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1. Introduction

Superfluid phases of matter have attracted interest over many 
years and can occur in diverse physical systems including 
liquid helium, neutron stars, and ultracold atomic gases [1]. 
The response of a superfluid to mechanical rotation dem-
onstrates one of the most remarkable features of these sys-
tems. Rather than rotate like a classical fluid, a superfluid will 
instead nucleate quantised vortices [2, 3] which carry angular 
momentum. In the limit of many vortices, a vortex lattice will 
form. There exist several thorough review articles and books 
addressing vortices in superfluids including [4–7].

Bose–Einstein condensates (BECs) of ultracold atomic 
gases represent a quintessential example of a superfluid. 
Within Gross–Pitaevskii mean field theory, these systems are 
described by a macroscopic wave function ψ and the system’s 
energy in a rotating frame of reference with a harmonic trap-
ping potential is given by
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In this equation, m is the mass of the constituent bosons, 
ω is the frequency of the harmonic trapping potential, 

( )= − ∂ − ∂!L x yiz y x  is the angular momentum operator, Ω is 
the rotational frequency, g is the interaction parameter, and µ 
is the chemical potential. In the second line of (1), the energy 
functional is rearranged in a convenient way, where the gauge 
field ( )= Ω −m y xA ,s  and effective harmonic oscillator fre-
quency ω ω= −Ωeff

2 2  are introduced. The dynamics of the 
condensate is given by the corresponding Gross–Pitaevskii 
equation  (GPE) /ψ δ δψ∂ = ∗! Ei t . We will focus on cases 
where the minimum of (1) is a state with many vortices. While 
there is little doubt that such ground states correspond to trian-
gular vortex lattices, we note that multi-component systems, 
including mixtures, spinor condensates [8], and multicomp-
onent systems under more general gauge fields [9] can have 
much richer vortex lattices.

In order to understand vortex solutions of the GPE, it 
is helpful to consider a number of length scales naturally 
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emerging from (1). The healing length defined as 
¯

ξ =
ρ

!
mg2

2
, 

where ρ̄ is the average superfluid density, gives the character-
istic core size of the vortices. According to the Feynman rela-

tion [3], the density of the vortices is given by ρ = =
π π
Ω

ℓ!v
m 1

2 B
2  

where, in analogy with quantum Hall systems, we have intro-

duced the ‘magnetic length’ =
Ω

ℓ ! .
mB 2

This length scale 

therefore provides the characteristic separation between 
vortices. Finally, ωeff sets the effective trapping length scale 

=
ω

ℓ ! .
mH 2 eff

 For weak interactions such that ξℓ ≪H , ℓH gives 

the spatial extent of the condensate. On the other hand, for 
stronger interactions where ξℓ ≫H , the size of the condensate 
is given by the Thomas–Fermi radius /ξ∼ ℓRTF H

2 .
Minimisation of (1) and its multi-component extensions 

for the purpose of investigating vortex lattices typically 
involves one of two approaches. The first approach involves 
projecting the wave function ψ into the the lowest Landau 
level (LLL) and thereby writing ( ) ( )ψ φ= ∑x y A x y, ,n n n  
where ( ) ( ) ( )/( )φ ∝ + − + ℓx y x y, i en

n x y 22 2
B

2
 are lowest-Landau-

level eigenfunctions. The projected wave function is then 
inserted into (1) and the energy is minimised with respect to 
the An-parameters [7]. This method is appropriate for cases of 
finite as well as zero effective trapping potential ωeff, where 
the latter case corresponds to a condensate of infinite spatial 
extent. Typically, this is the method of choice when investi-
gating infinite periodic crystals of vortices and has been used 
since the early works of [10, 11] where an ansatz for the vortex 
lattice configuration was used to greatly restrict the degrees of 
freedom contained in the An-parameters. Infinite vortex lat-
tices in multi-component systems have been investigated with 
this approach in several works including [12–15].

The LLL approach is restricted to cases where the magnetic 
length is small compared to the healing length: ξℓ ≪B . Away 
from this limit, the ground state wave functions will have 
substantial components in higher Landau levels so the above 
projection becomes unphysical. On the other hand, most 
experiments on rotating condensates of atomic gases have 
ξ≪ℓB. This is the main restriction of the first method.

