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Abstract

We perform a detailed analysis of the band structure, phonon dispersion, and electron–phonon coupling of three types of

small-radius carbon nanotubes (CNTs): (5,0), (6,0), and (5,5) with diameters 3.9, 4.7, and 6.8 Å respectively. The large

curvature of the (5,0) CNTs makes them metallic with a large density of states at the Fermi energy. The density of states is also

strongly enhanced for the (6,0) CNTs compared to the results obtained from the zone-folding method. For the (5,5) CNTs the

electron–phonon interaction is dominated by the in-plane optical phonons, while for the ultrasmall (5,0) and (6,0) CNTs the

main coupling is to the out-of-plane optical phonon modes. We calculate electron–phonon interaction strengths for all three

types of CNTs and analyze possible instabilities toward superconducting and charge–density wave phases. For the smallest

(5,0) nanotube, in the mean-field approximation and neglecting Coulomb interactions, we find that the charge–density wave

transition temperature greatly exceeds the superconducting one. When we include a realistic model of the Coulomb interaction

we find that the charge–density wave is suppressed to very low temperatures, making superconductivity dominant with the

mean-field transition temperature around one K. For the (6,0) nanotube the charge–density wave dominates even with the

inclusion of Coulomb interactions and we find the mean-field transition temperature to be around five Kelvin. We find that the

larger radius (5,5) nanotube is stable against superconducting and charge–density wave orders at all realistic temperatures.
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The discovery of carbon nanotubes [1] has lead to a

renewed interest in the study of 1d electron systems. The

difference between semiconducting and metallic large-

radius nanotubes may be typically understood by quantizing

the circumferential momentum of the electronic states in a

single graphene sheet (see, for instance, [2]). Less

conventional properties of nanotubes include Luttinger

liquid behavior of metallic nanotubes found in tunneling

experiments (see [3] and references therein), Coulomb
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effects [4], Kondo physics [5], and intrinsic superconduc-

tivity observed in ropes [6] and small-radius nanotubes in a

zeolite matrix [7]. The main focus has traditionally been on

the effects of the Coulomb interaction between electrons.

However, the electron–phonon interaction has also received

considerable attention both experimentally [8,9] and

theoretically [10–12]. Most theoretical analyses of elec-

tron–phonon interactions in nanotubes assume the phonon

frequencies to be the same as in a graphene sheet and

calculate the electron–phonon coupling strength from a

simplified tight-binding model for the p orbitals of the C

atoms. Such an approach, however, may not be suited for

ultrasmall nanotubes (such as the ones in [7]), for which the

curvature of the nanotube leads to strong hybridization of
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the s and p orbitals, which results in a qualitatively different

band structure [13], phonon spectrum, and electron–phonon

interactions.

In this Letter we present detailed analysis of three

representative small-radius nanotubes, the (5,0), (6,0), and

(5,5), and discuss possible CDW and superconducting

instabilities of these systems. The (5,0) nanotube is the

likely candidate structure for the superconducting behavior

seen in [7] with transition temperature measured around

15 K. The radii of the CNTs in this experiment has been

determined to within 0.2 Å by Raman spectroscopy [14].

We demonstrate that even though standard electronic

structure approaches for calculating phonon frequencies,

such as the frozen-phonon approximation (FPA), run into

divergences intrinsic to mean-field calculations in 1 day,

they can be analyzed from the point of view of the random-

phase approximation (RPA) for the electron–phonon system

and parameters of the effective Fröhlich Hamiltonian can be

extracted. The main results that we obtain are: (i) the

strongest electron–phonon coupling for the (5,0) and (6,0)

CNTs is to the out-of-plane phonon modes. This is in

contrast to the larger radius CNTs which have strongest

coupling to the in-plane phonon modes as predicted by the

nearest-neighbor tight-binding model [2]; (ii) even when the

residual Coulomb interaction between electrons is neg-

lected, the larger radius (5,5) CNT remains stable down to

extremely low temperatures. For the smaller radii (5,0) and

(6,0) CNTs, when the residual Coulomb interaction is

neglected, the CDW instability was found to be dominant

over superconductivity for both types of nanotubes; (iii) we

include the residual Coulomb interaction between electrons

following a model developed in Ref. [15]. For the (6,0) CNT

we find that the CDW transition is essentially unaffected by

including the Coulomb interaction and we obtain TCDWZ
5 K. By contrast, for the (5,0) CNT both CDW and SC are

suppressed but now superconductivity becomes dominant

with TSC around 1 K.

