, β)

forgets the i-th marking and stabilize the map (See Figure 11.2).
For i = n+1, this is the natural projection from the universal curve over the moduli

space. We will often use the alternative notation Cg,n+1 for the universal curve and
denote by

F : Cg,n+1 ! X ×Mg,n+1(X, β)

the universal map.
evaluation morphisms: For each marking pi we get an evaluation map defined by

evi : Mg,n(X, β)! X, evi(f : (C, p1, . . . , pn)! X) := f(pi);

gluing morphisms: Let β1, β2, g1, g2 and n1, n2 be such that β1 + β2 = β, g1 + g2 = g
and n1 + n2 = n then we get

Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2)!Mg,n(X, β)

where the maps defining the fiber product over X are the evaluations evn1+1 and
evn2+1 (See Figure 11.2).
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Figure 2. Forgetful morphism

Figure 3. Gluing morphism

stabilization morphisms: The morphism

st : Mg,n(X, β)!Mg,n

is defined forgetting the map and stabilizing the curve (See Figure 11.2).

Exercise 11.2.1. Define the forgetful morphism and the stabilization morphism
in families.
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Figure 4. Stabilization morphism

Hint On a family C
π
−! S the line bundle ωπ(

∑
xi) fails to be π-ample pre-

cisely on those components that need to be contracted. Furthermore, the locus
Furthermore, the locus of rational tails R ⊂ C is a divisor.

If we are happy with the Artin stack Mg,n of pre-stable curve, we can define a
forgetful morphism

p : Mg,n(X, β)!Mg,n

which just forgets the map; as we saw in Section6.2 Mg,n is an algebraic stack so we
have tools to understand it.

11.2.2. Naive definition of the invariants. Using the markings we can now impose our meet-
ing conditions. Indeed we have evaluation maps

evi : Mg,n(X, β)! X, evi(f : (C, p1, . . . , pn)! X) := f(pi);

which allow us for example to describe the loci of maps where f(pi) ∈ Vi for some fixed
subvariety Vi, as the intersection

⋂
ev−1

i (Vi).
Assuming that Mg,n(X, β) is smooth and proper, the solution to our enumerative problem

can then be expressed as the degree of the zero homology class

[Mg,n(X, β)] ∩ ev∗
1(γ1) ∪ · · · ∪ ev∗

n(γn)

for ai the cohomology class corresponding to the constraint Vi. Notice that this class has
degree 0 when

∑
deg(ai) = dim(ai).
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11.3. Geometry of moduli of maps.

Warning. Although proper, the moduli spaces Mg,n(X, β) are in general far from smooth!
They have several irreducible components, these components have different dimensions, and
thus talking of the fundamnetal class of the moduli space does not quite make sense; it is not
even clear in which homological degree, that shoukd be the dimension, such a class should
live.

Example 11.3.1. The moduli space M1(P2, 3[L]) has 3 irreducible components M,D1, D2

of dimensions, respectively, 9, 109. M is the closure of the locus of smooth elliptic curves
embeed as cubis in P2; D1 is the component generically parametrizing a map f from a nodal
curve E ∪p P1 such that f(E) = pt and f(P1) is a nodal cubic; D2 generically parametrize
maps from a curve with two nodes P1 ∪q E ∪p P1 where f maps one of the two rational
component into a quadric Q, the other into a line L and E is contracted onto one of the two
intersection points Q ∩ L.

Even if we decide to stick with genus zero:

Example 11.3.2. Let us take X = Blp P2 and β = 3H = 3H ′ + 3E where H ′ is the class of
the strict transform of a line through p and E is the class of the exceptional divisor.

In the moduli space M0(X, 3H) we have one irreducible components V1 of dimension 8
given by the clusure of the locus of rational cubics (i.e. they have at least one node) in P2

not passing through p. But we also have a second component V2 given by the closure of the
locus of maps from a nodal curve C1 ∪q C2 with f∗[C1] = 3H − 2E and f∗[C2] = 2E. So a
generic f ∈ V2 is the data of: the strict transform of a cubic in P2 having a node in p, and a
two to one cover f : C2 ! E ∼= P1. This component has also dimension 8.

Exercise 11.3.3. • Make sure you are happy with the examples above
• The genus one example can be generalised to all the Pr, and all d. What are in

general all the irreducible components of M1(Pr, d[L])?
• The genus zero example can also be generalised in various ways, by considering

blow-ups in more than one point or blow-ups of Pr with r ≥ 2. Can you find at
least one more example with more than one component?

Remark 11.3.4. You might not see this during this week, but logarithmic geometry can be
used to extract and resolve the singularities of the main component of these moduli spaces.
The philosophy is explain for example in [ACG+10, Section 4] and [vNS23, Remark 1.4].

Beutiful applications of this principle for moduli of maps in genus one are given in
[RSPW19b, RSPW19a].

Message to take home; Even if you are only interested in absolute stable maps, loga-
rithmic geometry is a key tool to study the geometry of these spaces.

11.4. Genus zero curves in hypersurfaces of Pr. There are some cases where the moduli
space of maps is indeed smooth and the invariants are really the one defined above capping
the cohomology classes pulled back along the evi with the fundamental class of the moduli
space.

Proposition 11.4.1. The moduli space M0,n(Pr, d[L]) is a smooth Deligne-Mumford stack!
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Proof. (sketch) A sufficient condition for a moduli space to be smooth is the vanishing of
the obstructions to the deformations.

To deform f : C ! X we need to deform both C and the map. C we can always deform
( Pierrick told us Mg,n is smooth in the stacky sense). Once we fix a deformation of C,
deforming f is equivalent to deform Γf ⊂ C × X. Then, from what we learnt about the
Hilbert scheme, the obstructions are contained in H1(Γf ,NΓf/C×X) = H1(C, f ∗TX).

Exercise 11.4.2. You can now conclude computing H1(C, f ∗T r
P) for C of genus zero. To

do so, it is helpful to look at the pullback to C of the Euler sequence

0! f ∗OPr ! f ∗OPr(1)⊕r+1 ! f ∗T r
P ! 0.

To prove the vanishing of H1(C, f ∗TPr) it is sufficient to argue that H1(C, f ∗OPr(1)).

♣

Exercise 11.4.3. Compute the dimension of M0,n(Pr, d[L]).
Hint A stable map is the data of a marked genus zero curve C together with r + 1

sections of H0(C, f ∗O(1)) (up to a common scalar), up to reparametrization of the curve.

Let X = V (s) be a degree l smooth hypersurface in Pr i.e. s ∈ H0(Pr,O(l)). Let us denote
by

M0,n(X, d[L]) =
⊔

{γ∈H2(X,Z) | i∗γ=d[L]}
M0,n(X, γ)

where i is the embedding of X in the projective space.

Proposition 11.4.4. The space M0,n(X, d[L]) is embedded inside the moduli space M0,n(Pr, d[L])
as the zero locus of a section of a vector bundle Ed,n
Proof. Take Ed,n to be π∗(F ∗O(l)) where F is the universal map and π the projection from
the universal curve. The fact that this is a vector bundle follows from the Cohomology
and Base change Theorem [Har77, Theorem 12.11] combined with the observation that
H1(C, f ∗O(l)) = 0 for any C of genus zero and any l ≥ 0. At each point [(C, pi), f ] of the
moduli space of maps to Pr, thr fiber of this vector bundle is nothing but H0(C, f ∗O(l)) ∼=
Cdl+1. We have a natural section S of Ed,n over the moduli space, defined by

ev[(C,pi),f ](S) = f ∗s ∈ H0(C, f ∗O(l)).

Notice that the image of f lies in X, i.e. the map factor trough the closed embedding if
and only if f ∗s = 0. In other words, M0,n(X, d[L]) = V (S). ♣
Remark 11.4.5. Notice that if consider moduli spaces of genus one stable maps, then it is
no longer true that H1(C, f ∗O(l)) = 0 for any C and f (think about some examples) and
π∗(F ∗O(l)) is no longer a vector bundle.
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11.5. Quantum Lefschtetz. If we do not ask for the section of the vector bundle to be
generic, the singularities appearing in schemes Z defined as zero loci of a section of a vector
bundle on a smooth scheme A can be quite bad.

Example 11.5.1. Let us consider A = P3 and E the vector bundle O(2)⊕2. Let s =
(x1x2, x0x1) ∈ H0(P3, E) then Z = V (s) has two irreducible componets of different dimen-
sions V (x1) and V (x0, x2) meeting in a point.

The section we choose is not generic, as both its components correspond to singular
quadrics, which furthermore do not intersect in the expected dimension.

If we deform the sections to get to the generic situation, e.g., sϵ = (x1x2 + ϵ(x20 +
x23), x0x1ϵ(x

2
1 + x23 + x0x2)) then Zϵ = V (sϵ) is a smooth degree 4 curve in P3 and it has

a natural fundamental class [Zϵ] ∈ A1(Zϵ) such that

ι∗[Zϵ] = 4[L] = ctop(E) ∩ [A] ∈ A1(A).

Gysin pullback. Even when s is not a regular section, using Fulton’s Gysin pull-back

(17) 0!
E : Ak(A)! Ak−rk(E)(Z(s))

it is still possible to define a class, wich we denote as

(18) [Z(s)]vir := 0!
E[A] = creftop (E)

of the expected dimension. Furthermore it is still true that

ι∗0
!
E[A] = ctop(E) ∩ [A]

[Ful98, Section 14.1]; for this reason = 0!
E[A] is called the refined top Chern class or refined

Euler class.
The Gysin pull-back 0!

E is given by the composition of the maps:

An(A)
σ
−! An(CXA)

ι∗−! An(E|X)
s∗
−! An−rk(E)(X)

where σ([V ]) := [CX∩V V ] is the specialization morphism defined in [Ful98, Proposition 5.2],
ι∗ the proper pushforward, and s∗ the inverse of the (flat) pull-back [Ful98, Section 3.3].
Here we denoted by E|X the vector bundle with sheaf of sections E and by CXA the normal
cone of the embedding of X in A, defined by Spec(⊕n≥0In/In+1) for I the ideal sheaf of the
embedding. Notice that the embedding CXA ↪! E comes from the fact that X cut out by
a section of E mean that we have a surjection of E∨ ↠ I/I2.

We saw in Proposition 11.4.4 that M0,n(X, d[L]) is the zero locus V (S) of a section of a
vector bundle inside the smooth ambient space M0,n(Pr, d[L]), which by Exercise 11.4.3 has
dimension r − 3 + d(r + 1) + n.

If S were generic, than M0,n(X, d[L]) would be smooth of dimension vdim = r−3 +d(r+
1) + n− rk(Ed,n). We call this the virtual dimension of M0,n(X, d[L]). Rearraging the terms
we see that

vdim = (1 − g)(dim(X) − 3) −KX · d[L] + n.

As in the example 11.5.1, even if we can’t check the transversality of S, we can define

[M0,n(X, d[L])]vir ∈ Avdim(M0,n(X, d[L])),
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and the class satisfies

ι∗[M0,n(X, d[L])]vir = cdl+1(Ed,n) ∩ [M0,n(Pr, d[L])].

Then given γ1, . . . , γn ∈ H∗(X,Z) which are pulled back from γ′i in Pr and such that∑
i deg(γi) = vdim we have

GWX
0,d[L](γ1 · · · γn) :=deg([M0,n(X, d[L])]vir ∩ ev∗

1(γ1) ∪ · · · ∪ ev∗
n(γn)

= [M0,n(Pr, d[L])] ∩ cdl+1(Ed,n) ∪ ev∗
1(γ

′
1) ∪ · · · ∪ ev∗

n(γ′n)

Exercise 11.5.2. Lines on the Quintic 3-fold.
In this guided exercise we use the Quanthum Lefschetz to compute the numeber of

lines on a quintic 3-fold X5 in P4.

The moduli space M0,0(P4, [L]) is nothing but the Grassmanian Gr := Grass(2, 5), which
comes equipped with a short exact sequence of vector bundles:

0! S ! O⊕5
Gr ! Q! 0

such that at each point [W ] ∈ Gr we have L = P(S[W ]) ⊂ P4.

• Remember that S[W ] ! L is the tautological line bundle OL(−1);

• Show that M0,0(X5, [L]) ⊆ Gr is cut out by a section σX5 of Sym5(S∗) (you have to
reinterpret Proposition 11.4.4 in this context)

• Using the above, verify that the virtual dimension of M0,0(X5, [L]) is zero.

The last step to compute the number of lines inX5 is to compute deg(c6(Sym5(S∗)) ∈ A0(Gr).
To do so, we need to know somenthing about the Chow ring (you can think the homology)
of the Grassmanian.

Ingredients to compute the invariants. The Chow cohomology/homology ring of the Grass-
manian Grass(2, n + 1) can be explicitly described in terms of Schubert cycles and Pieri’s
formula, which we recall (Further details and proofs can be found in [EH16, Section 4.3].)
Fix V := 0 ⊂ V1 ⊂ V2 ⊂ . . . Vn ∼= Kn+1 a complete flag, and n − 1 ≥ a1 ≥ a2 ≥ 0 two
positive integer such that a1 + a2 ≤ 2(n+ 1) − 4 = dim(Grass(2, n)). Then

Σa1,a2(V) :=
{
L ⊂ Kn+1 | Vn−1 ∩ L ̸= 0 and L ⊆ Vn+1−a2

}
.

The class of Σa1,a2(V) in the cohomology doe not depend from the choice of the flag. We
denote it by

σa1,a2 ∈ Aa1+a2(Grass(2, n+ 1));

these are called Schubert cycles. There is a closed formula for the product of Schubert cycles
in Grass(2, n+ 1)[EH16, Proposition 4.11]: if a1 − a2 ≥ b1 − b2

σa1,a2σb1,b2 = σa1+b1,b2+a2 + σa1+b1−1,b2+a2+1 + . . . σa1+b2,b1+a2 .

Moreover, the total Chern class of S∗, and thus of Sym5(S∗), can be expressed in terms
of Schubert cycle. By the splitting principle [EH16, Section 5.4], to compute Chern classes
we can pretend S∗ = L ⊕M for L a subbundle and M = S∗/L

c(S∗) = 1 + (c1(L) + c1(M)) + c1(L)c1(M) = 1 + (α + β) + αβ.
90



On the other hand, interpreting Chern classes as sections of exterior powers of vector bundles
we get [EH16, Section 5.6.2]

c(S∗) = 1 + σ1,0 + σ1,1.

Now you can use: the splittimg principle for Sym5(S∗), the Pieri’s formula and the fact
that deg(σ3,3) = 1 to compute that there are 2875 lines on the quintic 3-fold.

Exercise 11.5.3. Following the same exact strategy, you can also reprove the classical
statement assertying that there are 27 lines on a generic smooth cubic surface S ⊂ P3.

What do we need to define the virtual class. In the previous section we saw how to
endow with a virtual class a scheme X which is cut out by a section of a vector bundle on
a smooth ambient space. The construction can easily be adapted to the case where X is a
scheme over some base S and it is cut out by a section of a vector bundle E on a scheme
A smooth over S. Indeed, as long as S is equidimensional, it has a well defined fundamental
class in Adim(S)(S) whose flat pull-back give the fundamental class [A] and we can once again
use Fulton’s Gysin pullback to define a virtual class. To emphasize that the embedding is
on a scheme smooth over a base we will write

0!
E/S : Adim(S)(S)! Adim(A)−rk(E)(S)

where 0!
E/S is simply the Gysin pull-back defined in the previous section pre-composed with

the flat pull-back from S to A. In this case we will call the normal cone CX/A the relative
normal cone.

Remark 11.5.4. Let us notice that in order to run the Gysin construction we do not really
X to be the zero locus of a vector bundle on A but rather we need a vector bundle E on X
in which the relative normal cone CX/A embeds.

In general, we do not have an explicit (let alone a somewhat natural) global embedding
of a moduli space M, e.g. for the moduli space of stable maps Mg,n(X, β), into a smooth
ambient space or a smooth ambient space over a base.

The seminal work of Behrend and Fantechi [BF97] allow us nonetheless to construct vir-
tual classes on several moduli spaces of interest, including the Kontsevich moduli space
Mg,n(X, β). The key ingredient is a so called (possibly relative)perfect obstruction theory.

This is (roughly speaking) a two term complex of vector bundles E• ( well defined as an
object in Db(M)) with the following property. On a neighborhooud U !M admitting an
embedding U ↪! A/S into a smooth ambient space (relative to a base S) we have :

E•|U ∼= TA/S|U ! EU/S

and CU/A embeds in EU/S (see [BF97] for the correct definition.)
Given such E•, after taking care of all the subtle technicalities arising in this way more

general framework, one can define a generalization of the Gysin pullback, the so called virtual
pull-back [Man11]

0!
E•/S : Adim(S)(S)! Adim(S)−rk(E•)(M).
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The stable maps case. For the Kontsevich moduli space Mg,n(X, β) with X smooth, there
is a perfect obstruction theory relative to the smooth Artin stack Mg, n given by the two
term complex R•π∗F ∗TX for F the universal map and π the projection from the universal
curve. So in this case rk(R•π∗f ∗TX) = h1(C, f ∗TX)−h0(C, f ∗TX) for any [C, f ] (notice that
the difference is constant). The latter can be computed using Grothendieck-Riemann-Roch
and the virtual pull-back construction gives as a clss

[Mg,n(X, β)]vir ∈ A(1−g)(dim(X)−3)−β·[KX ]+n(Mg,n(X, β))

Remark 11.5.5. Notice that the virtual dimension is the one suggested by deformation
theory, i.e. by the count of parameters. Indeed we have 3g − 3 + n parameterS for the
deformation of the marked pre-stable curve; the infinitesimal deformationd of the map once
the deformation of the curve has been fixed are parametrized by H0(C, f ∗TX) and the ob-
structions to deform the map to a given deformation of the curve are in H1(C, f ∗TX), so we
expect −h1(C, f ∗TX) + h0(C, f ∗TX) extra parameters.