In the second approach, one considers ω > 0eff  so that the 
condensate will have finite extent. For this case one can dis-
cretise and solve the imaginary-time GPE /ψ δ δψ∂ = −τ

∗! E  
where τ = it using numerical techniques such as the the split-
step Fourier method or the Crank–Nicolson method (see [16] 
and references therein). In the long imaginary-time limit, 
such solutions will generically approach the minimum of the 
Gross–Pitaevskii energy functional. For such calculations, one 
must choose grids sufficiently large so that the wave function 
effectively vanishes at the boundary. Due to this, the boundary 
conditions involving the phase of ψ are unimportant. Direct 
numerical solution through this means has shown several dis-
tinct vortex lattices structures for multi-component systems as 
described in, for instance, the works of [17–20].

The main drawback of the aforementioned method when 
investigating lattices of many vortices is that the underlying 
trap will obscure the configuration of vortices [21]. Therefore 

to infer the ideal periodic configuration of vortices for the 
case of a spatially extended condensate, one must require ℓB 
to be much smaller than the condensate size. In practice, this 
means one must numerically investigate systems with at least 
∼ 100 vortices. Additionally, since one must choose system 
sizes sufficiently large so that the wave function effectively 
vanishes at the boundary, many computational grid points are 
devoted to points of limited interest.

In this manuscript, we will describe an efficient numerical 
scheme to determine ground state solutions of (1) which are 
periodic in ψ| |. We will focus on the case where ω = 0eff  so that 
the condensate is spatially extended and an ideal vortex lattice 
is expected to form. This scheme does not have either of the 
drawbacks of the two aforementioned methods for addressing 
large vortex lattices. In particular, motivated by the magnetic 
translation group, we first introduce the so-called magnetic 
Fourier transform and formulate the continuous GPE problem 
that yields ψ with the correct periodic structure. This correct 
problem arises since the magnetic Fourier transform naturally 
incorporates twisted boundary conditions which must be satis-
fied for rotating condensates (though they are unimportant for 
spatially localised systems). As a result, unnecessarily large 
computational domains can be avoided and systems sizes can 
be chosen on the order of the vortex lattice spacing. We then 
introduce a discrete lattice model whose energy retains the 
same gauge symmetries as the continuous energy functional 
and converges to the energy functional as the lattice spacing 
decreases. We show how spatial discretisation of this model 
can be achieved through a discrete version of the magnetic 
Fourier transform and how to compute it rapidly using standard 
fast Fourier transforms. Further, we implement it with the well-
known split-step time integration scheme routinely applied to 
propagate the GPE in real and imaginary time [16]. We test the 
method by showing that it reduces to known results obtained in 
the lowest-Landau-level regime. While we focus on the single-
component case in this manuscript for clarity and to make 
contact with known regimes, the framework can be naturally 
extended to the multi-component case.

This work is organised as follows. In section  2, relevant 
background on the magnetic translation group and gauge sym-
metries is given. In this section the magnetic Fourier transform 
is introduced. In section 3, we describe how the spatial comp-
onents of (1) are discretised. The discretisation method allows 
one to access irrational aspect ratios of the computational unit 
cell and leaves the gauge symmetry of (1) intact. In section 4, 
the split-step magnetic Fourier method is presented, which is 
the main result of the present work. Finally, in section 5, appli-
cations of the method are discussed and comparisons are made 
with known analytical results in appropriate regimes.

2. Symmetries and boundary conditions for the 
rotated superfluid

Consider the system of a rotating superfluid in the limit 
ω = 0eff  (in the remainder of this work we will focus on this 
case). In this limit, the superfluid will be spatially extended, 
and a vortex lattice which is periodic in the density ρ ψ= | |2 
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is formed. To numerically address such a system, one would 
like to choose a computational unit cell commensurate with 
that of the vortex lattice containing a small number of vortices. 
Though applying periodic boundary conditions to the modulus 
of ψ in this context is clearly correct, the appropriate boundary 
conditions for its phase are less apparent. In the following, we 
will show that the latter can be deduced through use of the so-
called magnetic translation operators (MTOs) [22, 23]. Since 
thorough expositions of the MTOs exist elsewhere (see, for 
instance, [24]), we will only provide a brief treatment of their 
properties relevant to our problem. In the following we will 
also describe the so-called magnetic Fourier transform (MTF) 
which naturally incorporates the appropriate boundary condi-
tions of the problem, and will be utilised in following sections.