The interaction between conduction electrons and

vibrations of a crystal lattice is commonly described by

using the Fröhlich Hamiltonian

HeKph Z
X
kts

3ktc
†
ktsckts C

X
qm

U0
qm a†

qmaqm C
1

2

� �

C
X

ktk 0t0sm

gktk 0t0mc
†
ktsck 0t0sðaqm Ca†

KqmÞ (1)

Here c†
kts creates an electron with quasimomentum k in band

t with spin s, a†
qm creates a phonon with lattice momentum q

and polarization m, and qZkKk 0 modulo a reciprocal lattice

vector. The energies of electron quasiparticles and phonons

in the absence of electron–phonon coupling are given by 3kt
and U0

qm respectively and the electron–phonon vertex is

given by gktk 0t 0sm.

To compute the quasiparticle energies 3kt of the

representative CNTs, we use the Naval Research Laboratory
tight-binding method [16] which has been tested extensively

and provides accurate results on a variety of materials. After

fully relaxing the structures with respect to the atomic

coordinates, the band structure is calculated. We find the

band structure predicted by zone-folding to agree very well

with the calculated band structure of the larger radius (5,5)

CNT. However, for the smaller radius (5,0) and (6,0) CNTs

there was found to be qualitative differences as shown in

Fig. 1. While zone-folding arguments predict the (5,0)

nanotube to be insulating, the band structure clearly exhibits

metallic behavior. The inner band (with the smaller kAF) is

doubly degenerate while the outer band (with the larger kBF)

is nondegenerate where we have the exact relation 2kAFZkBF .

The failure of the zone-folding procedure is due to the

strong curvature effects, which lead to considerable band

shifts in small-radius nanotubes, as discussed originally in

[13] for (6,0) nanotubes based on density-functional theory

calculations. As a result of these band shifts, for the (5,0)

nanotubes we have a system close to a Van Hove singularity

which has a density of states of 0.16 states/eV/carbon atom.

For comparison, the density of states for the (5,5) nanotube

is only 0.028 states/eV/carbon atom, so we expect that

instabilities of the electron–phonon systems for the

ultrasmall nanotubes are strongly enhanced compared to

larger radius nanotubes.

The electron–phonon vertex given in Eq. (1) can be

expressed as

gktk 0t0m Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2U0
qmMNNc

s
Mktk 0t0m (2)

where Mktk 0t0mZ
1
u
hjktjðV

qmKV0Þjjk 0t0 i. Here, Vqm is the

crystal potential under the presence of a phonon specified by

the ionic displacements dRniZueiqRn 3̂qmðiÞ and V0 is the

crystal potential at equilibrium. We calculate the magnitude

of these matrix elements for the coupling between electrons

on the Fermi surface to all phonon modes. For the (5,0) and

(6,0) CNTs we find that the strongest coupling are to out-of-

plane modes. More specifically, the strongest overall

coupling was found to be to the out-of-plane optical mode

followed by the breathing mode which are shown in Fig. 1.

This is in contrast to the larger radius (5,5) CNT which has

dominant coupling coming from an in-plane optical mode.

We point out that in general, the phonon modes of CNTs

cannot be classified as in-plane or out-of-plane [2].

However, the modes that have the strongest electron–

phonon interactions for the CNTs we study still allow such

characterization (Fig. 1). Moreover, CNT dynamical matrix

calculations [17] show that the eigenvectors of these modes

are essentially the same as in the graphene sheet.

We point out that, in general, the phonon mode

eigenvectors will be influenced by curvature effects, and

will differ from the graphene results. We checked the

relevant modes by using the CNT dynamical matrix, and

found that they agree well with the zone-folding results [17].

Now we move on to the issue of how to calculate the bare



Fig. 1. Left: the band structure of a (5,0) nanotube where we set EFZ0. Right: the phonon modes that have the strongest electron–phonon

coupling. Shown is a cross-sectional slice of the nanotube containing 10 atoms. Modes (a), (b), (c), and (d) are out-of-plane optical, out-of-plane

breathing, in-plane optical, and in-plane acoustic modes respectively. The X’s and O’s denote vectors in and out of the page.
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phonon frequencies U0
qm in the Fröhlich Hamiltonian. In the

standard FPA [18], the frequencies are given by

Uqm Z
1

u
ffiffiffiffiffiffiffiffiffi
MNc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEcos CDEsin

p
(3)

where u is the amplitude of the displacement, and DEcos and

DEsin are the energy differences per unit cell between the

distorted and equilibrium lattice structures where the

distortion corresponds to the real and imaginary parts of

dRniZueiqRn 3̂qmðiÞ, respectively. The phonon dispersion

curve for the out-of-plane optical mode obtained from the

FPA for the (5,0) CNT is shown in Fig. 2. Unit cell sizes of
Fig. 2. The phonon dispersion for the out-of-plane optical mode in

the (5,0) CNT showing logarithmic divergences at 2kF. We show the

fit to the out-of-plane optical mode for which the bare frequencies

are extracted as discussed in the text. The X’s denote values of q at

which the calculated FPA frequencies were imaginary.
up to 400 atoms in increments of 20 (which is the number of

atoms in the smallest possible unit cell) were used in the

FPA, requiring the phonon wave vectors to be commensu-

rate with the chosen supercell. This mode shows giant Kohn

anomalies at 2kF for the inner and outer bands.