11.6. Gromov–Witten invariants. We can now define numerical invariants as in the naive
approach; we have primitive Gromov Witten invariants

GXX
g,β(γ1 · · · γn) := deg([Mg,n(X, β)]vir ∩ ev∗

1(γ1) ∪ · · · ∪ ev∗
n(γn))

=

∫

[Mg,n(X,β)]vir
ev∗

1(γ1) ∪ · · · ∪ ev∗
n(γn) ∈ Q

for γi cohomology class on X (we get rational number because Mg,n(X, β) is a Deligne-
Mumford stack, i.e. there are autotphisms to take into account), but we can also cap
[Mg,n(X, β)]vir with classes (e.g ψi classes and λ-classes) pulled-back from the cohomology
of Mg,n via the stabilization morphism st : Mg,n(X, β)!Mg,n. We thus get a richer set of
Gromov-Witten invariants:

deg([Mg,n(X, β)]vir ∩ ev∗
1(γ1) ∪ · · · ∪ ev∗

n(γn)) ∩ st∗(
⋃

ζj)

for ζj some interesting classes on Mg,n; these are usually called descendant Gromov-Witten
invaraints and they appear in computations even if we restrict our interests to the primary
case.

12. Gromov-Witten theory II– properties and structures of the invariants

Other properties of the virtual class. The class [Mg,n(X, β)]vir also satisfy all the expected
compatibility with the tautological maps:

pull-back: We can take the flat pull-back along the forgetful map and get

ft∗[Mg,n(X, β)]vir = [Mg,n+1(X, β)]vir

cutting edge: The recursive structure of the moduli space is compatible with wirtual
classes in the following sense. The virtual divisor

Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2) = Mg1,n1+1 ×Mg2,n2+1 ×Mg,n
Mg,n(X, β)

has a natural class given by

0!
R•π∗F ∗TX

(ι∗[Mg1,n1+1 ×Mg2,n2+1])
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for ι the natural map to Mg,n. This class coincide with the one obtained intersect-
ing the split class [Mg1,n1+1](X, β1)]

vir ⊠ [Mg2,n2+1(X, β2)]
vir with the diagonal, i.e.

expressing the virtual divisor as the fiber product:

Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2) Mg1,n1+1(X, β1) ×Mg2,n2+1(X, β2)

X X ×X

evq evp×evs

∆

we have

[Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2)]
vir = ∆!([Mg1,n1+1](X, β1)]

vir ⊠ [Mg2,n2+1(X, β2)]
vir)

where ∆! is the Fulton Gysin pull-back along the regular embedding ∆.
We will use the following notation:

D(n1, n2; β1, β2) := [Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2)]
vir

Exercise 12.0.1. Recall that the class of the diagonal [∆] in H∗(X×X) is given
by [∆] =

∑
e,f g

efTe ⊗ Tf for Te, Tf both running through a base of H∗(X) and

(gij) the inverse of the intersection form.
Prove that the cutting edge axiom for the virtual class translate into the fol-

lowing equations for the invariants:∫

[D(n1,n2;β1,β2)

ev∗
1(γ1) ∪ · · · ∪ ev∗

n(γn)) =

∑

e,f

gef GXX
g1,β1

(γ1 · · · γn1 · Te) GXX
g2,β2

(γn1+1 · · · γn · Tf )

mapping to a point: The classes defined from a perfect obstruction theory might not
always be what we would expect naively. Consider for example Mg,n(X, 0); a point
in this moduli space is determined by a stable curve and the point in X to which the
latter is contracted, i.e Mg,n(X, 0) ∼= Mg,n × X. In particular this moduli space is
smooth of dimension 3g − 3 + n+ dimX. Notice however that the virtual dimension
is 3g − 3 + n+ dimX − gdimX.

In this case, we can compute explicitly

R•π∗F
∗TX = TMg,n×X/Mg,n

! R1π∗OCg,n ⊗ TX ∼= E∨ ⊗ TX

where E = π∗ωπ is the Hodge bundle. In this case none of the technicalities and
complications of the general case arise, and running Fulton’s Gysin construction we
see that:

[Mg,n(X, β)]vir = [Mg,n(X, β)] ∩ ctop(E∨ ⊗ TX)

Deformation invariance: An important consequence of the definition of the intersec-
tion theoretic definition of the Gromov-Witten invariants is their so called deforma-
tion invaraince. This means that if X ! B is a smooth family of projective varieties,
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say over B a smooth curve, then GXXb
g,β(α1, . . . , αn) does not depend on b. If the fam-

ily of moduli spaces Mg,n(X/B, β) ! B were smooth, the deformation invariance
would simply reeduce to the constance of intersection numbers [Ful98, Chapter 20].
The virtual class technology ensures the possibility of extending the result to families
of moduli of maps.

We will come back to this later when we will mention the degeneration formula.

The properties of the virtual class impose relations among the Gromov-Witten invariants
which are crucial to compute them. We make some of these relations explicit and we restrict
to the genus zero case.

mapping to a point for g = 0 : When β = 0 and M0,n(X, 0) = M0,n × X the
Gromov-Witten invariants are zero unless n = 3. Indeed in this case all the eval-
uation are equal to the projection p onto X and, by projection formula

[M0,n ×X] ∩ p∗(∪γi) = p∗[M0,n ×X] ∩ (∪γi).
The class p∗[M0,n × X] is zero unless n = 3 and simply [X] in the latter case with
GWX

0,0(γ1, γ2, γ3) = [X] ∩ γ1 ∪ γ2 ∪ γ3.
trivial class insertion: If one of the insertion, say γ1 = 1, then the invariant vanish

as soon as β ̸= 0 and, from the above observation, we have that for β = 0 only
3-pointed invariant do not vanish and are given by GWX

0,0(1, γ2, γ3) = [X]∩∪γ2 ∪ γ3.
To see that the invariant vanish for β ̸= 0 we notice that if γ1 = 1 then

[M0,n(X, β)]vir ∩ (
⋃

ev∗i γi)

is a class pulled-back along ft1 : M0,n(X, β) !M0,n−1(X, β). Since ft1 has positive
dimensional fiber the degree of a class pulled-back from the target must be zero.

divisor axiom: Let the first insertion be the (dual) class of a divisor in X, γ1 ∈ A1(X).
Then for β ̸= 0

GWX
0,β(γ1 · · · γn) = (γ1 ∩ β) GWX

0,β(γ1 · · · γn).

We do not give full details, but this comes from the fact that in an ideal situation
(the moduli spaces are smooth and we can choose representatives of the cohomology
classes so that the intersections are transverse) we have that

[M0,n(X, β)] ∩ ev∗
1(γ)1 = [ev−1

1 (D1])]

and the forgetful map

ev−1
1 (D1)

ft1−−!M0,n(X, β)

is generically finite of degree γ1∩β which are the possible ways to map the first point
into β. Then the result simply follows by projection formula.

12.1. WDVV and associativity of the Quantum cohomology. From the description
of the moduli spaces and the properties of the virtual classes we see that Gromov-Witten
invariants are related by certain recursive relations.

In order to exploit this recursive structure is then often useful to assembly the invari-
ants into generating series, rather than consider them one by one. This approach to study
Gromov-Witten invariants is particularly convenient to study genus zero invariant for homo-
geneus varieties (e.g projective space, Grassmanian and Flag varieties.)
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Let consider T0, . . . , Tm a basis for H∗(X); for example, if X = Pr we can consider the
standard basis T0 = 1 is the (dual) of the fundamental class, T1 = h is the hyperplane class,
and Tr = hr is the class of a point. More in general, for homogeneus varieties basis are giver
by Schubert cycles. We will denote by (gij) the matrix with entries

gij = [X] ∩ Ti ∪ Tj
and by (gij) its inverse.

We consider the formal power series in Q[[x]] = Q[[x0, . . . , xm]] defined by:

Φ(x0, . . . , xm) =
∑

(n0,...,nm)

∑

β

GWX
0,β(T n0

0 . . . T nm
m )

xn0
0

n0!
. . .

xnm
m

nm!
.

Writing γ =
∑
xiTi we can rewrite

(19) Φ(x0, . . . , xm) =
∑

β

GW0,β(exp(γ)) =
∑

n≥0

∑

β

1

n!
GW0,β(γn)

Exercise 12.1.1. If you never did it before, look at the (easy) formal computation
showing that

exp(γ) =
∑

(n0,...,nm)

xn

n!
T n

where xn = xn0
0 · · ·xnm

m and n! = n0! · · ·nm!

Denote by

I(γn) =
∑

β

GWX
0,β(γn)

so that

Φ =
∑

n≥0

1

n!
I(γn)

Denote by Φi = ∂
∂xi

Φ the i-th partial derivative of the genus zero Gromov Witten potential.
The usual derivative rules imply that the latter is the generating function of genus zero
Gromov-Witten invariants with an extra input class T i:

Φi =
∑

n≥0

1

n!
I(γn · Ti);

and thus

(20) Φijk =
∑

n≥0

1

n!
I(γn · Ti · Tj · Tk)

Remarkably, the potential Φ satisfy the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) dif-
ferential equations:

∑

e,f

Φijeg
efΦfkl =

∑

e,f

Φjkeg
efΦifl, for alli, j, l, k
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Φ being a solution of the equations above is equivalent to the associativity of the so calles
quantum product, which we know define. On the Q[[x]] module H∗(X)⊗Q[[x]] we define the
quantum product by the rule:

(21) Ti ⋆ Tj =
∑

e,f

Φijeg
efTf

and then extend by Q[[x]]-linearly.

Theorem 12.1.2. With the above definition, H∗(X) ⊗ Q[[x]] is a commutative associative
Q[[x]] algebra with unit T0

Proof. (sketch) The commutativity simply follows drom the fact that Φijk is symmetric in
the indices.

Seeing that T0 is the unit for this product is a little bit more work, but in the end it boils
down to the mapping to a point and trivial insertion axiom we saw before.

Exercise 12.1.3. Using the mapping to a point axiom and the trivial insertion axiom
complete the proof of the fact that T0 is the unit for the product ⋆.

The associativity of ⋆ is the core of the statement.
We do not provide full details, but we sketch how this follow from the following simple

geometric fact: the boundary divisors

D(1, 2|3, 4), D(2, 3|1, 4) ∈ M0,4
∼= P1

are linear equivalent, together with the cutting edge property for the virtual class discussed
above.

For simplicty, we restrict to the case X = Pr and refer the reader to [FP96, Theorem 4]
for the proof of the general case.

For X = Pr we have that gef = 1 if e + f = r and 0 otherwise, thus the associativity
relation becomes

(22)
∑

e+f=r

ΦijeΦfkl =
∑

e+f=r

ΦjkeΦifl

Exercise 12.1.4. (1) Verify that

(
∑

i≥0

xi

i!
fk)(

∑

k≥0

xj

j!
gj) =

∑

k≥0

xk

k!
hk

where hk =
∑

i+j=k

(
k
i

)
figj

(2) Using the product rule above and the expression for Φijk given in (20) verify that
∑

e+f=r

ΦijeΦfkl =
∑

e+f=r

∑

n1+n2=n

n!

n1!n2!
I(γn1 · Ti · Tj · Te)I(γn2 · Tf · Tk · Tl)
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For any n ≥ 0, β = d[L] curve class in Pr we consider the morphism

M0,n+4(Pr, β)
st
−!M0,n+4

ft
−!M0,4

given forgetting the map and all the markings except the last 4 and stabilizing. Since
D(1, 2|3, 4) andD(2, 3|1, 4) are linear equivalent in M0,4, so are their pull-back to M0,n+4(Pr, β),
which, by a slight abuse of notation, we keep detoniting with D(1, 2|3, 4) and D(2, 3|1, 4).

Notice that the pull-back ft∗D(1, 2|3, 4) of these divisors to M0,n+4 is the sum of n!
n1!n2!

irreducible components, corresponding to the ways of distributing the remaning n = n1 +n2

markings between the two component of the curve (See Figure 12.1). Further pulling back to

Figure 5. Generic point of a component in D(1, 2|3, 4)

M0,n+4(Pr, β), each irreducible component of ft∗D(1, 2|3, 4) splits accordingly to the possible
distributions of the degree of the map.

Exercise 12.1.5. (1) Use the cutting edge axiom to verify that∫

st∗ft∗D(i,j|k,l)
ev∗i Ti · ev∗jTj · ev∗jTk · ev∗kTk · ev∗(γn) =

∑

β1+β2=β
n1+n2=n

n!

n1!n2!
(
∑

e+f=r

GM0,β1(γ
n1 · Ti · Tj · Te) GM0,β2(γ

n2 · Tl · Tk · Tf ))

(2) Taking the sum of the integral above over all β and n > 0 idetify it with the right
hand side of (22) and thus conclude the proof of the associativity from the fact
that D(i, j|k, l), D(j, k|i, l) ∈ M0,4 are linearly equivalent.

♣
12.2. Kontsevich Recursive formula. Although hystorically Kontsevich recursion for-
mula pre-dated the definition of quathum cohomolohy, (the main idea used to prove associa-
tivity is in fact taken from Kontsevich’s work) we will go backwords and use the associativity
to prove the recursion formula.
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To do so, it is convenient to decompose the potential as

Φ = Φcl + Γ =
∑

n≥0

1

n!
GW0,0(γ

n) +
∑

n≥0

1

n!

∑

d>0

GW0,d[L](γ
n).

We concentrate on X = P2 and choose as a bases for the cohomology T0 = 1,, T1 = h the
class of a line and T2 = h2 the class of a point.

Step 1: Using the mapping to a point deduce that the

Φcl
ijk = GW0,0(Ti · Tj · Tk)

are the structure constants of the usual cup product in cohomology, i.e.

Ti ∪ Tj =
∑

e+f=2

Φcl
ijeTf

Step 2: Using Step 1, the mapping to a point axiom, and separating the classical from
the quantum part verify that the quantum table multiplication for P2 is as follows:

T1 ⋆ T1 = T2 + Γ111T1 + Γ112T0

T1 ⋆ T2 = Γ121T1 + Γ122T0

T2 ⋆ T2 = Γ221T1 + Γ222T0

Step 3: From the associativity relations (T1⋆T1)⋆T2 = T1⋆(T1⋆T2) and (T1⋆T2)⋆T2 =
T1 ⋆ (T2 ⋆ T2) extract the following relation

(†)Γ222 + Γ111Γ122 = Γ112Γ112

which comes from equating the T0 terms in the first equation (or the T1 terms in the
second)

Step 4: We know want to write down the series Γijk more explicitly.
To do so, it is convenient to go back to the first expression we had for the potential

Φ = Φ(x0, x1, x2) (19) and notice that: by the m apping to a point axiom there is no
contribution every time that there is a T0 factor; moreover, by the divisor axiom the
Gromov–Witten invariant with a T1 axiom are completely determined by the ones
without. This allows to reduce to

Γijk =
∑

n≥0

xn

n!

∑

d>0

GW0,d(T
n
2 · Ti · Tj · Tk)

Use the product rule for generating series to show that the relation (†) from step 3
correspond to

∑

d>0

GW0,d(T
n
2 · T2 · T2 · T2) +

∑

n1+n2=n

n!

n1!n2!
(
∑

d1>0

GW0,d1(T
n1
2 · T1 · T1 · T1))(

∑

d2>0

GW0,d2(T
n2
2 · T1 · T2 · T2))

=
∑

n1+n2=n

n!

n1!n2!
(
∑

d1>0

GW0,d1(T
n1
2 · T1 · T1 · T2))(

∑

d2>0

GW0,d2(T
n2
2 · T1 · T1 · T2))
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Step 5: Use the computation of the dimension for Mn+3(P2, d) and the fact that the
invariant is non zero only if the degree of the insertion match the condimension to
see that the only non trivial contribution are for

n = 3d+ 2 − i− j − k

Step 6: Recall that by definition the number Nd of rational degree d curves in P2

through 3d− 1 points in general position is

Nd = GW0,d(T
3d−1
2 ).

Then substituting in the recursion formula of Step 4 the relevant values of n com-
puted in Step 5 and applying the divisor axiom, verify that we find precisely Kont-
sevich’s recursion formula

Nd +
∑

d1+d2=d

(3d− 4)!

(3d1 − 1)!(3d2 − 3)!
d31d2Nd1Nd2 =

∑

d1+d2=d

(3d− 4)!

(3d1 − 2)!(3d2 − 2)!
d21d

2
2Nd1Nd2

Exercise 12.2.1. Following the same exact strategy find the Kontsevich’s recursion
formula for P1 × P1

12.3. Virtual Localization. We have now seen some tools to compute invariants in the
case of genus zero. There is another special geometric situation where we have a sharp
computation tool at our disposal, namely when the target variety X admits a torus action.
It was proved by Graber-Pandaripandhe [GP99] that the classical Atiyah-Bott localization
formula admits a generalization for virtual classes. This has found vast applications in
enumerative geometry and it would be difficult to give an exhaustive account. Already in
[GP99] the authors apply the localization to compute higher genus Gromov-Witten invariants
of Pn and to perform various multiple covers calculations for local curves.

12.3.1. Equivariant cohomology and Atiyah-Bott. Given T = Gm an algebraic torus, let us
denote by BT its classifying stack and by ET ! BT the universal T -torsor. In more classical
algebraic topology terms we can think of ET = C∞ ∖ 0 and BT = P∞.

For X a variety with a T - action, the T -equivariant cohomology H∗
T (X;R) is defined to

be the cohomology of the space XT = ET ×X/T where T acts anti-diagonally on ET ×X;
notice that the action is free. The structure map XT ! BT induces a

H∗
T (pt;R) = H∗(BT ;R) = R[u]

module structure on XT .