2.1. Background: gauge symmetry and magnetic  
translation group

We start with a few comments about the gauge symmetries of 
(1). This energy is invariant under the gauge transformation 

→ /ψ ψλ !ei , → λ+∇A As s  where λ is an arbitrary function 
of the xy-coordinates. Due to this invariance, one is free to 
choose a gauge which is best suited for the problem at hand.  
As defined in the previous section, = Ω −m y xA ,s ( ) is referred 
to as the symmetric gauge. Another common choice is the 
Landau gauge which is obtained by putting λ = Ωm x y so that 

( )λ≡ +∇ = Ωm xA A 2 0,l s . In what follows we will write the 
vector potential in an arbitrary gauge as λ= +∇A Al , leaving 
λ unspecified but noting that we may return to the original 
symmetric gauge by putting λ = −Ωm x y. This will make 
apparent which quantities are gauge invariant. For instance, 
since the effective magnetic field ≡ ∂ = ΩεB A m2ij i j  (here 
and after summation is implicit over repeated indices) is inde-
pendent of λ, it is a gauge invariant quantity.

The kinetic momentum operator entering (1) is given by 
≡ −P p A where = − ∇!p i  is the canonical momentum 

operator. The generators of magnetic translation, defined 
to be λΠ = − − ∂p Byx x x  and λΠ = − ∂py y y , commute 
with the kinetic momentum operators: [ ]Π =P, 0i j . From 
these, one defines the magnetic translation operators as 

( ) = Π⋅!T R e Ri
. When acting on quantities involving only coor-

dinates, one finds ( ) ( ) ( ) ( )= +−T f T fR r R r R1 , in complete 
analogy with the standard translation operators: ˜ ( )≡ ⋅!T R e p Ri

. 
However, unlike the standard translation operators, different 
MTOs do not generally commute. In particular, by noting that 
[ ]Π Π = − !B, ix y , one finds the commutator

=′ ′Π⋅ + ′ ⎜ ⎟⎛
⎝

⎞
⎠ε

"
"T T

B
R RR R, 2ie sin

2
.ij i j

R Ri[ ( ) ( )] ( ) (2)

Though the original treatment of the MTG was based on 
non-interacting systems, the treatment carries over naturally to 

the non-linear case. Solutions which minimise (1) will satisfy 
the time-independent GPE: /δ δψ =∗E 0. When ω = 0eff  this 

can be written as ψ µψ=H  where ψ= + | |H P g .
m
1

2
2 2  For 

periodic vortex lattices, one has the symmetry [ ( )] =H T R, 0 
when R is any lattice vector of the vortex lattice. Note that 
since the density has the periodicity of the vortex lattice, 

( ) ( ) ( ) ( )ψ ψ| | = | |−T TR r R r2 1 2. Furthermore, for two lattice 
vectors R and ′R  of the it vortex lattice, using the commuta-
tion relation (2) and the Feynman relation giving the density 
of vortices, one finds that =′T TR R, 0[ ( ) ( )] .

2.2. Twisted boundary conditions and magnetic Fourier 
transform

We choose a rectangular computational unit cell of dimen-
sions ×L Lx y. Through full analogy with the treatment of a 
particle in a periodic potential in the absence of gauge fields, 
it is most natural to impose the following boundary conditions 
on ψ:

ψ ψ ψ= = +λ λ− − + −
! !x y T L x y x L yx, , e e ,x

ByL x L y x y
x

i i , ,x xˆ( ) ( ) ( ) ( )[ ( ) ( )]

 
(3)

ψ ψ ψ= = +λ λ− + −
!x y T L x y x y Ly, , e , .y

x y L x y
y

i , ,yˆ( ) ( ) ( ) ( )[ ( ) ( )]

 (4)

These boundary conditions, to be contrasted with the more 
conventional periodic boundary conditions, reveal the acqui-
sition of a phase ‘twist’ over a period, and were found to be 
necessary in early work [25]. For this reason we will refer to 
them as twisted boundary conditions (TBC) [26].

The above boundary conditions impose an important con-
straint on the effective magnetic field B. Specifically, by (3) 
and (4) we must have ˆ ˆ( ) ( ) ( ) ( )ψ ψ= =x y T L T L x yx y, ,x y   

ψT L T L x yy x ,y xˆ ˆ( ) ( ) ( ) and so ˆ ˆ[ ( ) ( )] ( )ψ =T L T L x yx y, , 0x y . By 
comparison with (2), one sees that we have an imposed quanti-
sation condition on the effective magnetic field: = π!B n

L L
2

x y
 

where n is an integer. Further insight can be gained by using 
the Feynman relation [3], which expresses the density of 
vortices as ρ =

π
Ω
!v

m . With this, the quantisation condition  
becomes ρ =L L nv x y . Thus, we see that the integer n  
corresponds simply to the number of vortices in the compu-
tational unit cell.