It is important to realize that the divergence of Uqm

shown in Fig. 2 does not imply the divergence of U0
qm in the

Fröhlich Hamiltonian Eq. (1). In the FPA, the phonon

frequencies are calculated after the electron–phonon

interaction in Eq. (1) have been included, which gives

anomalous softening at 2kF due to the well-known Peierls

instability of electron–phonon systems in 1 day. We have

developed a technique to extract the bare phonon frequency

U0
qm from the numerically computed Uqm using a connection

between the frozen-phonon approximation and the RPA

treatment of the giant Kohn anomaly which is articulated in

Ref. [17]. Briefly, the dressed phonon frequencies Uqm and

the bare phonon frequencies U0
qm satisfy the equation

ðUqmÞ
2 Z ðU0

qmÞ
2 C2U0

qmPmðqÞ (4)

where Pm(q) is the phonon self-energy. Using the calculated

FPA values for Uqm, and the calculated electron–phonon

coupling values to determine Pm(q) (in the random-phase

approximation), we can extract the bare phonon frequencies

by assuming that they have the form U0
qmZACBqCCq2

and performing least-squares fitting where A, B, and C are

adjustable parameters. Using this method, we have

calculated the bare phonon frequencies of the representative

nanotubes, thereby constructing the effective Fröhlich

Hamiltonians for these systems.

Now we consider possible instabilities of the electron–

phonon system. Using the RPA analysis on the Fröhlich

Hamiltonian, we find the CDW transition temperature is
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given by

TCDW Z 43FeK1=lCDW (5)

Here, lCDW is the dimensionless CDW coupling constant

given by lCDWZ jgqmj
2
ntð0Þ=U

0
qm where nt(0) is the density

of states per spin at the Fermi energy of the band that is

undergoing the transition. In Table 1 we summarize the

results for the CDW coupling constants and transition

temperatures for the nanotubes we study. The leading CDW

instability for the (5,0) and (6,0) CNTs is from the out-of-

plane optical phonon mode which is shown in Fig. 1 while

the leading CDW instability for the (5,5) CNT is to an in-

plane optical mode.

To study superconductivity, we use the McMillan

formula

TSC Z
hUi

1:20
exp K

1:04ð1ClSCÞ

lSC Km*
SCð1C0:62lSCÞ

� �
(6)

where the dimensionless superconducting coupling constant

is given by

lZ
1

nð0Þ

X
ktk 0t0m

dð3ktÞdð3k 0t0 Þ½gktk 0t0m�
2 2

Uqm

(7)

In the above equations, n(0) is the density of states at the

Fermi energy per spin, hUiZ1400 K [19] is the logarithmi-

cally averaged phonon frequency, and m*
SC is the Coulomb

pseudopotential which we will set to zero for the time being.

The results for the superconducting coupling constants and

transition temperatures is also summarized in Table 1 for the

nanotubes we study.

From this analysis, we find that both the CDW and SC

instabilities for the (5,5) nanotube occur below experimen-

tally realizable temperatures. This leads one to expect that

conventional CNTs of larger radius also be stable down to

very low temperatures. For the (5,0) and (6,0) CNTs, the
Table 1

The CDW and SC coupling constants and transition temperatures

for the CNTs studied

(5,0) (6,0) (5,5)

lCDW 0.26 0.12 0.024

lSC 0.57 0.12 0.031

mCDW 0.24 0.0019 0.013

m*
SC

0.19 0.16 0.093

T0
CDWðKÞ 160 5.0 7!10K14

T0
SCðKÞ 64 0.071 1!10K12

TCDW (K) 1!10K18 5.0 2!10K43

TSC (K) 1.1 – –

lSC does not include Coulomb screening or the temperature

dependent softening of phonons discussed in the text. T0
CDW;SC

was computed without the residual Coulomb interaction while the

residual Coulomb interaction is included in the calculation of

TCDW,SC. TSC includes the temperature dependent renormalization

of lSC (Eq. (12)).
CDW instability was found to be dominant which occurs

from coupling to the out-of-plane optical phonon mode.