Example 12.3.2. Consider the action of Gm on Pr given by

t · [x0 : · · · : xr] = [tw0x0 : · · · : twrxr]

for some integers wi. Then Pr
T ! BT is the Pr bundle P(O(w0) ⊕ . . .O(wr)) ! P∞. It is

well know that for P(E) ! X we have that H∗(P(E)) is the H∗(X) algebra generated by
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the class H of the relative hyperplane with the relation

Hr+1 + c1(E)Hr + . . . cr+1(E) = 0.

For E = ⊕r
i=0OP∞(wi) we have that the total Chern class is c(E) =

∏r+1
i=1 (1 + wiu). We

obtain a complete description of the equivariant cohomology.

Given E ! X is a T -equivariant vector bundle we get a vector bundle ET ! XT ; one can
thus define equivariant Chern classes as follows

ck,T (E) = ck(ET ) ∈ H2k(XT ) = H2k
T (X)

and similarly for the equivariant Chern characters and Euler class.

Example 12.3.3. A one dimensional rapresentation of T, i.e. E = C with action v ! tav
in an equivariant vector bunsle on a point. In this case one gets that ET = OP∞(−a) (recall
that the action is antidiagonal) and thus c1(ET ) = −au.

Before stating Atiyah-Bott localization formula, we need a couple more observation. The
map XT ! BT is a fibration with fiber X and for X proper we can (and there is a way to
do it carefully) define an integration along the fibers map

∫

XT

: H∗
T (X)! H∗

T (pt)

which should be thought as capping with the class of the fibers. We do not define this properly
since Atiyah-Bott localization formula (stated below) allow us to replace this integral with
integrals on the fixed loci, which admit a very explicit description.

12.3.4. Let us suppose that X is a smooth variety and the fixed locus XT of the torus
action decompose as a disjoint union of smooth subvarieties X1, . . . XN .

Notice that since the action of T on the Xi is trivial H∗
T (Xi) = H∗(Xi;R) ⊗ R[u]. This

allow us to express each cohomology class as a sum of simple tensors. Moreover, since
Xi,T = Xi × BT, by Kunneth the integration along the fibers reduces to the usual cap
product on the Xi factor.

Notice furthermore that the normal bundles Ni are naturally T -equivariant vector bundles
on the Xi.

We can finally state Atiyah-Bott localization

Theorem 12.3.5. In the situation above we
∫

XT

α =
N∑

j=1

∫

Xj

i∗jα

eT (Nj)

for ij : Xj ! X the closed embedding, where eT (Nj) is invertible in the localised ring
H∗

T (X;Q) ⊗Q[u] Q(u).

12.3.6. Virtual localization (in the baby case). Remarkably, in [GP99] the authors show that
the result of Atiyah-Bott can be extended to the case of virtual classes in the following
setting:
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Setting. X is a scheme or a DM stack which comes with a global embedding X ⊆ Y in a
smooth ambient space (this hypothesis can now be removed [?]), equivariant with respect the
action of a torus T. Suppose furthermore thatX has a perfect obstruction theory ϕ : E• ! L•

X

[BF97] and that the T - action admits a lifting to an action on E• making ϕ a T -equivariant
morphism in the derived category.

For each component X i of the fixed locus XT let E•
i denote the restriction of the obstruc-

tion theory. The T -action induces a Z-grading on E•
i , i.e. a eigendecomposition. Denote by

E•,f
i and E•,m

i the fixed part (degree 0) and the moving part (degree ̸= 0) respectevely. In

[GP99] the authors show that E•,f
i is a perfect obstruction theory for Xi and that defining

N vir
i = E•,m

i the following localization formula holds in H∗,T (X;Q) ⊗Q[u] Q(u).

Theorem 12.3.7.

[X]vir =
N∑

j=1

ij,∗[Xj]
vir

eT (N vir
j )

for ij : Xj ! X the closed embedding.

In the baby case where X is the zero locus of an equivariant section of a vector bundle V
on a smooth scheme Y we can express the terms of the localization formula in an elementary
way.

Let Yi the components of the fixed locus Y T and Xi = X ∩ Yi The restriction Vi = Y |Yi

decomposes in eigenbundles and we can define as above the fixable and movable part. We
have the following equalities in H∗,T (X;Q) ⊗Q[u] Q(u)

[Xi]
vir = eref (V f

i )

N vir
i =

e(NYi/i)

e(V m
i )

eref (V ) = ι∗
∑ eref (V f

i ) ∩ e(V m
i )

e(NYi/i)

where the refined Euler class is the one defined in (18). In this baby case, the virtual
localisation formula is simply a consequence of the Atiyah-Bott localization formula on the
smooth ambient Y , together with the naturality of the refined Euler class.

12.3.8. Fixed loci in Mg,n(Pr, d). We will not say how to prove the virtual localization for-
mula in the general case. However, giving it for granted, let us sketch how to use in order
to compute higher genus Gromov-Witten invariants on Pr.

Let W = Cr+1, Pr = P(W ) and T = C∗ acting on W with generic weights w0, . . . , wr,
so that the fixed points of the action coincide with the fixed points p0, . . . , pr of the natura
(C∗)r action.

This induces, by post-composition, an action on the moduli space Mg,n(Pr, d).
For a map f : C ! Pr to be fixed by the T -action, one needs that: the image of C is

a T -fixed curve in Pr; the image of all marked points, nodes, contracted components and
ramification points are T -fixed points.

Since the only fixed points are p0, . . . , pr and the only T -invariant curves are the lines
joining two of this points, each non contracted component Cdi ⊆ C of a T -invariant stable
maps is a cover of a T -invariant line ramified over its two torus fixed points.
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This implies that Cdi has to be rational and totally ramified over the torus fixed points;
in particular the map f |Ci

is completed determined by the degree.

12.3.9. Marked graphs. The above discussion of T -fixed maps allows to identify components
of the fixed locus with marked graphs.

Let f be a T -fixed map; define a marked graph Γ as follows (see Figure 12.3.9):

• Γ has an edge e for each non contracted, labelled by the degree de
• Γ has a vertvex v for each connected component of f−1({p0, . . . , pr}) labelled by
i(v) = pf(v) i : V (Γ) ! {p0, . . . , pr} and by the genus g : V (Γ) ! Z≥0. Notice that
there might be connected components in f−1({p0, . . . , pr}) consisting of a single point;
in this case g(v) = 0

• Γ has a leg for each marking
• an edge (or a leg) and a vertex are incident if the corresponding subschemes are

incident in C.

Figure 6. The marked graph associated to a T -fixed point

Warning. Γ is not the dual graph of the source curve.

Let denote by

MΓ =
∏

v∈V (Γ)

M g(v),val(v)

where M0,n for n = 1, 2 is interpreted as a point. Consider the quotient stack MΓ by
AΓ

∼= Aut(Γ) ⋊
∏

e Z/deZ where
∏

e Z/de acts trivially. Then

Proposition 12.3.10. [GP99] There are natural maps MΓ !Mg,n(Pr, d) factoring through
the closed embeddings [MΓ/AΓ] ↪!Mg,n(Pr, d).

The T fixed loci are supported on such substacks.

In order to apply the localization formula it is then necessary to analize the fixed and
movable part of the perferct obstruction theory Rπ∗F ∗TPr .

The analysis is carried out in [GP99, Section 4] and we do not get into it here. In particular
the authors show that the fixed loci are unobstructed.
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We just conclude by saying that the upshot is the following explicit formula for the higher
genus Gromov-Witten invariants of Pr

GWPr

g,d(h
l1 . . . hln) =

∑

Γ

1

|AΓ|

∫

MΓ

∏n
m=1w

lm
i(m)

e(N vir
Γ )

and e(N vir
Γ ) itself admits an explicit expression in terms of equivariant Chern classes of the

Hodge bundle and powers of weights of the T -action.
The one message to take home: localization allows to reduce the computation of the

invariants to integrals on (smooth!) moduli spaces of curves which are, at least in principle,
more computable. 20

 20

12.4. Degenerations– a step logarithmic and orbifold Gromov-Witten theory. The
last computational technique we want to mention, which will naturally lead us towards
logarithmic Gromov-Witten invariants, is the celebrated Degeneration–Formula.

We saw before that the Gromov-Witten invariants are unchanged for deformations of the
target variety X. Suppose then to consider a one parameter family X ! A1

t such that Xt is
smooth projective for t ̸= 0 and X0 = Y ∪D Z is the union of two smooth varieties along a
smooth divisor D.

It would be useful if we could compare the Gromov-Witten theory of Xt and X0 = Y1∪DY2,
which hopefully can be expressed in terms of some Gromov- Witten theories for pairs (Yi, D),
which ideally can be in turn read off from the Gromov-Witten theory of Yi andd D. The
advantage is in the fact that one expect that Yi, D will be simpler targets; e.g. we can let
an elliptic curve degenerate to a union of two P1 along D = 0 + ∞.

Making the above vague idea into a mathematically honest and fruitful technique required
a great deal of work:

• There is the need to define invariants for the singular space X0 in such a way that
they agree with invariants of Xt and to define invariants for relative theories [Li01,
AF16, AC14, GS13].

• One need a degeneration formula relating the invariants for X0 to those of (Yi, D)
[Li02, AF16, Che14a] as well as techniques to compute the relative invariants.

• More broadly, one might have to consider more general degenerations which require
more sophisticated relative theories and more sophisticated degeneration formulae..
This is a more recent and exciting story and you will hear more about it from Hulya
and Dan!

12.4.1. Moduli of pre-deformable stable maps to expanded targets. Let X ! A1
t a proper one

parameter family degeneration as above, with X0 = Y1 ∪D Y2.
12.4.1.1. Firts Issue. One can consider Kontsevich’s moduli space of stable maps to

Mg,n(X/A1; β)! A1.

We however do not have a perfect obstruction theory (relative to A1) allowing the definition
of the invariants for Mg,n(X0; β) and allowing the comparison.

Problems arise at those points parametrizing degenerate maps, i.e. maps f : C ! X0 where
some irreducible component of the curve C falls into the singular locus D.

20(Francesca) might be worth to add a very easy explicit example
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A priori there is no way to avoid these maps if we want a moduli space proper over A1 as
one can easily have a family of maps

C X

S ∼= A1
t A1

t

f

where for t = 0 the map is degenerate.

Exercise 12.4.2. Find an example of a degenerate map.
Hint Take X ! A1 a family where for t ̸= 0 we have P2 and for t = 0 we have the

union of P2 and F1 along a toric line D. Take C = P1 × A1 and a map ft of degree 2
which is an embedding for t ̸= 0 and becomes the 2 : 1 cover of D when t = 0.

12.4.2.1. Solution. Jun Li’s idea was to allow expansions of the target, i.e. different degen-

erations X̃ ! A1 of Xt ! C∗ such that the stable maps limit in the modify target f : C ! X̃
would be no longer degenerate.

Exercise 12.4.3. Consider the Example of the previous exercise. You can take as an
explicit model for the target for example X = Blt=x0=0 P2 ×A1 (then the family of maps
you can choose accordingly.)

• Modify X by first considering the base change X ′ along A1
s ! A1

t , t = s2 and then

taking X̃ a resolution of the singularities in the total space.

• Verify that the central fiber of X̃ ! A1 has an extra componend P(ND1/Y1 ⊕O)
in between (Y1, D1), (Y2, Y2)

• Compute the limit of P1 × A1
s

fs
−! X̃ and verify that this is no longer degenerate.

Remark 12.4.4. To construct the expansion of the target the idea is always to take a
ramified base change t = sr and then resolve the singularities of the total space, which will
have the effect of inserting r − 1 P1-bundles between the components (Y1, D1), (Y2, D2) of
the central fiber. These extra components are called accordions.

These are the easisest example of tropical expansions or expanded degenerations [Ran22,
MR24], nowadays ubiquitus in logarithmic enumerative geometry.

Jun Li [Li01] then shows that, given a one parameter family of maps f : C/ Spec(K)! X/
A1∖0 there exist a minimal r such that the limit f̃ : C̃/ Spec(R)! X [r]/A1 is not degenerate.
Moreover such r only depends on the family of maps on the puncture disc, suggesting that
a moduli space parametrizing non degenerate maps to expanded degenerations will have the
desired property of being proper.

The first step to construct such a moduli space, completed in [Li01, Section 1], is to
constrcut a space parametrizing all the expanded degenerations.
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This has the structure of a smooth Artin stack over A1, let us dnote it by Exp(X , D)21

and comes with a universal family X! Exp(X , D) or target expansion.
12.4.4.1. Second Issue. A further complication arise from the fact that if one consider all
non degenerate maps to X/Exp(X , D) the fiber over 0 will include morphism that cannot
arise as a degeneration of a map f : C ! Xt. This happen when smooth points of the curve
are mapped into the singular locus.

Since one is interested in building a degeneration of the moduli space of maps to the
smooth target, these morphisms should be excluded.
12.4.4.2. Solution. To achieve that, [Li01] introduce the notion of pre-deformable maps.

Definition 12.4.5. A map f : C ! X [r] is called pre deformable if: it is non degenerate,
f−1(D) ⊆ Csing, i.e. only nodes are mapped into the singular locus D[r] = ⊔r

l=1Dl, and sat-
isfies the kissing condition. This means that if a node p maps into Dl joining the components
Yl and Yl+1, then the order of f along p computed on the branch C− mapping to (Yl, Dl) or
computed on the branch C+ mapping to (Yl+1, Dl) coincide.

Finally, to get a moduli space which is a proper Deligne-Mumford stack one needs to
impose a notion of stability for pre-deformable maps. As usual the notion of stability is to
ensure that Aut(f) is finite.

Here one should be a litthe careful since a map is the data of a diagram

C X

Spec(k) Exp(X , D)

f

and Exp(X , D) is an Artin stack.
Stability. Unravelling what this means, one sees that the stability condition says the fol-
lowing: a map f : C ! X [r] is stable if every rational components which is either contracted
or mapped into a fiber of an accordion has at least three special points.

Theorem 12.4.6. [Li01] The moduli space Mg,n(X/A1; β) of predeformable stable maps to
expanded degeneration of X/A1 is a proper DM stack over A1.

Remark 12.4.7. The fiber over 0 is the moduli space of predeformable stable maps to
expansion of X0, which we denote by Kg,n(X0; β).

The fiber over t ̸= 0 is the usual moduli space of Kontsevich stable maps to the smooth
target Xt.

As for the usual case of stable maps, in order to then compute invariants one need to
define a virtual class for these moduli spaces.

This is done, via a delicate deformation theory nalysis in [Li01]. The main issue is that
the condition for a morphism to be predeformable is closed inside the space of maps. This
causes trouble and does not allow to use directly the Behrend-Fantechi [BF97] obstruction
theory.

21The notation is borrowed from [Ran22] where the stack of expanded degenerations for more general
families X ! A1 is constructed
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These difficulties lead to the deevelopment of new techniques to deal with degeneration of
maps, chief among them the theory of stable maps to orbifold [AF16] and logarithmic stable
maps [ACG+10, AC14, GS13]. Dan and Hulya will explain more on these topics.

We conclude by stating the degeneration formula in the Jun Li’s setting without discussing
further the issue related to defining a suitable obstruction theory.

12.4.8. Relative stable maps. We want to describe maps to X0 as the data of a map to Y1 and
a map to Y2 which glue along the joining divisor D. This lead tp the problem of constructed
moduli spaces of relative stable maps.

Let Y be a smooth projective variety andD a smooth divisor. Consider Mg,n+m,(ci)ni=1
(Y |D; β)

the space of stable maps satisfying

f ∗OY (D) = OC(
n∑

i=1

cixi)

for xi marked point of C. Geometrically, these are maps whose image intersect D with
prescribed tangency. This moduli space is clearly not proper: in a one parameter family it
can happen that some components of the curve falls into the divisor D and we cannot longer
talk about contact order, or that the different point of tangencies come together.

We will denote by Γ the choice of the discrete data for the relative map, i.e.

Γ = (g, n+m, (ci)
n
i=1, β)

is the data of the genus, the marked points–both usual and with non trivial contact order
along the divisor–the contact orders and the curve class.

We will write MΓ(Y |D) for the moduli space.

Exercise 12.4.9. Find Examples of these phenomena. It suffices to take Y = P2 and
D = L a coordinate line.

Once again though, one can consider expansions Y [r] of (Y,D), which consists of Y union
a lenght r − 1 accordion, i.e. Y [r] = Y ∪D PD(O(D) + O) ∪D2 PD2(O(D2) + O) · · · ∪Dr−1

PDr−1(O(Dr−1) + O).
Then consider predeformable stable maps to expansion which have the prescribed order

of tangency at the markings with D[r] ⊆ Y [r] [Li01].
Again one can construct an Artin stack M with a universal family (Y,D) parametrizing

expansions of Y,D

Theorem 12.4.10. [Li01] There is a proper DM stack MΓ(Y |D) parametrizing relative
stable maps to expansions and containing MΓ(Y |D) as a open.

Remark 12.4.11. As for the case of maps to degeneration, since teh condition for a map
to be pre-deformable is closed, it is challenging to construct a virtual class on these proper
moduli space. The theory of maps to orbifold and the theory of logarithmic stable maps are
once again the way to proceed.

This comes equipped with evaluation maps for the markings with non trivial contact order

MΓ(Y |D)
evxi−−! D
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12.4.12. Degeneration formula–statement only.

Theorem 12.4.13. The moduli space Kg,n(X0; β) comes equipped with a virtual class which
is homologous to the virtual class of the generic fiber in the homology of Mg,n(X/A1; β).

Furthermore, this class admits an expression in terms of the virtual cycles of relative stable
maps to (expansions of) (Y1, D), (Y2, D).

Theorem 12.4.14. [Li02] The following degeneration formula holds:

[Kg,n(X0; β)]vir =

=
∑

η∈Ω

m(η)

|Eq(η)|Φη,∗∆
!([MΓ1(Y1|D)]vir × [MΓ2(Y2|D)]vir)

We conclude by explaining the notation appearing in the formula and pass the ball to Dan
for further explanations.