The conventional Fourier transform allows us to expand ψ 
in a basis of functions which are eigenstates of the canonical 
momentum operators and which satisfy periodic boundary 
conditions. Here we instead expand in terms of eigenfunc-
tions of the generators of magnetic translation and require the 
TBCs to be satisfied. This leads to the following expressions 
defining the magnetic Fourier transform and its inverse:

! ! !

! ! !

⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥

⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥

∫ ∫

∑ ∑

ψ ψ ψ ψ

ψ ψ ψ ψ

= =

= =

λ λ

λ λ

− + − − −

+ − −

k y
L

x x y x k
L

y x y

x y
L

k y x y
L

x k

,
1

d e , ,
1

d e ,

,
1

e , ,
1

e ,

x
x
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y

y

L k y x y

x k

k x B xy x y
x

y k

k y x y
y

0

i 1 ,

0

i 1 ,

i 1 , i 1 ,

x
x

y
y

x

x
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˜ ( ) ( ) ˜ ( ) ( )

( ) ˜( ) ( ) ˜( )

( ) ( )

( ) ( )

 

(5)
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where kx and ky are summed over integer multiples of π
L
2

x
 

and π
L
2

y
 respectively. We see that these expressions have the 

desired properties. In particular, ˜( ) ˜( )ψ ψΠ =k y k k y, ,x x x x , 
˜ ( ) ˜ ( )ψ ψΠ =x k k k y, , ,y y y x  and the boundary conditions (3) and 

(4) are naturally satisfied.

3. Discrete model

Our aim is to minimise the energy of our system (1) subject to 
boundary conditions (3) and (4). To do so we will numerically 
solve the imaginary-time GPE, /ψ δ δψ− ∂ =τ

∗! E  subject to 
TBCs. Written out in full, the continuous equation is

ψ λ ψ ψ ψ µ ψ µ ψ− ∂ = − ∇− −∇ + | | − ≡ −τ! ! H
m

gA
1

2
i .l

2 2( ) ( )
 (6)

In the long imaginary-time limit, ψ will generically converge 
to the ground state wave function which minimises (1). In 
particular one can show that the energy is a monotonically 
decreasing function of τ with

〈( ) 〉 ⩽
τ

µ= − −! H
Ed

d
2 02 (7)

where brackets denote the expectation value with respect  
to ψ. As can be seen from (7), the evolution will stop when ψ 
becomes an eigenstate of H with eigenvalue µ, i.e. a solution 
of the time-independent GPE.

We are thus faced with the problem of discretising the spa-
tial components of (6) and note that there are multiple ways 
of doing so. One approach is to treat (6) by introducing dis-
crete versions of the differential operators appearing in this 
equation. While this approach is commonly adopted (see 
for example [16]), an alternative route and the one we use 
in this work, is to introduce an appropriate energy defined 
over a lattice and then, by taking its derivative with respect 
to the complex conjugate of the wave function values at the 
lattice points, obtain a discretised version of (6). By doing 
this, we can require that (i) the discrete Hamiltonian matrix 
is Hermitian and (ii) the discrete model inherits the exact 
gauge symmetry of the continuum model. The resulting 
model we find will be an extension of the Hofstadter model 
[27] which describes a particle on a square lattice under an 
effective magn etic field. That the resulting generalised model 
converges to the continuum theory (1) is perhaps not very sur-
prising since it is well known that the long-wavelength theory 
of the Hofstadter model is that of a continuum particle under 
the presence of a perpendicular magnetic field. The main tech-
nical innovation presented below is the use of anisotropic tun-
nelling which enables one to treat computational unit cells of 
irrational aspect ratios /=R L Lx y. Accessing such irrational 
aspect ratios is necessary to properly describe many important 
vortex configurations including the triangular lattice.