Now we consider the consequences of introducing the

residual Coulomb interaction. We point out that since the

charge density is not evaluated self-consistently in the tight

binding method we use, the Hartree term which opposes the

formation of the charge–density wave is omitted in our

frozen-phonon calculation of frequencies. This term

essentially gives the Coulomb energy cost of forming a

non-uniform charge density. Including the Coulomb

interactions properly should lessen the divergences found

at 2kF in the phonon spectra. Introducing the residual

Coulomb interaction changes our effective Hamiltonian to

HZHeKph CHeKe (8)

where

HeKe Z
1

2

X
kk 0qtt0ss0

Vqtt0c
†
kCqtsc

†
k 0Kqt0s0ck 0t0s0ckts (9)

and He–ph is given by Eq. (1). For the Coulomb interaction

between conduction electrons, we take the form used by

Egger et al. in Ref. [15] which, in position space, is given by

VðrKr0ÞZ
e2=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxKx0Þ2 C 2R sin yKy0

2R

� �� �2

Ca2
z

r (10)

Here, the y-direction is chosen to be along the perimeter of

the CNT and x measures the distance along the CNT axis. A

measure of the spatial extent of the pz electrons perpen-

dicular to the CNT is given by azz1.6 Å and R is the CNT

radius. For the dielectric constant due to the bound

electrons, we will take the value kz2 predicted by the

model of Ref. [20].

Including the Coulomb interaction in our RPA analysis

of the CDW instability, we find that the transition

temperature is modified to

TCDW Z 43FeK1=ðlCDWKmCDWÞ (11)

where mCDWZntð0ÞVqZ2kF
and nt(0) is the density of states

per spin at the Fermi energy for the band that is undergoing

the instability. We thus find that the effective coupling is

directly reduced by including the Coulomb interaction.

With our model for the Coulomb interaction, we find for

the (5,0) CNT that mCDWZ0.24 which dramatically reduces

TCDW to around 10K18 K. Thus the CDW instability for the

(5,0) CNT is essentially removed by taking into account the

residual Coulomb interaction between conduction electrons.

The case is somewhat different for the (6,0) CNT, however.

For such metallic zig-zag nanotubes, the wave functions at

Kk and k close to the Fermi energy correspond to

symmetric and antisymmetric combinations of atomic

orbitals in the graphene sheet [17]. Orthogonality of these

wave functions within the unit cell of the CNT leads to the

significantly smaller mCDWZ0.0019 which essentially does

not affect the CDW transition temperature.
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The residual Coulomb interaction comes up in more

subtle ways when considering the superconducting instabil-

ity. By properly dressing the electron–phonon vertices as

well as the phonon propagator in Migdal’s expression for

the electronic self-energy we find that the renormalized

contribution to the superconducting coupling constant is

given by

lqm Z
1

ð1KVqc0ðqÞÞ
2

� �
1

1C
2jgqmj

2

U0
qm

c0ðqÞ
1KVqc0ðqÞ

0
B@

1
CAl0

qm (12)

where l0
qm is the unrenormalized contribution for a specific

process of wave vector q coupling points on the Fermi

surface by phonon mode m and c0ðqÞZ
P

kðfkCqK fkÞ=ð3kCq

K3kÞ [17]. The first factor describes renormalization of the

electron–phonon vertex by Coulomb interaction and tends

to decrease TSC while the second factor corresponds to

phonon softening due to the giant Kohn anomaly in 1d

which tends to increase TSC. The temperature dependence

described by Eq. (12) is similar to the two parameter RG

analysis presented in Ref. [21]. In addition to the

renormalization of lSC we also have the direct repulsion

between conduction electrons which is taken into account

through the Coulomb pseudopotential as shown in the

McMillan formula 6. Analysis based on Eq. (10) we find that

the inclusion of m*
SC eliminates superconductivity in the

(5,5) and (6,0) CNTs [17]. For the (5,0) CNT, the main

contribution to the renormalization of lSC comes the 2kF

coupling to the out-of-plane optical mode discussed earlier.

Taking into account the temperature dependence in c0(q),

using Eqs. (6) and (12) we find a self-consistent solution of

TSCZ1.1 K. Thus we see that inclusion of the Coulomb

interactions makes superconductivity dominant over the

CDW in ultrasmall (5,0) CNTs. We point out that our

estimates give a mean-field value of TSC. Below this

temperature we expect a gradual decrease of resistivity,

which may be described by the Langer–Ambegaokar–

McCumber–Halperin formalism [22,23]. Discrepancy

between this value of TSC and the one observed experimen-

tally of 15 K [7] should not be a reason for concern because

of the exponential dependence of the superconducting

transition temperature on the Coulomb interaction strength

and the known difficulty in calculating the latter accurately.

For instance, if we replace our estimated value of m*
SCZ

0:19 by the commonly used m*
SCZ0:10, we find a self-

consistent solution for the superconducting transition

temperature for the (5,0) CNT of TSCZ13 K. Another

possible source of error is the use of the McMillan formula

Eq. (6). While the McMillan formula has been successful for

other Carbon based systems (intercalated graphite and

Fullerines), a more quantitatively accurate value of the

transition temperature could be obtained by solving the

Eliashberg equations [24].
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