• The sum is over the set Ω of equivalence classes of admissible triples η = (Γ1,Γ2, I).
These consist of: Γ1 a combinatorial type of relative stable maps to (Y1, D); Γ2

a combinatorial type of relative stable maps to (Y2, D) such that the sets (n1 =
r, (ci)

r
i=1), (n2 = r, (ci)

r
i=1) of markings carrying non trivial contact order–let as call

these roots– and the contact order data in Γ1 and Γ2 are identified; I is a ordering
choice for the union of the sets of standard markings.

Two triples are equivalent if they differ by a permutation σ ∈ Sr of the roots.
The identification of the roots is what allows to glue a relative map to (Y1, D) and

a relative map to (Y2, D) to obtain a map to X0.
• ∆! denotes the Gysin pull-back along the regular immersion ∆: Dr ! Dr×Dr where

the map
MΓ1(Y1|D) ×MΓ2(Y2|D)! Dr ×Dr

is given by the evaluations at the roots
• The morphism

ϕη : MΓ1(Y1|D) ×Dr MΓ2(Y2|D)! Kg,n(X0; β)

defined by gluing a pair (f1, f2) of relative maps of admissible type is a colavl
immesion and |Eq(η)| is its degree;

• m(η) =
∏r

i=1 ci is the product of the contact orders of the roots

13. Preamble to Log GW: Gluing and degeneration in GW theory

By Dan
I want to tell two parallel stories here — one is about gluing, and one is about degeneration.

The stories are intertwined, but I feel the end of the story, where they are neatly combined, is
not yet written. Mark’s paper [Gro23] goes in remarkable detail into how much can already
be done and how much we woudl like to understand better.

13.1. Gluing. The study of gluing start with the very beginning of GW theory — indeed
the WDVV formula and associativity of quantum cohomology is all about gluing.

13.2. Boundary of moduli. Understanding the subspace of maps with degenerate source
curve C is key to Gromov–Witten theory.
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13.2.1. Fixed degenerate curve. Suppose we have a degenerate curve

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 9

The basic result, treated among other places in [30], [21], is

Theorem 1.3.3. Mg,n(X, β) is a proper Deligne–Mumford stack with pro-
jective coarse moduli space.

1.4. Natural maps. The moduli spaces come with a rich structure of maps
tying them, and X , together.

1.4.1. Evaluation. First, for any 1 ≤ i ≤ n we have natural morphisms,
called evaluation morphisms

Mg,n(X, β)
ei−→ X

(C
f→ X, p1, . . . , pn) $→ f(pi)

1.4.2. Contraction. Next, given a morphism φ : X → Y and n > m we get
an induced morphism

Mg,n(X, β) −→ Mg,m(Y, φ∗β)

(C
f→ X, p1, . . . , pn) $→ stabilization of (C

φ◦f→ Y, p1, . . . , pm).

Here in the stabilization we contract those rational components of C which
are mapped to a point by φ ◦ f and have fewer than 3 special points. This
is well defined if either φ∗β ≠ 0 or 2g − 2 + n > 0.

For instance, if n > 4 we get a morphism M0,n(X, β) → M0,4.

1.5. Boundary of moduli. Understanding the subspace of maps with de-
generate source curve C is key to Gromov–Witten theory.

1.5.1. Fixed degenerate curve. Suppose we have a degenerate curve

C1 C2

p

C = C1

p
∪C2.

So C is a fibered coproduct of two curves. By the universal property of
coproducts

Hom(C, X) = Hom(C1, X) ×
Hom(p,X)

Hom(C2, X)

= Hom(C1, X) ×
X

Hom(C2, X)

So C is a fibered coproduct of two curves. By the universal property of coproducts

Hom(C,X) = Hom(C1, X) ×
Hom(p,X)

Hom(C2, X)

= Hom(C1, X) ×
X

Hom(C2, X)

13.2.2. Varying degenerate curve: the boundary of moduli. We can work this out in the fibers
of universal the families. If we set g = g1+g2, n = n1+n2 and β = β1+β2 we get a morphism

Mg1,n1+1(X, β1) ×X Mg2,n2+1(X, β2) −!Mg,n(X, β),

with the fibered product over en1+1 on the left and en2+1 on the right. On the level of points
this is obtained by gluing curves C1 at point n1 +1 with C2 at point n2 +1 and matching the
maps f1, f2. This is a finite unramified map, and we can think of the product on the left as
a space of stable n-pointed maps of genus g and class β with a distinguished marked node.

13.2.3. Combinatorial picture. Since we now know about dual graphs, we know an even
better way to encode things: we can associate a space of stable maps to any decorated dual
graph τ , where vertices are decorated with both genus g(v) and a curve class β(v). The space
Mg,n(X, β) corresponds to the simplest possible genus-g graph τ0- one vertex decorated with
genus g, with n legs, and curve class β. The space on the right hand side is M(X, τ) where
Γ is a two-vertex graph with one edge, with the genus, legs, and classes split as indicated.
It has a nodal evaluation map to X. If we denote by τ ′ the graph obtained by splitting τ at
its edge, creating a disconnected graph with two legs replacing the edge, the moduli space
has two corresponding evaluations to X. We obtain a cartesian diagram as follows:

M(X, τ0) M(X, τ)oo //

��

M(X, τ ′)

��

X
∆ // X2

Half of the WDVV formula is just an interpretation of this diagram, along with virtual
fundamental classes. You have seen the beauty of this in the GW lectures. I want to use it
to leverage further understanding in the logarithmic case.

But first, a long digression.

13.3. A digression to orbifold stable maps. One big compromise we had to make in
this lecture series is that we have not discussed orbifold targets. This digression is about
that - and about what it teaches us when we look at the logarithmic theory.
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13.3.1. Stable maps to a stack. Consider a semistable elliptic surface, with base B and a
section. We can naturally view this as a map B ! M1,1. Angelo Vistoli, when he was
on sabbatical at Harvard in 1996, asked the following beautiful, and to me very inspiring,
question: what’s a good way to compactify the moduli of elliptic surfaces? can one use stable
maps to get a good compactification?

Now consider in general:

X

��

Deligne–Mumford stack with

X projective coarse moduli space

In analogy to Mg,n(X, β), we want a compact moduli space of maps C ! X .
One can define stable maps as in the scheme case, but there is a problem: the result is

not compact. As Angelo Vistoli likes to put it, trying to work with a non-compact moduli
space is like trying to keep your coins when you have holes in your pockets. The solution
that comes naturally is that

the source curve C must acquire a stack structure as well as it
degenerates!

Both problem and solution are clearly present in the following example, which is “univer-
sal” in the sense that we take X to be a one parameter family of curves itself:

Consider P1 ×P1 with coordinates x, s near the origin and the projection with coordinate
s onto P1. Blowing up the origin we get a family of curves, with general fiber P1 and special
fiber a nodal curve, with local equation xy = t at the node. Taking base change P1 ! P1

of degree 2 with equation t2 = s we get a singular scheme X with a map X ! P1 given
by coordinate s. This is again a family of P1’s with nodal special fiber, but local equation
xy = s2.

This is a quotient singularity, and using the chart [A2/(Z/2Z)] with coordinates u, v sat-
isfying u2 = x, v2 = y we get a smooth orbifold X , with coarse moduli space X and a map
X ! P1. It is a family of P1’s parametrized by P1, degenerating to an orbifold curve.
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Now consider in general:

X

!!

Deligne–Mumford stack with

X projective coarse moduli space

In analogy to Mg,n(X, β), we want a compact moduli space of maps C → X .

One can define stable maps as in the scheme case, but there is a problem:
the result is not compact. As Angelo Vistoli likes to put it, trying to work
with a non-compact moduli space is like trying to keep your coins when you
have holes in your pockets. The solution that comes naturally is that

the source curve C must acquire a stack structure as
well as it degenerates!

Both problem and solution are clearly present in the following example,
which is “universal” in the sense that we take X to be a one parameter
family of curves itself:

Consider P1 × P1 with coordinates x, s near the origin and the projection
with coordinate s onto P1. Blowing up the origin we get a family of curves,
with general fiber P1 and special fiber a nodal curve, with local equation
xy = t at the node. Taking base change P1 → P1 of degree 2 with equation
t2 = s we get a singular scheme X with a map X → P1 given by coordinate
s. This is again a family of P1’s with nodal special fiber, but local equation
xy = s2.

This is a quotient singularity, and using the chart [A2/(Z/2Z)] with coor-
dinates u, v satisfying u2 = x, v2 = y we get a smooth orbifold X , with coarse
moduli space X and a map X → P1. It is a family of P1’s parametrized by
P1, degenerating to an orbifold curve.

X

↓

If you think about the family of stable maps P1 → X parametrized by
P1 ! {0} given by the embedding of P1 in the corresponding fiber, there
simply isn’t any stable map from a nodal curve that can be fit over the
missing point {0}! The only reasonable thing to fit in there is the fiber
itself, which is an orbifold nodal curve. We call these twisted curves.

If you think about the family of stable maps P1 ! X parametrized by P1 ∖ {0} given by
the embedding of P1 in the corresponding fiber, there simply isn’t any stable map from a
nodal curve that can be fit over the missing point {0}! The only reasonable thing to fit in
there is the fiber itself, which is an orbifold nodal curve. We call these twisted curves.

13.3.2. Twisted curves. (detailed discussion - to be distilled - add sections at markings) This
is what happens in general: degenerations force us to allow stacky (or twisted) structure at
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the nodes. Thinking ahead about gluing curves we see that we had better allow these
structures at markings as well.

A twisted curve is a gadget as follows:

Σi ⊂ C
#
C.

22 D. ABRAMOVICH

3.2. Twisted curves. This is what happens in general: degenerations force
us to allow stacky (or twisted) structure at the nodes. Thinking ahead about
gluing curves we see that we had better allow these structures at markings
as well.

A twisted curve is a gadget as follows:

Σi ⊂ C
↓
C.

twisted node
twisted marking

Here

• C is a nodal curve.
• C is a Deligne–Mumford stack with C as its coarse moduli space.
• Over a node xy = 0 of C, the twisted curve C has a chart

[{uv = 0}/µr]

where the action of the cyclotomic group µr is described by

(u, v) #→ (ζu, ζ−1v).

We call this kind of action, with two inverse weights ζ, ζ−1, a balanced
action. It is necessary for the existence of smoothing of C! In this
chart, the map C → C is given by x = ur, y = vr.

• At a marking, C has a chart [A1/µr], with standard action u #→ ζu,
and the map is x = ur.

• The substack Σi at the i-th marking is locally defined by u = 0.
This stack Σi is canonically an étale gerbe banded by µr.

Note that we introduce stacky structure only at isolated points of C and
never on whole components. Had we added stack structures along compo-
nents, we would get in an essential manner a 2-stack, and I don’t really know
how to handle these.

As defined, twisted curves form a 2-category, but it is not too hard to
show it is equivalent to a category, so we are on safe grounds.

The automorphism group of a twisted curve is a fascinating object - I’ll
revisit it later.

This notion of twisted curves was developed in [5]. As we discovered later,
a similar idea appeared in Ekedahl’s [19].

3.3. Twisted stable maps.

Definition 3.3.1. A twisted stable map consists of

(f : C → X , Σ1, . . . , Σn),

• C is a nodal curve.
• C is a Deligne–Mumford stack with C as its coarse moduli space.
• Over a node xy = 0 of C, the twisted curve C has a chart

[{uv = 0}/µr]

where the action of the cyclotomic group µr is described by

(u, v) 7! (ζu, ζ−1v).

We call this kind of action, with two inverse weights ζ, ζ−1, a balanced action. It is
necessary for the existence of smoothing of C! In this chart, the map C ! C is given
by x = ur, y = vr.

• At a marking, C has a chart [A1/µr], with standard action u 7! ζu, and the map is
x = ur.

• The substack Σi at the i-th marking is locally defined by u = 0. This stack Σi is
canonically an étale gerbe banded by µr.

Note that we introduce stacky structure only at isolated points of C and never on whole
components. Had we added stack structures along components, we would get in an essential
manner a 2-stack, and I don’t really know how to handle these.

As defined, twisted curves form a 2-category, but it is not too hard to show it is equivalent
to a category, so we are on safe grounds.

The automorphism group of a twisted curve is a fascinating object - I’ll revisit it later.
This notion of twisted curves was developed in [AV02]. As we discovered later, a similar

idea appeared in Ekedahl’s [Eke95].

13.3.3. Twisted stable maps. (detailed discussion - to be distilled. sections at markings)

Definition 13.3.4. A twisted stable map consists of

(f : C ! X ,Σ1, . . . ,Σn),

where

• Σi ⊂ C gives a pointed twisted curve.

• C f
! X is a representable morphism.

• The automorphism group AutX (f,Σi) of f fixing Σi is finite.
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I need to say something about the last two stability condition, necessary for the moduli
problem being separated.

Representability of f : C ! X means that for any point x of C the associated map

Aut(x)! Aut(f(x))

on automorphisms is injective. So the orbifold structure on C is the “most economical”
possible, in that we do not add unnecessary automorphisms.

The second condition is in analogy with the usual stable map case, and indeed it can
be replaced by conditions on ampleness of a suitable sheaf or number of special points
on rational and elliptic components. Most conveniently, it is equivalent to the following
schematic condition: the map of course moduli spaces

f : C ! X

is stable.
But as I defined things I have not told you what an element of AutX (f,Σi) is! In fact, to

make this into a stack I need a category of families of such twisted stable maps.

Definition 13.3.5. A map from (f : C ! X ,Σ1, . . . ,Σn) over S to (f ′ : C ′ ! X ′,Σ′
1, . . . ,Σ

′
n)

over S ′ is the following:

C
F
//

��

f

&&C ′
f ′
//

��

X

S // S ′,

consisting of

• a fiber diagram with morphism F as above, and
• a 2-isomorphism α : f ! f ′ ◦ F .

Note that the notion of automorphisms is more subtle than the case of stable maps to a
scheme, even if C is a scheme. For instance, in the case X = Mg, a map C ! X is equivalent
to a fibered surface S ! C with fibers of genus g, and S can easily have automorphisms
acting on the fibers and keeping C fixed, for instance if the fibers are hyperelliptic!

We write Kg,n(X , β) for the resulting category. The main result is:

Theorem 13.3.6. The category Kg,n(X , β) is a proper Deligne–Mumford stack with projec-
tive coarse moduli space.

13.3.7. Gluing and rigidified inertia. Much more subtle is the issue of gluing, and the related
evaluation maps. To understand it we consider a nodal twisted curve with a separating node:

C = C1
Σ⊔C2.

As expected, one can prove that C is a coproduct in a suitable stack-theoretic sense, and
therefore

Hom(C,X ) = Hom(C1,X ) ×
Hom(Σ,X )

Hom(C2,X ).

but Σ is no longer a point but a gerbe! We must ask

• How can we understand Hom(Σ,X )?
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• What is the universal picture?

We right answer is that legs of the dual graph must be marked by inertia components,
and more generally oriented nodes as well. The evaluation at opposite sides of an edge have
inverse inertia elements.

Proposition 13.3.8. The evaluation maps M(X , τ)! IXm are virtually smooth.
Given an edge of τ with splitting τ ′ we have a cartesian splitting diagram

M(X , τ) //

��

M(X , τ ′)

��

IX // IX × IX

of stacks with compatible virtual fundamental classes.

This leads to a wonderful WDVV for orbifolds, leading to Chen–Ruan cohomology, quan-
tum cohomology, Tseng’s orbifold upgrade of the Givental formalism, Coates–Corti–Itritani–
Tseng, the crepant resolution conjecture, etc.

13.3.9. Lessons learned. In any generalization of GW theory,

(1) The structure of curves should reflect the structure of targets, and vice versa.
(2) The structure of points should say something about where one evaluates.
(3) Gluing should be a fibered diagram, with compatible virtual structure, as above.

Indeed, for orbifold maps curves are necessarily orbifold curves. Evaluation must take into
account the gerbe structure, hence lands in X ev = I(X ). The fibered product is over the
fancy diagonal IX ! IX × IX .

13.4. The degeneration formula - comments back and forward.

13.4.1. A first case. In 1998 [LR01] and in 2001 [Li01, Li02] An-Min Li and Ruan, and Jun
Li, showed how to compute Gromov Witten invariants using a simple degeneration.

One wants to access the GW invariants of smooth X, which lies in a family X ! B, with
X and B smooth, B a curve, and special fiber X0 = Y1 ∪D Y2, again with Yi, D smooth, a
simple normal crossings degeneration.

The key to this work is

(1) A new relative GW theory of Yi relative to the divisor D,
(2) A fiberwise GW theory of X/B, which is close enough to the above, and
(3) A degeneration formula of the following form:

GW (X0/0) = GW (Y1, D) ∗GW (Y2, D).

Deformation invariance guarantees that much of GW (X) is encoded in GW (X0/0). Tech-
niques for recovering the hidden parts of GW (X) have recently been developed.

We have seen this in some detail in the GW lecture series. It is a major tool of GW theory
and a major success!
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13.4.2. Approaches in the first case. Nowadays the degeneration formula in this case has
several proofs. I will not address the Li–Ruan paper as it relies on symplectic techniques
(and does apply in that generality - a fact that has ben useful even in the algebraic case).

Jun Li’s approach is to construct the family and relative moduli spaces using expanded
degenerations. Within that work he uses logarithmic deformation theory in analyzing virtual
fundamental classes, but his use of logarithmic geometry is limited to that case. His use of
log deformation theory was inspired by Siebert’s legendary lecture on the subject.

The paper [AF16] still uses expanded degenerations, and addresses relative moduli spaces
and invariants of (Y,D) and of X/B using orbifold geometry. The idea is, when one takes
root stacks of sufficiently divisible order, contact orders of expanded maps become transverse,
circumventing the hardest step in Jun Li’s computations. So thorny issues are circumvented
using the magic powder of stacks.