We introduce a grid of ×N Nx y points in a rectangular lat-
tice covering the computational unit cell. Points in this grid 
take on values = +a n a mr x yx yˆ ˆ where n and m are inte-
gers satisfying ⩽ ⩽n N1 x and ⩽ ⩽m N1 y and /=a L Nx x x, 

/=a L Ny y y give the spatial discretisation spacing (or lattice 

constant). We next introduce the discrete wave function ψn m,  
defined at each grid point and where convenient we will use 
the alternative notation ψ ψ= n mr , . We allow tunnelling of 
particles between nearest-neighbour sites, and further impose 
an on-site repulsive interaction. Gauge fields are correctly 
incorporated into lattice models through the so-called Peierls 
substitution [27, 28] where complex phases are incorporated 
into the tunnelling matrix elements. In particular to incorpo-
rate the gauge field into the tunnelling of particles from site 
′r  to site r we apply the replacement →ψ ψ ψ ψ∫∗ ⋅ ∗

′ ′ ′!er r
A r

r r
d

r

ri
. 

We note that, importantly, with this replacement the discrete 
model will inherit the exact gauge symmetry of the con-
tinuum model.

With the above considerations, we posit the following dis-
crete expression for the energy

[

]

˜

( )

( )

∑

∑

ψ ψ

ψ ψ

ψ µ ψ

= −

+ +

+ | | − | |

λ λ

λ λ

− ∗
+

− − ∗
+

+

+

⎡
⎣⎢

⎤
⎦⎥

B

E w

w

U

e

e e c.c.

2

n m
n m n m

n
n m n m

n m
n m n m

d
,

1
i

, 1,

2
i i

, , 1

,
,

4
,

2

n m n m

n m n m

, 1,

, , 1

 

(8)

where w1, w2, and U are real positive parameters having units 
of energy, B is the lattice magnetic field giving the net flux 
per lattice plaquette, µ̃ is a chemical potential for the discrete 
model, and the real parameters λn m,  reflect the gauge freedom 
of the problem. When λ= =U 0n m,  and =w w1 2, the discrete 
model reduces to the well-known Hofstadter model [27]. In 
this sense, the above expression (8) can be viewed as a gener-
alised Hofstadter model.

To make contact with the continuum theory (1), we 
relate the discrete and continuum wave functions as ψ =n m,    

ψa a a n a m, .x y x y( )  With this, one can verify that the discrete 
energy reduces to the continuum energy provided we make 

the following identifications: = = !w a w ax y m1
2

2
2

2

2

, /=U g a ax y, 

/=B !Ba ax y , ( )/λ λ= !a n a m,n m x y, , and µ̃ µ= − −w w2 21 2.  
The resulting discretisation error is found to be second  
order: ( ) ( )− = +O OE E a ax yd

2 2 . Importantly, we note that 
the aspect ratio of the computational unit cell is given by 

= =R .L
L

N
N

w
w

x

y

x

y

2

1
 Therefore, with anisotropic hopping we 

may access computational unit cells with irrational aspect 
ratios which are necessary for addressing the triangular vortex 
lattice, for instance. In order for the discrete theory to accu-
rately describe the continuum theory, the discretisation lat-
tice constants, ax and ay, must be the smallest length scales 
in the problem. Specifically, in what follows we require 

ξ≪ ℓa a, ,x y B. On the other hand, we note that the discrete 
theory remains well-defined and physically relevant away from 
this limit. Indeed, most investigations of the Hofstadter model 
are focused on regimes where ax and ay are on the order of the 
magnetic length.

The continuum expressions from the previous section carry 
over naturally to the discretised case, which we tabulate in the 
remainder of the present section. The discrete imaginary-time 
GPE is given by
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ψ
ψ

∂ = − ∂
∂τ ∗!

E
.n m

d

n m
,

,
 (9)

The discrete MFT, see (5), is

∑ ∑

∑ ∑

ψ ψ ψ ψ

ψ ψ ψ ψ

= =

= =

λ λ

λ λ

− + − − −

+ − −

B

B

N N

N N

1
e

1
e

1
e

1
e .

k m
x n

k n nm
n m n k

y m

k m
n m

n m
x k

k n nm
k m n m

y k

k m
n k

,
i

, ,
i

,

,
i

, ,
i

,

x
x n m

y
y n m

x

x n m
x

y

y n m
y

, ,

, ,

˜ ˜

˜ ˜

[ ] [ ]

[ ] [ ]

 

(10)