The paper [Kim10] again uses expanded degenerations, but directly applying logarithmic
structures. Chen [Che14a] uses it to provide a degeneration formula. One views X/B or
(Y,D) as a log smooth scheme, one defines expanded log maps to such targets, and, similarly
to [AF16], the issue of non-transversality is circumvented using the magic powder of log.

Finally the paper [KLR23] provides a treatment through logarithmic stable maps, the
subject of the next series of lectures.

The fact that all these approaches compute the same objects is proved in [AMW14].

Exercise 13.4.3. Compute the number N3 = 12 of cubic plane curves through 8 points
by a degeneration.

(1) Degenerate the plane to the union of a plane and an F1 by blopwing up P2 × A1

along a line over 0.
(2) Let three points degenerate to the plane and 5 to the F1 component.
(3) Show that the only contribution is from curves formed by conics in the plane and

curves of class ℓ+ 2f .
(4) The total count 12 comes out as 5 × 1 + 3 × 1 + 2 × 2.

• The first term has to do with breaking ℓ+ 2f as (ℓ+ f) + f , where f passes
through one of the 5 points.

• The second with breaking the conic in two lines.
• The third with irreducible curves tangent to the intersection D. An impor-

tant point is that these count with multiplicity 2, and there are 2 of these.

Exercise 13.4.4. Compute the number 12 of rational plane sections of a cubic surface
in the pencil of planes through two general points, by degenerating the cubic into a union
of a plane and a quadric, and one of the points landing on each component.

(1) Perform the necessary small blowup to make the family log smooth. This involves
6 points on the conic D where the components intersect.

(2) The count is of the form 6 × 1 + 2 × 1 + 2 × 2.
• The first term has to do with lines in the plane through one of the 6 points.
• The second with breaking the conic section of the quadric in two lines.

113



• The third with irreducible curves tangent to the intersection D. An impor-
tant point is that these again count with multiplicity 2, and there are 2 of
these.

13.4.5. The general case. This was the original purpose of logarithmic GW theory, and the
story is not as clean as I would wish to tell you. In an ideal world, Siebert’s dream would
have been realized directly, with no caveats.

Exercise 13.4.6. Not a reasonable exercise! Compute the number 12 of rational plane
sections of a cubic surface in the pencil of planes through two general points, by degener-
ating the cubic into a union of three general planes, with the points landing on different
components.

(1) Perform the necessary small blowup to make the family log smooth. This involves
9 points on the three lines.

(2) The count is of the form 9 × 1 + 3 × 1.
• The first term has to do with lines in the plane through one of the 9 points.

That’s quite natural.
• The second with the unique plane through the origin.
• It is a highly nontrivial fact that the plane section (with the triple point

replaced by a P1) counts as 3!

I’ll revisit the question in the closing lecture.

13.4.7. Here there are again several approaches.

(1) Brett Parker in a series of papers (see exposition in [Par12]) has an approach for a
full degeneration formula using his theory of exploded manifolds.

(2) Dhruv Ranganathan [Ran22] and Maulik–Ranganathan [MR24] have an approach
for a full degeneration formula using expanded degenerations controlled by com-
bunatorics.

(3) there is also an orbifold approach by Fan Wu and You [FWY20]. Unlike the simplest
case, there is a difference between this approach and the logarithmic approach.

(4) The approach through logarithmic geometry [GS13, Che14b, AC14, ACGS20, ACGS24,
Gro23] provides a gluing mechanism, which works in many important cases but not
all. I feel that we are still missing a simplifying component of the theory, and would
welcome ideas. I also feel that it is a rather natural approach. My understnding is
that this approach agrees with Tehrani’s [FT22].

22
22!

13.4.8. Decomposition. State the decomposition formula here? It can also go in Hulya’s
lecture or in the punctured lectures under ”advanced”

22(Dan) Forgotten anyone?
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14. Logarithmic Gromov–Witten theory

Gromov-Witten theory has a generalisation to the setting of logarithmic geometry [GS13,
AC14]. In log Gromov-Witten theory, to study log curves in a log scheme (X,MX) one
works over a base log scheme (S,MS). The scheme S in practice could be the spectrum of
a discrete valuation ring with the log structure induced by the closed point (one-parameter
degeneration), or it could be Speck, for k an algebraically closed field of characteristic
zero, endowed with the trivial log structure (absolute situation), or Speck endowed with
the standard log structure (special fibre of one-parameter degeneration). Throughout this
section, we focus in the absolute situation, and assume (X,MX) is a log scheme over the
trivial log point.

One generalises the notion of a stable map to the log setting as follows. Consider an
ordinary stable map with a number, say ℓ, of marked points. Thus we have a proper curve
C with at most nodes as singularities, a regular map f : C ! X, a tuple x = (x1, . . . , xℓ)
of closed points in the non-singular locus of C. Moreover the triple (C,x, f) is supposed to
fulfill the stability condition of finiteness of the group of automorphisms of (C,x) commuting
with f . To promote such a stable map to a stable log map amounts to endow all spaces with
(fine, saturated) log structures and lift all morphisms to morphisms of log schemes, defined
as follows.

Definition 14.0.1. A morphism of log schemes f : (X,MX) ! (Y,MY ) is a morphism of
schemes f : X ! Y along with a homomorphism of sheaves of monoids f ♯ : f−1MY !MX

such that the diagram

f−1MY
f♯

−−−! MX

αY

y
yαX

f−1OY
f∗
−−−! OX .

is commutative. Here, f ∗ is the usual pull-back of regular functions defined by the morphism
f . Given a morphism of log spaces f : (X,MX) ! (Y,MY ), we denote by f : X ! Y the
underlying morphism of schemes.

A stable log map is obtained by promoting C ! W to a smooth morphism of log schemes

π : (C,MC) −! (W,MW ).

and also f : C ! X to a morphism of log schemes, f : (C,MC) ! (X,MX). We demand
that the regular points of C where π is not strict are exactly the marked points, and the
morphism π : (C,MC)! (W,MW ) to be log smooth – we define the notion of log smoothness
in the §14.1, and then expand the discussion on log smooth curves in §14.2.

14.1. Smoothness in log geometry. In this section we define log smooth morphisms,
and give criteria on how to characterize them, after shortly recalling smooth morphisms of
schemes.

Definition 14.1.1. A morphism of schemes f : X ! Y is called smooth if the following
holds (see Infinitesimal Lifting Property [Har77, §II.8]):

• f is “locally of finite presentation”: this means if Y is covered by affine open sets
V = SpecA, and f−1(V ) is covered by affine open sets U = SpecB, then the ring
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map A ! B corresponding to U ! V is a finitely presented ring homomorphism
(i.e. B is the quotient of some polynomial ring A[x1, . . . , xn] by a finitely generated
ideal.)

• f is “formally smooth”: this means for any affine scheme T0 with a square-zero
embedding T0 ⊂ T fitting into the diagram (23), there exists a lifting T ! X as
indicated.

(23)

X

T0 T Y

∃

Furthermore, the morphism f : X ! Y is called étale if the above lifting is unique.

Remark 14.1.2. The assumption that T0 is affine ensures the existence of a lifting “locally”.
If the lifting is unique, then “existence locally” implies “existence”, as unique liftings must
coincide on overlaps and maps which coincide on overlaps glue together.

We define logarithmically smooth and étale morphisms similarly in a moment, after we
reacll the notion of a strict morphism which will be needed.

Definition 14.1.3. Let f : (X,MX)! (Y,MY ) be a log morphism and let x be a point of
X. We say that f is strict at the point x if f ♯ induces an isomorphism f−1MY,f(p) ≃ MX,p.

Definition 14.1.4. A morphism f : X ! Y of “fine” logarithmic schemes is called log
smooth if the following holds:

i) The underlying morphism of schemes X ! Y is locally of finite presentation, and
ii) For any fine log scheme T0 which is affine and T0 ⊂ T a strict square-zero embedding

fitting into a diagram as in (23), viewed in the category of log schemes, there exists
a lifting T ! X as indicated. Furthermore, the morphism f : X ! Y is called étale
if this lifting is unique.

The following proposition which can be dound in [Kat89, Prop.3.4] provides a natural
example of a log smooth or étale morphism.

Proposition 14.1.5. Let R be a ring, P and Q finitely generated integral monoids, and
Q! P a monoid homomorphism. Let X = SpecR[P ] and Y = SpecR[Q] be endowed with
log structures MX and MY associated to the pre-log structures P ! R[P ] and Q ! R[Q]
respectively. Assume

i) The kernel of Qgp ! P gp is finite and with order invertible in R,
ii) The torsion part of the cokernel of Qgp ! P gp has order invertible in R.

Then, (X,MX) ! (Y,MY ) is log smooth. Furthermore, if the cokernel of Qgp ! P gp is
finite then (X,MX)! (Y,MY ) is log étale.

Proof. Condition i) in Definition 14.1.4 is automatic, since P,Q are finitely generated. To
check condition ii), let T0 ⊂ T be a strict square zero embedding fitting into a diagram
as in (23), viewed in the category of log schemes. We will show that there exists a lifting
(T,MT ) ! (X,MX). To do this, it suffices to define a map P ! MX , since the log
structure MX on X = SpecR[P ] is induced from P ! R[P ].
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Let I ⊂ OT be the ideal defining T0 ⊂ T , such that I2 = 0. Note that we have an
embedding

ϕ : I ↪−! O×
T ⊂ MT

x 7−! 1 + x

To check that that ϕ is a homomorhism, note that ϕ(x+y) = ϕ(x)·ϕ(y), since (1+x)(1+y) =
1 + x+ y + xy = 1 + (x+ y) as I2 = 0. Therefore, we have a cartesian diagram

(24)

MT MT/I = MT0

Mgp
T Mgp

T /I = Mgp
T0
.

Then, by the assumption on Qgp ! P gp, we obtain the following commutative diagram,
where the dotted arrow is defined étale locally

(25)

Mgp
T0

P gp

Mgp
T Qgp

From the cartesian diagram in (24) the diagram in (25), we obtain the desired map P !MX ,
hence the result follows. ♣
Example 14.1.6. Dominant toric morphisms are log smooth.

Exercise 14.1.7. Verify using Proposition 14.1.5, that the morphism A2 ! A1 defined
by

SpecC[x, y] −! SpecC[t](26)

(x, y) 7−! x · y = t ,

as illustrated in Figure 7 is log smooth.

Note that log smooth morphisms are not necessarily smooth – for instance the morphism
in (26) is not smooth, as the fiber over t = 0 is not smooth.

Exercise 14.1.8. Verify that the following morphisms are log smooth (where we consider
the tpric divisorial log structures on each scheme), but not smooth

1) SpecC[t]! SpecC[s] given by s = t2

2) SpecC[x, y]! SpecC[x, z] given by z = xy

117



Figure 7. The map (x, y) 7−! xy

Note that in Exercise 14.1 the morphism SpecC[x, y] ! SpecC[x, z] given by z = xy
descibes an affine chart of the blow-up of A2 at the origin, which is not flat. Unfortu-
nately, unlike smoothness, log smoothness does not imply flatness. However, if a log smooth
morphism is integral defined as below, then flatness of the underlying morphism follows.

Definition 14.1.9. A monoid homomorphism Q ! P is called integral if Z[Q] ! Z[P ] is
flat. A morphism f : X ! Y of logarithmic schemes is integral if for every geometric point x
of X the homomorphism (f−1MY )x ! (MX)x between characteristic sheaves on stalk level
is integral.

The following statement can be found in [Kat89, Corollary 4.5].

Proposition 14.1.10. Let f : (X,MX)! (Y,MY ) be a morphism between fine log schemes.
If f is log smooth and integral, then the underlying morphism of schemes is flat.

Generally, to check if a morphism of log schemes f : X ! Y , not necessarily of the form
as in Proposition 14.1.5, is log smooth we study charts for f . Recall, that a chart for a fine
log structure OX on a scheme X is given by a morphism of monoid sheaves PX ! MX ,
where PX the constant sheaf associated to a finitely generated integral monoid P , such that
the associated log structure is isomorphic to MX . For morphism f : (X,MX) ! (Y,MY )
of schemes with fine log structures a chart for f is a triple (PX !MX , QY !MY , Q! P )
where PX ! M, QY ! MY are charts of M and MY respectively and Q ! P is a
homomorphism for which the following diagram commutes.

QX
//

��

f−1MY

��

PX
//MX

The following theorem can be found in [Kat89, Theorem 3.5].

Theorem 14.1.11. A morphism f : X ! Y of fine log schemes is log smooth if and only
if étale locally there exists a chart (PX !MX , QY !MY , Q! P ) such that

i) Q! P satisfies conditions i) and ii) in Proposition 14.1.5, and
ii) X ! Y × SpecZ[Q] SpecZ[P ] is smooth in the usual sense.

14.2. Log smooth curves.
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Definition 14.2.1. A map of fine log schemes π : (C,MC)! (W,MW ) is called a log curve
over W if π is a proper, log smooth, integral morphism of relative dimension 1 such that
every fibre is a reduced and connected curve.

The following theorem is due to Fumiharu Kato [Kat00].

Theorem 14.2.2. Assume π : C ! W is a log curve, 0 ∈ W be a closed point and
Q := MW,0. Then étale locally on the fiber over 0,

1) All singularities are nodal,
2) We can choose disjoint sections si : W ! C in the nonsingular locus C0 of C/W

such that
i) Away from si we have the log structure on the smooth locus is given by C0 =
C0 ×W W , so π is strict away from si.

ii) Near each si we have a strict étale morphism

C0 −! W × A1 ,

with the standard divisorial log structure on A1.
iii) At a node p ∈ C, we have MC,p = N2⊕NQ⊕O∗

C,p where Q! N2 is the diagonal
morphism and N! Q is given by 1 7! ρ for some non-zero ρ ∈ Q.

In Theorem 14.2.2 cases (i), (ii), (iii) correspond to neighbourhoods of general points,
marked points and nodes of C respectively.

Definition 14.2.3. A prestable marked log curve over (W,MW ) is a log curve π : C ! W
together with a tuple of sections s = (s1, . . . , sℓ) in the non-singular locus C0 of C/W such
that away from the images of si’s we have C0 = C0 ×W W . A pre-stable log curve is stable
if forgetting the log structure leads to an ordinary stable curve.

We investigate the moduli space of stable log curves in the following section.

14.3. Moduli spaces of stable log curves. We define a category Mlog

g,n of stable log curves:
the objects are genus g log curves C ! W with n marked points and the morphisms are
fiber diagrams

C1
//

��

C2

��

W1
// W2

There is a forgetful functor from Mlog

g,n to the category of fine, saturated log schemes:

Mlog

g,n −! LogSchfs

(C ! W ) 7−! W

So, Mlog

g,n is a category fibered in groupoids over LogSchfs as discussed in §2.2.1.

Let Mg,n denote moduli space of n-marked, genus g stable curves as in §11. Recall that
the union of singular curves defines a boundary divisor ∂Mg,n in Mg,n. The following result
can be found in [Kat00, Theorem 4.5].
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Theorem 14.3.1. There exists a natural isomorphism

Mlog

g,n
∼= (Mg,n, ∂Mg,n) ,

as categories fibered in groupoids over LogSchfs.

Note that in Theorem 14.3.1 both Mlog

g,n and (Mg,n, ∂Mg,n) are categories fibered in

groupoids over the category of fs log schemes LogSchfs. In particular, we view here (Mg,n, ∂Mg,n)
as the category fibered in groupoids over fs log schemes whose fiber over an fs log scheme W
is the groupoid of log morphisms from W to the log scheme (Mg,n, ∂Mg,n).

Now, by definition Mlog

g,n parametrizes stable log curves over the category of fs log schemes

LogSchfs. On the other hand, Mg,n parametrizes so called minimal [AC14] or basic [GS13]
stable log curves over the category of schemes – we discuss the notion of minimality in the
remaining part of this subsection.

14.3.2. Minimality. Given a family of stable curves C ! W , we explain below that there is
a natural way to impose a log structure both on C and on W and to lift the map C ! W
to a log morphism C ! W .

By the universal property of the moduli space of stable curves Mg,n, there exists a unique
morphism W !Mg,n such that C ! W is the pull-back of the universal curve Mg,n+1 !
Mg,n. The minimal log structure on W is then obtained by the pull-back of the divisorial
log structure on Mg,n defined by the divisor ∂Mg,n. The minimal log structure on C is
obtained similarly, by the pull-back of the divisorial log structure on Mg,n+1, defined by the
boundary divisor ∂Mg,n+1.

The fact that there is a natural lift of the map C ! W to a log morphism C ! W follows
from the fact that the universal curve Mg,n+1 !Mg,n naturally lifts to a log morphism

(Mg,n+1, ∂Mg,n+1) −! (Mg,n, ∂Mg,n) .

From now on we will denote by Cmin the log scheme with underlying scheme C, endowed
with the minimal log structure discussed above, and we will use similar notation for Wmin.
Note that the reason why these log structures are called “minimal” is that for any log
curve C ! W with underlying scheme theoretic map C ! W , there exists a unique map
W ! Wmin such that C ! W is a pull-back of Cmin ! Wmin – this is a direct consequence
of Theorem 14.3.1.

From the discussion above for any stable curve C ! W := SpecC, there is an associated
log morphism

Cmin ! Wmin := (SpecC,C∗ ⊕Q) ,

where we will refer to Q as the minimal monoid or basic monoid. It follows from the definition
of the minimal log structure that

(27) Q = Nr ,

where r is the number of nodes of C.
Recall that the nodes of C are in one-to-one correspondence with the bounded edges of

the dual graph of C. So, the set of monoid homomorphisms Hom(Q,R≥0) ∼= Rr
≥0 can be

interpreted as the moduli space of tropical curves with underlying graph the dual graph of
C, where Rr

≥0 parametrizes the lengths of the bounded edges.
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14.4. Stable log maps. Recall from §11 that an n-marked stable map to a scheme X is a
map f : C ! X, from a proper nodal curve C with n marked points (p1, . . . , pn), such that
Aut(C, p1, . . . , pn) is finite. In the log geometric setup, the generalization of a stable map is
given as follows.