Here, n and m take on integer values for which ⩽ ⩽n N1 x and 
⩽ ⩽m N1 y respectively. The wave numbers kx and ky take on 

integer multiple values of π
N
2

x
 and π

N
2

y
 for which ⩽ ⩽ ππ k 2

N x
2

x
 and 

⩽ ⩽ ππ k 2
N y
2

y
 respectively. Finally, the twisted boundary condi-

tions, see (3) and (4), in discretised form are

ψ ψ= λ λ
+

−+Be en N m
mN

n m,
i i

,x
x n Nx m n m, ,[ ] (11)

[ ]ψ ψ= λ λ
+

−+e .n m N n m,
i

,y
n m Ny n m, , (12)

4. The split-step magnetic fourier method

Split-step spectral methods provide a versatile means to 
solve a number of linear and non-linear differential equa-
tions [29]. As a simplest case, consider a (linear and real-time) 
Schrodinger equation  with Hamiltonian composed of two 
non-commuting operators A and B which each have known 
spectra: ψ ψ∂ = +! A Bi t ( ) . The wave function is advanced 
by a time step through ( ) ( )( )ψ ψ+∆ = − + ∆!t t te A B ti

. For cases  
where the Hamiltonian operator A  +  B is difficult to diag-
onalise, it is beneficial to employ the Strang splitting [30] to 
propagate in time:

( ) ( ) ( )
( )

( ) / /ψ ψ ψ+∆ = =

+ ∆

− + ∆ − ∆ − ∆ − ∆

O

! ! ! !t t t t

t

e e e e

.

A B t B t A t B ti i 2 i i 2

3

 
(13)

One can then efficiently perform the operation on the RHS of 
(13) by successively transforming ψ between the eigenbasis 
of A and B and performing Hadamard products. Most often 
A is diagonal in the momentum basis while B is diagonal in 
the position basis (or vice versa) so the efficiency of the spit-
step method relies on that of the fast Fourier transform algo-
rithm. Indeed, the split-step Fourier method is now a standard 
approach for numerically solving the GPE (see [16] and refer-
ences therein). We show here how this powerful method can 
also be applied to our problem by instead using the magnetic 
Fourier transform to capture the twisted boundary conditions 
given in (3) and (4).

With the above in mind, we wish to write the energy Ed 
as a sum of diagonalised components. As stated, this can 
be achieved with the machinery of the magnetic Fourier 

transform introduced in the previous sections. In particular, 
using (10) we can write = + +E E E Ex yd int where

˜∑ ψ= + | |⎜ ⎟⎛
⎝

⎞
⎠

B
E w

k m
4 sin

2
x x

k m

x
k m

,

2
,

2

x

x (14)

∑ ψ=
−

| |
⎛
⎝⎜

⎞
⎠⎟

B
E w

k n
4 sin

2
y y

n k

y
n k

,

2
,

2

y

y
˜ (15)

∑ ψ µ ψ= | | − | |⎜ ⎟⎛
⎝

⎞
⎠E

U
2

.
n m

n m n mint
,

,
4

,
2

 (16)

Note that the gauge fields λn m,  are absent in the above expres-
sions, making the gauge invariance of each quantity apparent. 
The main use of the MTG is in obtaining these expressions for 
Ex and Ey presented in the equations above which are associ-
ated with it linear terms in the GPE.

Because the above energy is composed of three pieces, 
the Strang splitting needs to be applied twice. The split-step 
MFT procedure, to advance the wave function ( )ψ τ  evolving 
through the imaginary-time GPE by a single time step τ∆ , 
then proceeds with the following computations:

 1. ( )( )ψ ψ τ= ρ− τ∆
!e1

H aint 2

 2. ψ ψ= − − τ∆
MFT MFT!ex x2

1 H
1

x 2[ [ ] ]
 3. ψ ψ= − − τ∆

MFT MFT!ey y3
1 H

2
y[ [ ] ]

 4. ψ ψ= − − τ∆
MFT MFT!ex x4

1 H
3

x 2[ [ ] ]
 5. ( ) ( )ψ τ τ ψ+∆ = ρ− τ∆

!e H
4bint 2

where MFT x and MFT y are the operations defined in (10). 
The quantities in the exponents directly follow from (14)–(16). 