Definition 14.4.1. Let X be a log scheme. An n-marked stable log map with target X is a
diagram

(28)

C
f

−−−! X

π

y
W

together with a tuple of sections x = (x1, . . . , xn) of π, where π is a proper, log smooth,
integral morphism of log schemes, such that, for every geometric point s of W , the restriction
of f to s with the marked points x(s) is an ordinary stable map, and furthermore, if U ⊂ C

is the non-critical locus of π, we have MC |U ≃ π∗MW ⊕⊕n
j=1(xj)∗NW .

In what follows we will use the notation f : C/W ! X to denote a stable log map as in
(28).

Recall from §11, one fixes discrete data Γ = (g, β, n) to define the moduli space of stable
maps to X, of genus g with n marked points, such that the image is of class β ∈ H2(X,Z).
To describe the moduli space of stable log maps to X, in addition we fix contact orders ci
at each marked point pi, for 1 ≤ i ≤ n, defined as follows. If pi ∈ is a marked point of a
geometric fibre of π, we have

ci : MX,f(pi) −!MC,pi = MW,π(pi) ⊕ N pr2−! N,

The element ci ∈ Hom(MX,f(pi),N), called the contact order at pi. In what follows, we
collect the numerical data under the umbrella

Γ = (g, β, ci) .

We will refer to an n-marked stable log map as a map of type Γ, if the domain curve is of
genus g, the image is of class β ∈ H2(X,Z) and each marked point pi has contact order ci,
for 1 ≤ i ≤ n.

We define a category Mlog

Γ (X) of stable log maps to X of type Γ: the objects are stable log
maps f : C/W ! X of type Γ and the morphisms are given by fiber diagrams of stable log

maps. Similarly as for the moduli space of curves, we have a forgetful functor from Mlog

Γ (X)

to the category of fine, saturated log schemes. Hence, Mlog

Γ (X) is also a category fibered in
groupoids over LogSchfs.

The following theorem is due to Abramovich–Chen [AC14] and Gross–Siebert [GS13] under
some assumptions on global generation of the ghost sheaf – these assumptions were removed
in Abramovich–Chen–Marcus–Wise [ACMW17].

Theorem 14.4.2. Let X be projective log scheme. There exists a proper log Deligne-
Mumford stack MΓ(X) such that

Mlog

Γ (X) ∼= MΓ(X) ,

as categories fibered in groupoids over LogSchfs.
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In a moment we explain that MΓ(X) parametrizes so called minimal or basic stable log
maps to X over the category of schemes.

14.5. Minimal stable log maps. Let f : C/W ! X be s stable log map of type Γ. By
Theorem 14.4.2 there exists a unique log morphism W !MΓ(X) such that f : C/W ! X
is the pull-back of the universal stable map over MΓ(X).

Denote by Wmin the log scheme with underlying scheme W , endowed with the log structure
obtained by pulling back the log structure on MΓ(X) along the map W !MΓ(X). We call
the stable log map f : C/W ! X minimal or basic if the natural log morphism W ! Wmin

is an isomorphism.
It follows by the definition of a minimal stable log map that for any scheme W , the data

of a scheme theoretic morphism W !MΓ(X) is equivalent to the data of a basic stable log
map f : C/W ! X.

We provide below an explicit characterization of basic stable log maps over a log point
W = (SpecC,C∗ ⊕ Q), where Q is a sharp monoid, that is, the only invertible element is
zero.

Let f : C/W ! X be a stable log map. By the discussion above, there exists a log scheme
Wmin necessarily of the form

Wmin = (SpecC,C∗ ⊕Qmin) ,

where Qmin is a sharp monoid, referred to as the minimal monoid or basic monoid. It is
shown in [GS13, Remark 1.18] that one can describe the basic monoid Q, by first defining
its dual as

Qmin,∨ =

{
(
(Vη)η, (eq)q

)
∈
⊕

η

M
∨
X,f(η) ⊕

⊕

q

N
∣∣∣∣ ∀q : Vη2 − Vη1 = equq

}

where the sum is over generic points η of C and nodes q of C and uq denotes the contact
order of the node q (see [GS13, (1.8)]). One then obtains the minimal, or basic, monoid as

Qmin := Hom(Qmin,∨,N) .

The basic monoid Qmin has a natural tropical interpretation. To elaborate on this we first
need the following definition.

Definition 14.5.1. The combinatorial type of a stable log map f : C/W ! X/S consists
of:

• The dual intersection graph G = GC of C, with set of vertices V (G), set of edges
E(G), and set of legs L(G).

• The genus function g : V (G)! N associating to v ∈ V (G) the genus of the irreducible
component C(v) ⊂ C.

• The map σ : V (G) ∪ E(G) ∪ L(G) ! Σ(X) mapping x ∈ C to
(
MX,f(x)

)∨
R, where

Σ(X) denotes the tropicalisation of X.

• The contact data up ∈ M
∨
X,f(p) = Hom(MX,f(p),N) and uq ∈ Hom(MX,f(q),Z) at

marked points p and nodes q of C.

The combinatorial type of a stable log map naturally determines the combinatorial type
of the associated tropical stable map. It follows by the definition of the basic monoid that
Hom(Qmin,R≥0) is the moduli cone of tropical stable maps of this combinatorial type.
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Example 14.5.2. Consider the target X = P1 with divisorial log structure along a point
∞ ∈ P1. Let f : C ! X be a minimal stable log map with combinatorial type given by the
tropical stable map to Σ(X) = R≥0 as in Figure 8. The weights 1, 1, 2 attached to the edges
E1, E2, E3 encode the contact orders. The corresponding minimal monoid is Qmin = N.
Indeed, the corresponding moduli space of tropical stable maps Hom(Qmin,R≥0) = R≥0 is
parametrized by the position of the image of the vertex V3. Note that if we were considering
the domain curve only, independently of the map, then one could vary independently the
lengths of the two bounded edges E1 and E2, and so the basic monoid would be N2, as in
Equation 27. However, the existence of the tropical map to Σ(X) forces these two lenghts
to be equal and determined by the position of the image of the vertex V3.

Figure 8. A tropical stable map to the tropicalisation of (P1,∞)

Exercise 14.5.3. As in Example 14.5.2, consider the target X = P1 with divisorial
log structure along a point ∞ ∈ P1. Let f : C ! X be a minimal stable log map
with combinatorial type given by the tropical stable map to Σ(X) = R≥0 in Figure 9.
Determine the corresponding basic monoid Qmin.

Finally, we are at a position to define log Gromov–Witten invariants.

14.6. Log Gromov–Witten invariants. Recall the moduli space MΓ(X) from Theorem
14.4.2 parametrizes basic/minimal stable log maps to X. We have the following result, due
to Abramovich–Chen [AC14] and Gross–Siebert [GS13]:

Theorem 14.6.1. Let X be a log smooth, projective log scheme. Then, the moduli space
MΓ(X) carries a natural virtual fundamental class [MΓ(X)]vir.

We briefly review in what follows, how to construct the virtual fundamental class [MΓ(X)]vir.
To do this, we will consider the Artin fan associated to X as defined in §8, denoted by
AX,MX

– in what follows we will abbreviate the notation and denote it just by AX . Denote
by MΓ(AX) the moduli stack of basic/minimal pre-stable log maps to AX . Recall that there
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Figure 9. Another tropical stable map to the tropicalisation of (P1,∞)

is a natural log morphism X ! AX , which by composition with f : C/W ! X defines a
map C/W ! AX . Hence, we obtain a log morphism

ϵ : MΓ(X) −!MΓ(AX) .

There are two key points to emphasize: First, there is a natural perfect obstruction theory
on MΓ(X) relative to ϵ – for the general notion of a perfect obstruction theory see [BF97],
and for the existence of it in our context see [GS13, §6]. Hence, there is a corresponding
virtual pull-back

ϵ! : A∗(MΓ(AX)) −! A∗(MΓ(X)) .

Second, the stack MΓ(AX is equi-dimensional and therefore has a well-defined fundamental
class [MΓ(AX)] ∈ A∗(MΓ(X)) [AW18, Prop 1.6.1]. Thus, the virtual fundamental class on
MΓ(X) is defined by

[MΓ(X)]vir = ϵ!([MΓ(AX)]) .

Log Gromov–Witten invariants of X are then obtained by integration over this virtual fun-
damental class – to concretely write this integral, one needs to discuss the technically subtle
issue of “evaluation spaces” which we skip in these notes (for a detailed discussion see
[ACGM10]).

Exercise 14.6.2. Let X = P2 with the divisorial log structure defined by a smooth cubic
curve E ⊂ P2. Let Γ be the type of g = 0 curves of degree β = 1, with a single marked
point with contact order c = 3 with E. Show that the moduli space MΓ(X) consists of
9 reduced points. Hint: think about the flex points of E.

One can show that in the situation of Exercise 14.6.2, the virtual fundamental class coin-
cides with the usual fundamental class, and so this number 9 is an example of log Gromov–
Witten invariant.

Example 14.6.3. Let X be the blow-up of P2 at a point p ∈ P2. Denote by E the exceptional
curve and by D the strict transform of a line in P2 passing through p – see Figure 10. We
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view X as a log scheme for the divisorial log structure defined by D. For every k ≥ 1, let Γk

be the type of g = 0 curves of degree β = k[E], with a single marked point with contact order
c = k with E. For k = 1, the moduli space MΓ1(X) is a single reduced point corresponding
to the exceptional curve. For k > 1, MΓk

(X) is a complicated moduli space of degree k
covers of E fully ramified over the intersection point E ∩ D. However, one can show that
the virtual dimension of MΓk

(X) is equal to zero for every k ≥ 1. The corresponding log
Gromov–Witten invariant is shown in [GPS10, Proposition 6.1] to be given by

(29) deg[MΓk
(X)]vir =

(−1)k−1

k2
.

Note that this log Gromov–Witten invariant is only a virtual count of curves if k > 1:
in particular, it is non-integer and can be negative. The formula (29) plays an essential
role in the application of log Gromov–Witten theory to mirror symmetry – see [GHK15] in
dimension two and [AG22] in higher dimension.

Figure 10. Exceptional curve E and strict transform D of a line.
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ADVANCED TOPICS START HERE

15. Resolution of singularities using stacks and logarithmic geometry

15.1. Hidden smoothness and resolution. By Dan. This should be something between
the Taipei lectures and the James60 unfulfilled promise

The early origin of stacks included the idea that stacks present hidden smoothness: the
quotient of a smooth variety by a group action retains properties akin to a smooth variety,
and the formalism of stacks makes this rigorous - the stack itself is smooth.

Similarly, the origin of logarithmic geometry is tightly connected with hidden smoothness.
In logarithmic geometrym, any toric variety is logarithmically smooth, immediately enlarging
the scope of smooth-like object. Also, in logarithmic geometry, and family of nodal curves
is logarithmically smooth, immediately justifying their choice for compact moduli spaces.

Historically, these hidden smoothness properties appear sporadically also in resolution of
singularities: many explicit varieties are naturally embedded in weighted projective spaces,
which are orbifolds. And in many cases their singularities can be treated using weighted
blowing up. On the logarithmic side, a variety with toroidal singularities is easily resolvable.
Exceptional divisors can be treated using logarithmic techniques, for instance logarithmic
derivatives and logarithmic differentials.

Surprisingly though, it took some time before stacks and logarithmic geometry were
brought into general resolution algorithms. Ours is this story.

15.2. Resolving singularities in families and the necessity of logarithmic geome-
try. Algebraic geometry puts a high value on working with schemes in families. If one has a
resolution of singularities of schemes, what should one do to create resolution of singularities
for a family of schemes?

We know, for instance through the moduli spaces of stable curves, that there is no way we
could take a family of schemes X ! B and resolve all its fibers. Some compromise must be
made. The classical approach is to replace a resolution by semistable reduction which will
be discussed later, and, in its original form, this is only pursued over one-dimensional bases.

Logarithmic geometry provides us with a different approach for a compromise. We note,
following Fumiharu Kato, that a family of stable curves X ! B is log smooth, and in fact
the morphism is integral and saturated.

We are thus presented with the following problem:

Problem 15.2.1. given a projective surjective morphism X ! B, with X,B normal, find a
logarithmic modification X ′ ! B′ which is logarithmically smooth. This procedure shoudl
be functorial for log smooth morphisms on X.

This problem is again solved in characteristic 0, which is a new concept even when B is a
point, since functoriality is different!

15.3. Functoriality in logarithmic resolution and the necessity of stacks. Functori-
ality in log resolution does present a difficulty: suppose you want to logarithmically resolve
the nodal curve x2 = u2 on the affine plane endowed with the logarithmic structure associ-
ated to {x = 0}. It is of course natural to blow up the origin, and that in fact does provide
a logarithmic resolution, where the exceptional is included in the log structure.
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But this picture is the pullback of y = u2 via the logarithmically smooth map x = y2.
In other words, the blowup on the y, u plane must pull back to the blowup of (x, u). Since
x =

√
y this m,eans we must blow up the object (

√
y, u).

The only way we found to understand this is the weighted blowup associated with (y1/2, u).
This actually works, and is an essential feature of log resolution.

In other words, both logarithmic structures and algebraic stacks are an essential ingredient
of a central problem in resolution of singularities.

15.4. Weighted resolution of singularities. The story takes a surprising turn here: now
that we agreed that weighted blowups are needed for log resoolution, maybe they have
something to say about resolution?

tell the story of weighted resolution

15.5. Logarithmic weighted resolution of singularities. Tell the story of Quek toroidal
resolution and NCD resolution

15.6. A view to the future. Questions in characteristic 0, questions in positive character-
istics

What follows is copied almost verbatim from the McKernan submission – with coauthors
Belotto da Silva, Quek, Temkin, W lodarczyk.

15.7. Weighted resolution of singularities. We continue to work exclusively in charac-
teristic 0.

The main result of [ATW19] provides a resolution of singularities X ′ ! X where X ′ is
a Deligne–Mumford stack. Some may see this as a drawback, though we do not. In any
case, standard techniques of combinatorial nature allow one to replace a resolution using
Deligne–Mumford stacks by a resolution using varieties. See [ATW19, precise statememnt].

In analogy with Hironaka’s proof, the transition in [ATW19] from Y to Y ′ involves weighted
blowups, again allowing one to track the change of geometry (e.g the Chow ring, see [AO23]),
and guaranteeing projectivity on coarse moduli spaces.

15.8. Toroidal weighted resolution of singularities. In [Que20], Quek extended the
techniques of [ATW19] and provided a toroidal resolution X ′ ! X, in which X ′ is a toroidal
Deligne–Mumford stack, and the exceptional divisor is subsumed in the toroidal structure.
In particular X ′ may have toroidal singularities.

Once again, toroidal singularities are easily resolved. In particular Quek deduces a result
equivalent in many ways to Hironaka’s, [Que20, precise statement]. On the other hand, one
no longer tightly controls the geometric changes of the ambient variety through Y ′ ! Y ,
as the transitions involve toroidal weighted blowups, which are more intricate than weighted
blowups.

We will recall Quek’s methods and intermediate results in Section 15.14 below, as they
are relevant to the present exposition.

15.9. Logarithmic weighted resolution of singularities. The main result here shows
how to combine the results of [ATW19] with the methods of [Que20] to give a functorial
logarithmic resolution of singularties X ′ ! X, adhering to McKernan’s principle of a natural,
fully motivated and understandable proof.
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In brief, to a singular point p of a Deligne–Mumford stack X embedded with pure codi-
mension in a smooth deligne–Mumford stack Y , meeting a simple normal crossings divisor D
properly, we attach an upper-semicontinuous singularity invariant loginv∗

X(p) taking values
in a well-ordered set Γ. The formation of loginv∗ and J∗ is functorial for smooth base change
on Y . The maximal locus of loginv∗ is the support of a weighted blowup center J∗, which is
also functorial.

Theorem 15.9.1 (Functorial logarithmic resolution of singularities). The weighted blowup
Y ′ ! Y of the reduced center associated to J∗ is a smooth stack with transformed simple
normal crossings divisor D′, formed as union of the pre-image of D and the exceptional. The
proper transform X ′ of X satisfies

loginv∗
X ′(p′) < loginv∗

X (p)

for any point p in the support of J∗ and any p′ ∈ X ′ above it.
After finitely many iterations, the proper transform X(n) is a smooth locus on a smooth

stack Y (n) carrying a simple normal crossings divisor D(n).

Remark 15.9.2. We come close to proving that “sufficiently strong resolution implies
equally strong logarithmic resolution”, but in some steps we go into the techniques of [Que20]
to complete the proof.

15.10. Resolution via embedded resolution and principalization. We follow stan-
dard techniques for resolution of singularities which reduce the geometric problem to more
algebraic ones.

First, the procedure we devise requires X to be embedded in a smooth variety Y . This
can always be achieved locally, but to globalize it one needs to verify that the procedure is
independent of choices, what we call the re-embedding principle.

Second, instead of working with X ⊂ Y one works with improving the ideal IX ⊂ OY .
The problem is principlalization of an ideal I ⊂ OY , which in our case boils down to having
the total transform of I become exceptional for Y (n) ! Y . A simple observation, sometime
known as accidental resolution, guarantees that X is resolved along the way.23

23!

15.11. Where this comes from. In [ABdSTW24] one proves resolution and principaliza-
tion in the presence of foliations. In that situation working with extended invariants similar
to loginv∗ introduced here becomes essential, and the logarithmic case occurs as a natural
byproduct. On the other hand, Quek worked on simplifying his presentation of results of
[Que20] for a course at Stanford and a workshop in Heidelberg. We decided to combine
forces and attempt to describe as natural an argument as we could produce.24

24!

15.12. Principalization of monomial ideals. We revisit weighted principalization of
monomial ideals (see [Que20, AQ21, W l22]) with an approach which feeds into of the paper.
Assume given a variety Y with a normal crossings divisor D, a non-unit monomial ideal
I, and point p ∈ Y where I vanishes. The paper [ATW19] provides a functorially defined
upper-semicontinuous invariant invI(p) = (b1, . . . , bm), taking values in a well-ordered set,
with rational terms b1 ≤ · · · ≤ bm, and center J , locally of the form (yb11 , . . . , y

bm
m ). Taking

23(Dan) recall these at the end
24(Dan) Remarks on other approaches - Jarek and A-Quek
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the weighted blow up Y ′ ! Y of the associated reduced center J̄ , with transformed ideal I ′,
the main result of [ATW19] shows

Theorem 15.12.1. For every point p′ ∈ V (I) ⊂ Y ′ over p, one has

invI′(p′) < invI(p).

One deduces from this that after finitely many repetition the transformed ideal no longer
vanishes, giving a principalization result which in turn implies resolution.25

Note that the divisor D does not figure in the above results. Here we note the following
consequence of functoriality:

Proposition 15.12.2 (Principalization of monomial ideals). The center J is toroidal, in
particular the parameters zi may be taken to be monomials.
In particular Y ′ ! Y is a toroidal morphism with associated normal crossings divisor

D′ ⊂ Y , and I ′ is a monomial ideal. After finitely many iterations, the pullback of the ideal
I is a locally principal monomial ideal on a smooth variety Y (n) carrying a normal crossings
divisor D(n).

Proof. Passing to a local chart we may assume there is an étale morphism ϕ : Y !
An := Spec k[t1, . . . , tn] such that D = ϕ∗(V (t1 · · · tn)) and a monomial ideal I0 ⊂ OAn

such that I = ϕ∗I0. It follows that I0 is invariant under the action of the torus T :=
Spec k[t±1

1 , . . . , t±1
n ]. Functoriality of centers implies that J0 associated to I0 is T -invariant,

hence its generators may be chosen to be T -eigenvectors, namely monomials. Functoriality
for étale morphisms provides that J = ϕ∗J0, which enjoys the same properties, as needed. ♣
15.13. Principalization of ideals. The proof of the main result of [ATW19], already used
in section 15.12, relies on the notions and ideas we now discuss.

15.13.1. Derivatives, order, and maximal contact.

Definition 15.13.2. Consider an ideal I ⊂ OY on a smooth variety Y and the sheaf of
differential operators D≤a

Y of order ≤ a on Y . We define D≤a(I) ⊂ OY to be the ideal

generated by the collection of ∇(f), with ∇ a local section of D≤a
Y and f a local section of

I.

It is clear that I ⊂ D≤1
Y (I) ⊂ · · · is an increasing chain of ideals. If I ≠ 0 it eventually

stabilizes at the trivial ideal (1).

Since we work in characteristic 0 we have that the composition D≤i
Y D≤j

Y = D≤i+j
Y hence

D≤i
Y D≤j

Y (I) = D≤i+j
Y (I).

Derivative ideals are compatible with localization: D≤a(Ip) =
(
D≤a(I)

)
p
.

Definition 15.13.3. We define the order of I at p as follows:

ordp(I) = min
{
a : D≤a(Ip) = OY,p

}
.

We set maxord(I) = maxp ordp(I). The order of the zero ideal is set to ∞.

The locus of order > a is thus the closed vanishing locus of D≤a(I), hence order is upper-
semicontinuous.

25In [ATW19] the notation ai, xi is used instead of yi, bi, but we replace the notation in anticipation of
discussion below: bi are the second stage in our invariant.
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Definition 15.13.4. If ordp(I) = a, the maximal contact ideal of I at p is D≤a−1(I)p. A
maximal contact element of I at p is a section x ∈ D≤a−1(I)p with DY ((x))p = (1), that is,
some derivative of x is a unit.

Since we are working in characteristic 0, maximal contact elements always exist locally : if
1 ∈ D≤a(I) then there is ∇ ∈ D≤1

Y,p and x ∈ D≤a−1(I)p such that ∇x = 1.
Note that the formation of derivative ideals is functorial for smooth morphisms: given

a smooth morphism f : Y1 ! Y with I1 = IOY1 and f(p1) = p we have D≤a
Y (Ip)OY1 =

D≤a
Y1

(IOY1,p1). It follows that

Proposition 15.13.5. For a smooth morphism f : Y1 ! Y with notation as above we have
ordp1(I1) = ordp(I). Also x ∈ OY,p is a maximal contact element if and only if f ∗x ∈ OY1,p1

is a maximal contact element.
If, moreover, f is surjective, then maxord(I1) = maxord(I).

We note, however, that the choice of a maximal contact x is not unique, and is therefore
not functorial.

15.13.6. Coefficient ideals. To go further we need some inductive process, and the standard
approach involves induction on dimension by restriction to V (x). Since x is only known to
exist locally, functoriality is required to glue the results.26

26!
This inductive process requires defining an ideal on V (x) which remembers much of what

I is. The standard approach involves a coefficient ideal, which is already defined on Y .27
27!

Definition 15.13.7. Say I has maximal order a. Consider Da−i(I) as having weight i, for
i < a. We take the ideal C(I, a) generated by all the monomials in Da−1(I), . . . , D(I), I of
weighted degree ≥ a!. Concretely,

C(I, a) =
∑

∑
i·bi≥a!

Da−1(I)b1 · · ·D(I)ba−1 · Iba .

Proposition 15.13.8. Formation of coefficient ideals is functorial in smooth morphisms:
with notation as above, C(I1, a) = C(I, a)OY1.

15.13.9. Centers and their properties. Assume ordI(p) = a1 and x1 is a maximal contact
element. If Ip = (xa11 ) we are basically done: we define the invariant of the ideal at p to be
invp(I) = (a1), and we define the center as J = (xa11 ). Otherwise define I[2] = C(I, a)|V (x1),
the restriction. By assumption it is not the zero ideal. We may now invoke induction, so
that invariants and centers are already defined on V (x1).

Definition 15.13.10. Say invp(I[2]) = (b2, . . . , bk), with center (x̄b22 , . . . , x̄
bk
k ). Choose arbi-

trary lifts xi of x̄i. Define ai = bi/(a1 − 1)! for i = 2, . . . , k. Set

invp(I) = (a1, . . . , ak)

and
J = (xa11 , x

a2
2 , . . . , x

ak
k ).

Proposition 15.13.11 (Functoriality, ℵ-Të-W l precise reference). 28
28!

26(Dan) Mention alternative approaches such as Jarek’s process of increasing Rees algebras, or Kawanoue–
Matsuki

27(Dan) Remark on the fractionally graded Rees algebra approach
28(Dan) sync with previous text
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• The invariants and centers are independent of choices.
• If Y1 ! Y is smooth, I1 = IOY1, and p1 7! p then

invI(p) = invI1(p1).

• If Y1 ! Y is smooth, I1 = IOY1, and p1 7! p then

J1 = JOY1 .

This implies gluing as well as equivariance.
Coefficient ideals and centers possess remarkable properties, formalized by W lodarczyk

and Kollár [Kol07], showing it faithfully retains information in I yet is more homogeneous.
In particular:

Proposition 15.13.12. Assume maxord(I) = a1 with maximal contact x1. Let JI be the
local invariant of I, and let Cx1(I, a1) = Grx1(I, a1), the graded ideal with respect to x1.

(1) maxinv(C(I, a1)) = maxinv(Cx1(I, a1)) = (a1 − 1)!maxinv(I),
(2) x1 is maximal contact for C(I, a1) and Cx1(I, a1), and
(3) JC(I,a1) = J

(a1−1)!
I and JCx1 (I,a1) = Grx1J

(a1−1)!
I .

15.13.13. Blowing up. We recall briefly a presentation of the stack theoretic blowup associ-
ated to J = (xa11 , x

a2
2 , . . . , x

ak
k ), see [QR]. First, we define

(a1, . . . , ak) = ℓ(w−1
1 , . . . , w−1

k ),

where ℓ, wi all integers and gcd(w1, . . . , wk) = 1, and

J = (x
1/w1

1 , x
1/w2

2 , . . . , x
1/wk

k ).

Considering J as a valuative Q-ideal, for any k ∈ Z we let Jk = J
k ∩ OY and write

AJ :=
⊕

k∈ZZ

Jk,

with its “irrelevant” or “vertex” ideal

AJ+ :=

(⊕

k>0

Jk

)

generated by terms of positive degree, and morphism

BJ := SpecY AJ ! A1

induced by the grading. Writing s ∈ I−1 ≃ OY for the section corresponding to 1 ∈ OY , the
locus

CJ := V (s) = SpecY
⊕

k≥0

Jk/Jk+1

is the weighted normal cone of J , and BJ is the degeneration of Y to the weighted normal
cone. We note that V (AJ+) ≃ supp(J) × A1. Set BJ+ := BJ ∖ V (AJ+).

We define

Y ′ = BlJ(Y ) := [BJ+/Gm].

The exceptional divisor is [CJ ∖ V (AJ+)/Gm].
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15.13.14. Local equations. A local presentation of this construction is desirable, for which
we use an open set where (x1, . . . , xk) can be completed to local parameters (x1, . . . , xn) so
that Y ! An is étale. We continue to follow [QR].29

29!
In this case

AJ = OY [s, x′1 . . . , x
′
k]/(x1 − sw1x′1, . . . , x1 − swkx′k),

on which Gm with parameter t acts via

t · (s, x′1 . . . , x
′
k) = (t−1s, tw1x′1 . . . , t

wkx′k).

In other words s appears in degree (−1), and x′i in degree wi, as the presentation above
suggests.

The exceptional locus V (s) in BJ = SpecY (AJ) is

SpecY (OY /(x1, . . . , xk) [x′1 . . . , x
′
k]) ,

which is an Ak-bundle over the center V (J) = SpecY (OY /(x1, . . . , xk)). We note the result-
ing presentation of the vertex ideal AJ+ = (x′1, . . . , x

′
k). Its vanishing locus is simply

SpecY (OY /(x1, . . . , xk) [s]) ≃ V (J) × A1.

15.13.15. The invariant drops. We find it useful to illuminate the fact that the invariant
drops already in this established case.

On BJ one considers IOBJ
= Iℓ

CJ
I ′, with I ′ the weak transform of I on BJ . In the local

presentation above, we have that IAJ = (s)lI ′.
We note that BJ ∖ CJ = Gm × Y , so by functoriality maxinvBJ∖CJ

(I ′) = maxinvY (I) =
(a1, . . . , ak). Upper semicontinuity implies that maxinvBJ

(I ′) ≥ (a1, . . . , ak). The funda-
mental reason invariants drop is the following stronger fact:

Proposition 15.13.16. We have

maxinvBJ
(I ′) = maxinvY (I) = (a1, . . . , ak),

with maximal locus precisely V (AJ+) = supp(J) × A1.

Proof of Theorem 15.12.1 given Proposition 15.13.16. We slightly abuse notation, using I ′

for the weak transform on the bloaup Y ′ as well. This should not cause confustion since it
pulls back to I ′ on BJ+.30

30!
Since the maximality locus onBJ is V (AJ+) andBJ+ = BJ∖V (AJ+), we have maxinvBJ+

(I ′) <
maxinvBJ

(I ′) = maxinvY (I) = (a1, . . . , ak). Observe that the quotient map BJ+ ! Y ′ is, by
definition, smooth and surjective. By functoriality we have maxinvBJ+

(I ′) = maxinvY ′(I ′),
hence maxinvY ′(I ′) < maxinvY (I) as needed. ♣
Lemma 15.13.17. We have

(D(I))′ ⊂ D(I ′)

Proof of Lemma. We work this out on BJ using the local presentation above. We note that if
I is transformed using (s)−ℓ then D(I) is transformed using (s)−ℓ+w1 , where again wiai = ℓ.

We prove a slightly stronger result, which will go some way towards results below: we
show that (D(I))′ ⊂ DBJ/A1(I ′). This suffices since DBJ/A1(I ′) ⊂ D(I ′). It also makes
computations easier since we need not take s-derivarives.

29(Dan) Draw picture of the deformation to the weighted normal cone
30(Dan) improve notation?
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Plugging in xi = swix′i we obtain I ′ = (s−ℓf(swix′i) | f ∈ I), so that, by the chain rule,

DB/A1(I ′) =
(

∂
∂x′

i
(s−ℓf(swix′i)) | f ∈ I, i = 1, . . . , n

)

=
(
s−ℓ ∂f

∂xi
(swix′i) · swi | f ∈ I, i = 1, . . . , n

)

=
(
s−ℓ+wi ∂f

∂xi
(swix′i) | f ∈ I, i = 1, . . . , n

)

On the other hand D(I) =
(

∂f
∂xi

(xi) | f ∈ I, i = 1, . . . , n
)

so that

D(I)′ =

(
s−ℓ+w1

∂f

∂xi
(swix′i) | f ∈ I, i = 1, . . . , n

)
.

Note that w1 ≥ wi for all i, so

D(I)′ =

(
s−ℓ+w1

∂f

∂xi
(swix′i)

)
⊂
(
s−ℓ+wi

∂f

∂xi
(swix′i))

)
= DB/A1(I ′),

as needed. ♣
Proof of Proposition 15.13.16. 31

 31
The lemma implies inductively that (Di(I))′ ⊂ Di(I ′).
Two particular outcomes are that

1 ∈ (Da1(I))′ ⊂ Da1(I ′) and x′1 ∈ (Da1−1(I))′ ⊂ Da1−1(I ′),

in particular maxord(I ′) = a1 with maximal contact x′1.
The homogeneity property of C(I ′, a1) with respect to x′1 implies that

maxinv(C(I ′, a1)) = maxinv(Cx′
1
(I ′, a1)).

By induction applied to V (x′1), the graded ideal has graded center

(x′1
a1 , x′2

a2 , . . . , x′k
ak)(a1−1)!

By semicontinuity this is the center of C(I ′, a1)), as needed. ♣
Remark 15.13.18. The proof in fact shows that the invariant is compatible with grading
with respect to JI , and further, compatible with multigrading with respect to all of x1, . . . , xk.
This flexible compatibility with grading is useful when using more refined centers, as we do
below.

15.14. The toroidal analogues. We now replace everything by logarithmic analoques,
giving first Quek’s toroidal results. The idea is trhat adding the adjective “logarithmic” or
“toroidal” in every step works as stated!

• We now assume Y is provided with a simple normal crossings divisor D, giving rise to
a logarithmically smooth structure sometimes denoted (Y |D), and sheaves of logarithmic
differential operators D≤a

(Y |D).

• We define D≤a
(Y |D)(I) ⊂ OY to be the ideal generated by the collection of ∇(f), with ∇

a local section of D≤a
(Y |D) and f a local section of I. This time the ideals I ⊂ D≤1

Y (I) ⊂ · · ·
stabilize at the monomial saturation M(I) [Kol07, ATW20a]

31(Dan) reorganize. Must have some lifting argument from cone to B to replace formal lifting. The lemma
above is probably overdone
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We define the logarithmic order of I at p as follows:

logordp(I) = min
{
a : D≤a

(Y |D)(Ip) = OY,p

}
.

We set maxlogord(I) = maxp logordp(I). If M(I) ̸= (1) the logarithmic order is set to ∞.

• If logordp(I) = a <∞, the logarithmic maximal contact ideal of I at p is D≤a−1
(Y |D)(I)p. A

logarithmic maximal contact element of I at p is a section x ∈ D≤a−1
(Y |D)(I)p with D(Y |D)((x)) =

(1), that is, some logarithmic derivative of x is a unit.
The formation of logarithmic derivative ideals is functorial for smooth morphisms, and even

for logarithmically smooth morphisms. It follows that for a logarithmically smooth morphism
f : Y1 ! Y with notation as above we have logordp1(I1) = logordp(I) and x ∈ OY,p is a
logarithmic maximal contact if element and only if f ∗x ∈ OY1,p1 is a logarithmic maximal
contact element.

• Say I has maximal logarithmic order a <∞. Consider Da−i
(Y |D)(I) as having weight i, for

i < a. We take the logarithmic coefficient ideal C(Y |D)(I, a) generated by all the monomials
in Da−1

(Y |D)(I), . . . , D(I)(Y |D), I of weighted degree ≥ a!. Concretely

C(Y |D)(I, a) =
∑

∑
i·bi≥a!

Da−1
(Y |D)(I)b1 · · ·D(I)

ba−1

(Y |D) · Iba .

The formation of these ideals is functorial for logarithmically smooth morphisms.
• One may have logordI(p) = ∞, which happens precisely when M(I)p ̸= 1. We then

define loginvI(p) = ∞ and Jlog = Q := M(I). This means that in the induction we must
allow invariants to be infinite and centers to involve monomial ideals and their fractional
powers.

Assume logordI(p) = a1 < ∞ and x1 is a logarithmic maximal contact element. If
Ip = (x1) we define the logarithmic invariant of the ideal at p to be loginvp(I) = (a1), and
we define the logarithmic center as Jlog = (xa11 ). Otherwise define I[2] = C(Y |D)(I, a)|V (x1),
the restriction.

We may again invoque induction, so that invariants and centers are already defined on
V (x1).

If loginvp(I[2]) = (b1, . . . , bk), with center (x̄b22 , . . . , x̄
bk
k ), we define again ai = bi/(a1 − 1)!

for i = 2, . . . , k, with

loginvp(I) = (a1, . . . , ak)

and, using arbitrary lifts xi,

Jlog = (xa11 , x
a2
2 , . . . , x

ak
k ).