In particular, ( )= + BH w4 sinx x
k m2

2
x , ( )= − B

H w4 siny y
k n2

2
y , 

and ( )ρ ρ µ= −H Uint . Thusfar we have not specified the den-
sities ρa and ρb entering Hint in the steps above. For certain 
choices (e.g. putting ρ ρ ψ τ= = | |a b

2( ) ), the method will lose 
its second-order accuracy. To determine values of ρa and ρb for 
which the method will retain its second-order accuracy (as in 
the linear case), one can compare ( )ψ τ τ+∆  computed with 
the above algorithm with the second-order Taylor expansion 

( ) ( ) ( ) ( )( )ψ τ τ ψ τ ψ τ τ ψ τ τ+∆ ≈ + ∂ ∆ + ∂ ∆τ τ
1
2

2 2 where the 
imaginary-time GPE can be used to evaluate the coefficients 
in this expansion. Through this comparison, one finds that 
with the choices

( )( ( ) )ρ ψ τ ρ ψ= | | = | |ψ τ τ− | | ∆
!e , ,a b

H
2 2

4
2int

2 (17)

the method will be second-order accurate. The determination 
of the appropriate densities entering the algorithm is akin to 
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the methods presented in [31]. There, it was determined that, 
provided the most updated densities were used, the split-step 
method for the real-time GPE would be second-order accu-
rate. We note, however, that this result does not carry over to 
the imaginary-time GPE in that if one chooses ρ ψ τ= | |a

2( )  
and ρ ψ= | |b 4

2, the method will only be first-order accurate.
It is often desirable to propagate the imaginary-time 

GPE for the case where the particle-number normalisation 

∫ ∫ψ ρ| | = = Nx y x yd d d d2  is fixed for all times during the 
evolution. This constraint can be achieved through the use of 
a time-dependent chemical potential entering the imaginary-
time GPE. The above algorithm can be naturally adapted to 
this scenario by applying normalisations at appropriate places 
in the above steps. In particular, after computing the densi-
ties ρa and ρb using the expressions in (17), they should each 
be normalised to the total particle number N . Additionally, 
at the end of each time-step propagation, the resulting wave-
function should be normalised. Due to these normalisations, 
the chemical potential entering the algorithm becomes a free 
parameter and can be set to zero. The second-order accuracy 
of this fixed-N  method has been verified with numerical tests.

Note that the extension of the split-step method from 
linear to non-linear equations, as done above, is of small 
influence on the computational time. For instance, if we put 
g  =  0 making the GPE linear, the computational cost of the 
split-step method at leading order will not be affected. The 
MFT can be implemented in a straightforward way by using 
existing fast Fourier transform packages as it can be written 
in terms of direct multiplications and Fourier transforms as:

ψ ψ= λ− −MFT F Be ex x
nmi i n m,[ ] [ ] (18)

ψ ψ= λ−MFT F ey y
i n m,[ ] [ ] (19)

where Fx and Fy denote the standard Fourier transforms. Thus 
the MFT algorithm is as fast as the conventional fast Fourier 
transform to leading order. More specifically, for N discre-
tisation points, the method has N Nlog  computational cost. 
Finally, we note that the above scheme can be used to simulate 
the real-time GPE with a Wick rotation where one puts →τ it.

5. Numerical tests and discussion

In this section, we will provide some preliminary applications 
of the split-step magnetic Fourier method, showing how it 
can reproduce known results in appropriate regimes and also 
how these results can be extended. We start by considering the 
lowest lowest-Landau-level regime, since this case has several 
known results with which we can compare.

To characterise vortex lattices, following [10], it is helpful 
to introduce the dimensionless parameter

( )
∫

∫
β

ψ

ψ
=

| |

| |
A

x y

x y

d d

d d

4

2 2

 

(20)

where =A L Lx y is the area of the computational unit cell. This  
parameter is of particular interest because it can be directly 

related to the interaction energy of the system as β Ng
A2

2

, with 

∫ ψ= | |N x yd d2 . In the LLL regime the remaining terms in the 
energy are quenched, thus minimising the energy is equivalent 
to minimising β. When the number of vortices is restricted to 
two per computational unit cell, one can compute β analyti-
cally as a function of the aspect ratio R [11]

( ) ( )β = + −R
R

f f f f
2

2 ,A
0
2

0 1 1
2 (21)

with

( ) /∑= π

=−∞

∞
− +Rf en

m

m n2 22

 (22)

where the vortices are placed within the unit cell so as to maxi-
mise the separation between neighbouring vortices. Recall that 
a unit cell commensurate with that of the ground state vortex 
lattice of infinite spatial extent must be chosen to obtain the 
ground state energy. Unit cell sizes differing from this will intro-
duce frustration. Therefore β should be minimised with respect 
to R. One expects minima to occur at aspect ratios which are 
commensurate with a triangular vortex lattice [11, 32]. Since 

( ) ( )β β= −R R 1  we will restrict our attention to ⩾R 1.
We now turn to numerically computing β using the split-

step magnetic Fourier method. For fixed values of R and ξℓB / , 
starting with an initial randomised state, the imaginary-time 
GPE is evolved on a ×256 256 grid until a time-independent 
state is obtained. Convergence as a function of the time step 
τ∆  is also checked. In figure 1, several curves of β versus the 

aspect ratio R are shown for different values of ξℓB /  for systems 
containing two vortices per computational unit cell. In the limit 

ξℓ ≪B  one finds excellent agreement with the LLL analytical 
expression βA as expected. In terms of rotational frequency, the 
LLL corresponds to the rapid rotation limit ¯/ρΩ≫ !g , with 
ρ̄ the average superfluid density. The scheme naturally allows 
one to extend beyond the LLL regime for which simple ana-
lytical expressions for β are not available. As /ξℓB  is increased, 
one finds that β decreases, reflecting the system’s tendency 
towards a nearly uniform density (apart from the vortex cores) 
in the large interaction limit. Also, as expected, the minimum 
for all curves occurs at =R 3 , which is commensurate with 
the triangular vortex lattice. A local maximum occurs at =R 1 
which corresponds to the square vortex lattice.

Because the energy of the system is an extensive quanti ty, 

one might expect the energy per particle, ˜≡ µ+ N
N

E E , to be 
unchanged when the size of the computational cell is increased 
ceteris paribus (for convenience we have removed the term 
involving the chemical potential in (1)). This is only true, 
however, for computational unit cells commensurate with the 
ground state vortex configuration as increasing the size of the 
cell while keeping the vortex density fixed allows the system 
to have more degrees of freedom. In the following, we con-
sider doubling the spatial dimensions of the computational 
unit cell from one containing two vortices to one containing 
eight vortices. From general principles one will have ˜ ⩽ ˜E E8 2 
where Ẽ8 and Ẽ2 are the energies per particle of the systems 
with smaller and larger computational unit cells respectively. 
In figure 2 the energy per particle obtained using the split-step 
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magnetic Fourier method is shown for systems having two and 
eight vortices per computational unit cell. As expected, we 
have ˜ ⩽ ˜E E8 2 for all curves. The curves coincide near =R 3  
which is commensurate with the triangular vortex lattice in 
both cases. The system with eight vortices can also achieve a 
triangular vortex lattice at aspect ratios /=R 4 3 , 4 3  and 
we note that degenerate minima of Ẽ8 occur at these values. 
The computation has been carried out for /ξ =ℓ 1B  but the 
same results—namely Ẽ2 being an upper bound for Ẽ8, their 
equivalence close to =R 3  and the existence of the three 
degenerate minima for Ẽ8–hold for any ratio ξℓB / .

6. Outlook and conclusions

In conclusion, we have described a computational method 
which can efficiently find the minimum energy of an infinite 

vortex lattice within Gross–Pitaevskii mean field theory. 
We have shown how to extend the conventional split-step 
Fourier method to include twisted boundary conditions 
through use of the magnetic translation group. We have 
tested the method for particular cases, and showed that 
it reproduces known results in the lowest Landau level 
regime. The method can be extended naturally to treat 
multi-component systems such as condensate mixtures and 
spinor condensates, as well as multicomponent condensates 
under more general synthetic gauge fields. The dynamics 
of such multicomponent systems is certainly more complex 
and can be described in terms of a set of coupled equations. 
The kinetic terms of these equations can be treated with the 
MFT, while the nonlinear parts are diagonal in real space. 
Such systems can have richer vortex lattice structures, and 
applying the methodology described in this work to them 
warrants further investigation.

Figure 1. Numerical results of the dimensionless parameter β (20) characterising the interaction energy of the system as a function of the 
aspect ratio of the computational unit cell. Excellent agreement is found between the numerical results and the analytical expression βA in 
the lowest Landau level regime.

Figure 2. The energy per particle of systems with two and eight vortices in the computational unit cell, Ẽ2 and Ẽ8, as a function of the ratio R.  
The former provides an upper bound for the latter. The triangular lattices corresponding to the ground states are degenerate and the 
arrangements of the vortices in each of the ground states of the eight-vortex system are shown.
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