If instead loginvp(I[2]) = (b1, . . . , bk,∞), with center (x̄b22 , . . . , x̄
bk
k , Q̄

1/e), we set d = (a−
1)!e and we have similarly loginvp(I) = (a1, . . . , ak,∞) and

Jlog = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d).

This time Q is the unique monomial lift of Q̄.
• It is shown in [Que20] that the logarmithmic weighted blowup π : Y ′ ! Y of the reduced

center associated to J , with transformed divisor D′ = π∗D ∪Exc(π), and transformed ideal
I ′, satisfies again

loginvI′(p′) < loginvI(p).
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The blowup Y ′ ! Y is only log smooth, but it satisfies stronger functoriality for log smooth
base change.

We will not reprove that result here, but revisit its underlying arguments in the next
section.

15.15. Logarithmic principalization. Consider again a smooth variety Y and a normal
crossings divisor D. Let I be an ideal. Fix a point p where I vanishes. In the previous
section we defined the logarithmic invariant and logarithmic center associated to I.

Consider the invariant invQ(p) = (c1, . . . , cm) introduced in Section 15.12, and the as-
sociated center (yc11 , . . . , y

cm
m ). Denoting bi = ci/d, we set invQ1/d(p) = (b1, . . . , bm) with

associated center (yb11 , . . . , y
bm
m ). Define a new invariant

loginv∗
I(p) =





loginvI(p) = (a1, . . . , al) if Q1/d is not present in J

and

(a1, . . . , al, ω + b1 , . . . , ω + bm ) if Q1/d is present in J .

Correspondingly define

J∗ =





(xa11 , . . . , x
al
l ) if Q1/d is not present in J

and

(xa11 , . . . , x
al
l , y

b1
1 , . . . , y

bm
m ) if Q1/d is present in J .

The quantity loginv∗ is ordered lexicographically, with the terms ω+ci/d declared infinitely
larger than the rational numbers bj; the notation ω is here to suggest the first infinite ordinal.
Note that the rational numbers ci/d might be smaller than any bj.

Theorem 15.15.1 (Functorial logarithmic principalization of ideals). The formation of
loginv∗ and J∗ is functorial for smooth base change on Y . The quantity loginv∗ is upper
semicontinuous and takes values in a well-ordered set. Its maximal locus is the support of
J∗. The weighted blowup Y ′ ! Y of the reduced center associated to J∗ is a smooth stack
with transformed simple normal crossings divisor D′, and transformed ideal I ′ satisfying

loginv∗
I′(p′) < loginv∗

I(p).

After finitely many iterations, the pullback of the ideal I is a locally principal monomial
ideal on a smooth variety Y (n) carrying a normal crossings divisor D(n).

There is no way I will get this far...

15.16. Exercises from slides. ***

Exercise 15.16.1. Describe the weighted blowup of (x1/3, y1/2, z1/2) in affine space using
the cox construction. Sdescribe what happens to the whitney umbrella x2 = y2z. In
characteristic zero show this is an improvement: the result has NC singularity with
invariant (2, 2). Complete the process to resolution and principalization.

Exercise 15.16.2. Repeat for x2 − y1y2y3 = 0.
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Exercise 15.16.3. Compute D(I) and D2(I) when I = (x2 + y2z) and when I =
(x2 + y1y2y3).

Exercise 15.16.4. Compute D(I) and D2(I) . . . when I = (x5 + x3y3 + y8).

Exercise 15.16.5. What is the right notion in positive characteristics?

Exercise 15.16.6. If Y1 ! Y is smooth and I1 = IOY1 , show that D(I1) = D(I)OY1 .

Exercise 15.16.7. Convince yourself that ord is upper-semicontinuous.

Exercise 15.16.8. Convince yourself that the locus {p : maxord(I) = ordI(p)} is closed.

Exercise 15.16.9. Compute maxord(I) in the three examples.

Exercise 15.16.10. If g : Y1 ! Y is smooth and I1 = IOY1 , show that ordI1 = ordI ◦g.

Exercise 15.16.11. Find two maximal contacts when I = (x2 + y2z), when I = (x2 +
y1y2y3), and when I = (x5 + x3y3 + y8).

Exercise 15.16.12. If g : Y1 ! Y is smooth, I1 = IOY1 , and x maximal contact, show
that g∗x is maximal contact.

Exercise 15.16.13. Compute C(I, 2) when I = (x2 + y2z) and when I = (x2 + y1y2y3).
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Exercise 15.16.14. Compute C(I, 5) when I = (x5 + x3y3 + y8).

Exercise 15.16.15. If Y1 ! Y is smooth and I1 = IOY1 , show that C(I1, a) =
C(I, a)OY1 .

Exercise 15.16.16. Verify the invariants and centers in our examples: x2 − y2z, x2 +
y1y2y3, x

5 + x3y3 + y8, x5 + x3y3 + y7,

16. Punctured logarithmic maps

References: [ACGS24, Gro23]

16.1. Degeneration setup. Consider again a log smooth family X ! B of target log
schemes, and assume the fiber X0 is simple normal crossings. As we learned in previous
lectures, one can decompose he logarithmic GW invariants of X0 in combinatorial terms,
summing up contributions associated to rigid tropical curves.

(Quote decomposition formula)
One wishes to write these in terms of invariants associated to individual strata. When

following this through using logarithmic geometry, there are interesting phenomena one has
to address.

16.2. Punctured curves and idealized smoothness. To identify these, it is useful to
recall the first lesson learned:

The structure of curves should reflect the structure of targets, and vice versa.

As in the case of orbifold targets and orbifold curves, the key case is “universal”:

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 21

Now consider in general:

X

!!

Deligne–Mumford stack with

X projective coarse moduli space

In analogy to Mg,n(X, β), we want a compact moduli space of maps C → X .

One can define stable maps as in the scheme case, but there is a problem:
the result is not compact. As Angelo Vistoli likes to put it, trying to work
with a non-compact moduli space is like trying to keep your coins when you
have holes in your pockets. The solution that comes naturally is that

the source curve C must acquire a stack structure as
well as it degenerates!

Both problem and solution are clearly present in the following example,
which is “universal” in the sense that we take X to be a one parameter
family of curves itself:

Consider P1 × P1 with coordinates x, s near the origin and the projection
with coordinate s onto P1. Blowing up the origin we get a family of curves,
with general fiber P1 and special fiber a nodal curve, with local equation
xy = t at the node. Taking base change P1 → P1 of degree 2 with equation
t2 = s we get a singular scheme X with a map X → P1 given by coordinate
s. This is again a family of P1’s with nodal special fiber, but local equation
xy = s2.

This is a quotient singularity, and using the chart [A2/(Z/2Z)] with coor-
dinates u, v satisfying u2 = x, v2 = y we get a smooth orbifold X , with coarse
moduli space X and a map X → P1. It is a family of P1’s parametrized by
P1, degenerating to an orbifold curve.

X

↓

If you think about the family of stable maps P1 → X parametrized by
P1 ! {0} given by the embedding of P1 in the corresponding fiber, there
simply isn’t any stable map from a nodal curve that can be fit over the
missing point {0}! The only reasonable thing to fit in there is the fiber
itself, which is an orbifold nodal curve. We call these twisted curves.

Here X ! B is a log smooth family of curves over a smooth log curve B with special
point b = 0.

We have X0 = Y1 ∪D Y2, where D is the node, which for simlicity has coordinates xy = t.
The logarithmic structure MBon the base is generated by log t and the logarithmic structure
Mx on X at the node by log x, log y with log x+ log y = log t.
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Remark 16.2.1. If we chose a logarithmic section at the node, this amounts to choosing
a projection of Mx to Mb. This becomes possible after base change t = s1s2, by sending
x 7! s1 and y 7! s2. (For instance one can take s1 = si, s2 = sj.) Chosing a section is often
a valuable step, and sometimes critical. See also the work of Holmes and Spelier [HS23].

What is the structure of the component Y1 = {y = 0} of X0? it is a curve with a
logarithmic structure, but it is not a log curve since we insisted that log curves are log
smooth. We call these punctured curves.

Importantly, the element log y has the property α(log y) = 0 ∈ OY1 .
Is there a redeeming property for this curve?

Definition 16.2.2 (Ogus). An idealized log structure is a log structure α : M ! OX along
with a monoid ideal K ⊂M , such that α(K) = 0 ∈ OX .

Locally one obtains a morphism X ! SpecC[M̄ ]/(K̄). An idealized log scheme is idealized
log smooth if this morphism is smooth.

In the example, the monoid ideal is generated by log y.

Exercise 16.2.3. Show that the log point {0} with its induced structure from S is
idealized log smooth. Show that Y1 is idealized log smooth. For that matter, any closed
toric stratum in a toric variety is idealized log smooth.

Recall that a log curve is a reduced 1-dimensional fiber of a flat log smooth morphism.
F. Kato showed that these are the same as nodal marked curves, with “the natural” log
structure. A punctured curve is the idealized version of the above.

Definition 16.2.4. A puncturing of a marked curve is a log structure M at a marked point
with

MS + N log x ⊆ M ⊊ MS + Z log x.

It is an instance of an idealized log smooth scheme. In particular the splitting of a node is
a punctrured curve.

The picture describes the monoid (unfortunately W = S).

10 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

2.1.1. Puncturing.323

Definition 2.1. Let Y = (Y , MY ) be a fine and saturated logarithmic scheme with a324

decomposition MY = M�O⇥ P . A puncturing of Y along P ⇢MY is a fine sub-sheaf325

of monoids326

MY � ⇢M�O⇥ Pgp

containing MY with a structure map ↵Y � : MY � ! OY such that327

(1) The inclusion p[ : MY !MY � is a morphism of logarithmic structures on Y .328

(2) For any geometric point x of Y let sx 2 MY �,x be such that sx 62 Mx �O⇥ Px.329

Representing sx = (mx, px) 2 Mx �O⇥ Pgp
x , we have ↵Y �(sx) = ↵M(mx) = 0 in330

OY,x.331

Denote by Y � = (Y , MY �). We will also call the induced morphism of logarithmic332

schemes p : Y � ! Y a puncturing of Y along P , or call Y � a puncturing of Y along P .333

We say the puncturing is trivial if p is an isomorphism.334

P
.
.
.

. . .

MW

.
.
.

Figure 1. A puncturing Y � of a monoid M = MW . Note that the part

with negative projection in Pgp (open circles) is not necessarily saturated.

Remark 2.2. In all examples in this paper, P is a DF (1) log structure, that is, there335

is a surjective sheaf homomorphism N! P . In this case the condition ↵M(mx) = 0 is336

redundant. Indeed, for sx = (mx, px) 62 Mx�O⇥P , suppose ↵Y �(sx) = 0. Note that the337

DF (1) assumption implies that p�1
x 2 Px, so ↵M(mx) = ↵Y (mx, 1) = ↵Y �

�
sx ·p�1

x

�
= 0.338

More generally, the same argument works if P is valuative.339

For more general puncturings, the second vanishing ↵M(mx) = 0 in Definition 2.1,(2)340

is not automatic, but is needed to obtain good behavior under base-change (Propo-341

sition 2.8). Our log stacks fM0(X /B, ⌧) in §5.2.2 naturally carry such a more general342

puncturing. While these more general log structures have no further use in this paper,343

they may be of use elsewhere.344

Note also that if P is a DF (1) log structure and y is a geometric point of Y , then345

(2.1) MY,y � N ✓MY �,y ⇢MY,y � Z, MY �,y \
�
{0} ⇥ Z<0

�
= ;.

We will see in Lemma 2.21 how such monoids can easily be encoded in the dual tropical346

picture.347

The embedding of MS comes from pullback along the projection. The vertical projection
is generization to the generic point of Y1. The horizontal map to Z is the contact order,
which here can be negative!

Note that any element m ∈ M of negative contact order must satisfy α(m) = 0. In
paerticular any element in the ideal generated satisfies α(m) = 0. This includes some
elements of MS — this is the so called puncturing log ideal. This puts a big restriction on
what S can be! in particular S is also naturally an idealized log scheme!
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A section would result in another projection, which sends MS to itself and the vertical
generator log x to some nonzero point of MS. Do not confuse it with the generization map!

Families of punctured curves C ! T are built in to the definition, and there is a natural
notion of pullback. A punctured log map is thus a morphism C ! X of a punctured curve
to a log scheme X.

Just like with log maps, we would like to somehow limit the choices of puncturing by the
given data. A punctured log map is said to be prestable M as above is generated by the
marked structure MS + N log x and f ♭MX .

The next example shows a punctured curve where f ♭MX is generated by (2,−1). The
map is not prestable, but had we taken just the solid circles we get a prestable map

12 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

(2) There is a factorization384

Y � f
//

  

X.

eY �
f̃

>>

(3) Given Y �
1 ! Y �

2 ! Y with both Y �
1 , Y �

2 puncturings of Y , and compatible mor-385

phisms fi : Y �
i ! X, then eY �

1 = eY �
2 .386

Definition 2.6. A morphism f : Y � ! X from a puncturing of a log scheme Y is387

said to be pre-stable if the induced morphism Y � ! eY � in the above proposition is the388

identity. In particular, one has f = f̃ .389

P
.
.
.

. . .

MW

.
.
.

Figure 2. A morphism of the previous puncturing Y � which is not pre-

stable, with f [MX generated by (2,�1). The submonoid generated by

MY and f [MX , shown in solid dots, is a di↵erent puncturing eY � which

is pre-stable.

Proposition 2.5 yields the following criterion for pre-stability of a morphism from a390

punctured log scheme.391

Corollary 2.7. A morphism f : Y � ! X is pre-stable if and only if the induced392

morphism of sheaves of monoids f ⇤MX �MY !MY � is surjective.393

2.1.3. Pull-backs of puncturings.394

Proposition 2.8. Let Z and Y be fs log schemes with log structures MZ and MY ,395

and suppose given a morphism g : Z ! Y . Suppose also given an fs log structure PY396

on Y and an induced log structure PZ := g⇤PY on Z. Set397

Z 0 = (Z, MZ �O⇥
Z

PZ), Y 0 = (Y , MY �O⇥
Y

PY ) .

Further, let Y � be a puncturing of Y 0 along PY . Then there is a diagram398

Z� g�
//

✏✏

Y �

✏✏

Z 0 g0
//

✏✏

Y 0

✏✏

Z
g
// Y

A punctured log map map is stable if it is prestable (a log condition) and the underlying
map is stable (a schematic condition).

As with log maps, we distinguish minimal punctured maps — those where the logarithmic
structure on the base is universal. The magical theorem of Gross and Siebert — [AC14,
Remark 1.2.1] — holds as stated, since neither markings nor punctures intervene. 32

 32

16.3. The tropical picture. A punctured map has its tropicalization just as a log map
does. However, the legs of a punctured map look a bit differently: while the leg of a log
smooth curve extends indefinitely, the leg associated to a puncture, thought of as a element of
the dual cone Hom(M,R) of the monoid of the puncture, must compose to a positive element
on f ♭(MX). In other words, such an elemet maps to the corresponding cone σ ∈ Σ(X). We
have come to express these as arrows within σ. It is not hard to see that, if the map is
pre-stable, the arrow extends exactly as far as σ allows. 33

 33
The type τ of a punctured map is define in exact analogy to the type of a log map. It

records the graph marked by genus, the strata σ of each vertex, edge or leg, and the contact
order at each edge or leg. It can be decorated by the curve class associated to each vertex.

There is also a balancing condition for the tropicalization of punctured maps, which turns
out to be identical to the balancing condition of log maps. 34

 34

16.4. The space of punctured maps. In analogy with the case of log stable maps we
have:

Theorem 16.4.1 ([ACGS]). M(X, τ), the stack of minimal stable punctured log maps
of decorated type τ , is a Deligne–Mumford stack which is finite and representable over
M(X, τ).

32(Dan) Write explicitly again
33(Dan) include picture
34(Dan) Give exercise comparing a line in P2 relative x = 0 with marking of contact order 1, with a −1

curve with a puncture of contact order −1
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There is also a space of prestable punctured maps M(X , τ) in the Artin fan X of X of
undecorated type τ . These serve as a tropical version of M(X, τ). In the case of log stable
maps they are log smooth. Here they are only idealized log smooth, which we will see is a
source of pain.

We denote by M̃(X, τ) the space of punctured maps with a logarithmic section at each

marking and labelled node. There are natural evaluation maps M̃(X, τ) ! Xn This map
is not smooth, nor is it virtually log smooth, but it is ideally virtually log smooth: it has a

perfect logarithmic obstruction theory relative to an appropriate Artin fan version M̃(X , τ).
In analogy with the orbifold picture, splitting a nodal curve at a node with a section gives

in essense a formula35
35!

Hom(C,X) = Hom(C◦
1 , X) ×Hom(W,X) Hom(C◦

2 , X).

This gives:

Theorem 16.4.2 (ACGS 2020). Suppose the splitting of type τ along a set of n edges results
in type τ ′. The following is cartesian:

M̃(X/B, τ) //

��

M̃(X, τ ′)

��

Xn // Xn ×Xn

16.5. What this gives. Idealized log smooth schemes do not in general possess a natural
virtual fundamental class - they are not even pure dimensional. As a consequence, spaces
of punctured stable maps may fail to possess a natural virtual fundamental class. Even
though Manolache’s theorem applies, we are not always handed a class to virtually pull
back. Examples are given in [ACGS24].

The paper [Gro23] delineates a number of situations where these issues do not arise. There
are several conditions imposed. First, one only considers tropically realizable types. Second,
one requires the gluing situation to be tropically transverse. Third, one requires that the
evaluation maps are tropically flat.

There is further current work addressing this issue. See in paeticular the classes defined
in [BNR24, Joh24] 36

36!

35(Dan) I am taking a shortcut here
36(Dan) There is a ton of stuff uncited
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