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Abstract
Local topological markers are effective tools for determining the topological properties of both
homogeneous and inhomogeneous systems. The Chern marker is an established topological
marker that has previously been shown to effectively reveal the topological properties of 2D
systems. In an earlier work, the present authors have developed a marker that can be applied to 1D
time-dependent systems which can be used to explore their topological properties, like charge
pumping under the presence of disorder. In this paper, we show how to alter the 1D marker so that
it can be applied to quasiperiodic and aperiodic systems. We then verify its effectiveness against
different quasicrystal Hamiltonians, some which have been addressed in previous studies using
existing methods, and others which possess topological structures that have been largely
unexplored. We also demonstrate that the altered 1D marker can be productively applied to
systems that are fully aperiodic.

1. Introduction

Topological quantum systems have become an increasingly active area of research over the past decade, due in
part to the advancement of experimental techniques in cold atom and photonic systems. Topological systems
possess potentially very useful properties, one of which is topological pumping in 1D systems where the charge
passing through the system is quantized to a topological index [1]. The topological index of a system is generally
characterized by the Chern number which is well defined for both 2D systems and 1D time dependent systems
[2]. The pumping behavior present in 1D time dependent systems has been investigated experimentally in
both photonic and cold atomic gas systems [3–8].

There has also been a renewed interest in aperiodic and quasiperiodic systems as it has been shown that
these systems can exhibit topological properties [9–11]. However, the traditional method of calculating the
Chern number, as discussed in the TKNN paper [2], is only well defined for translationally invariant systems
and therefore cannot be used to topologically classify quasicrystal systems or aperiodic systems.

This problem has previously been circumvented by considering periodic approximations of quasicrystals
and using the flux insertion method (see supplementary material of [9]). Due to this approximation, large sys-
tem sizes are required. With this one can then determine the Chern number of the system for gaps that remain
open in the limit L →∞. Another way the topological structure of quasicrystals have been investigated is by
considering the Aubry–André (AA) model (also known as the Harper model) with an onsite potential which
is incommensurate with the lattice spacing of the system [12]. The parameter b of the AA model determines
if the potential is commensurate with the lattice spacing. It was shown that this model can be used to model
the topological properties of the Fibonacci quasicrystal when b is set to the inverse of the golden ratio [9]. The
AA model should be viewed as a special case due its bulk Hamiltonian being equivalent to the bulk Hamilto-
nian of the Harper–Hofstadter model which can be seen through dimensional reduction. As a result of this
a Diophantine equation can be used to determine the Chern number of the AA model, even if b takes on an
irrational value [10]. The Diophantine equation, however, is only applicable to a specific set of topological
models where the value of b is known.
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Both these techniques require one to either approximate the system or consider specific types of systems.
This then highlights the need for a more general way of determining the topological index of 1D time depen-
dent aperiodic systems which does not depend on the structure of a given model or approximations of the
model and can be applied to any aperiodic time dependent topological model.

Another recent advance in the area of topological systems is that of topological markers. These markers
allow one to calculate a system’s topological index but, unlike the Chern number, do not require the system to
be translationally invariant. As such, topological markers are ideal for investigating the topological indices of
quasicrystals and systems with aperiodic ordering. One of the most prevalent topological markers is the Chern
marker which is defined for 2D time independent systems and has previously been used to investigate the
topological structure of inhomogeneous systems [13–22]. The Chern marker has also been used to investigate
the topological properties of 2D quasicrystals with different aperiodic tiling structures [23, 24]. While the
Chern marker is defined for 2D systems it was recently shown by the authors of this paper that a topological
marker can be defined for 1D time-dependent systems and be used to determine their topological index [25].
This method allowed for the possibility of spatial inhomogeneities that break translational symmetry, but relied
on the notion of a well-defined unit cell once the spatial inhomogeneities are removed. For aperiodic systems
the unit cell is ill defined whether the inhomogeneities are suppressed or not. As such, a modified topological
marker is needed to investigate the topological properties of 1D time dependent quasicrystal and aperiodic
systems.

In this paper we show that the existing 1D marker can be adapted such that it can be applied to both periodic
and aperiodic topological systems. We demonstrate that this new marker correctly predicts the topological
index of a system by first applying it to the AA model, where the topological index is known, and then applying
it to the modified Rice–Mele (MRM) model. For the latter model the TKNN form of the Chern number and
the Diophantine equation cannot be used. We check the results for MRM model by analysing the current
through the system, checking it is quantised to the predicted topological index, along with analysing the shift
in the Wannier centers in the bulk of the system.

The paper is structured as follows. Section 2 reviews the 1D marker presented in [25] and defines a new
1D marker called the 1D quasicrystal marker, M1Q(x, t), which is well defined for aperiodic systems. Section 3
introduces the AA model and applies M1Q(x, t) for both periodic and quasicrystal cases. It is shown that for
both cases the change in M1Q(x, t) over a full time period correctly predicts the topological index of the system.
Section 4 starts by introducing the MRM model which allows an aperiodic sequence to be applied. Section 4.1
then introduces the aperiodic silver mean sequence and applies it to the MRM model showing that this sys-
tem has a topological nature. M1Q(x, t) is then used to determine the topological index and is confirmed by
analysing the current flowing through the bulk of the system as well as by analysing the shift in the Wannier
centers of the system. It is also shown that considering the average behavior of a large group of bulk Wannier
centers can be used to determine the system’s topological index. However, the accuracy of this method is less
than that of M1Q(x, t). Section 4.2 introduces the Thue–Morse and the period-doubling sequences which are
aperiodic sequences but are not quasiperiodic like the Fibonacci sequence or the silver mean sequence. It is
shown that topological gaps exist for the MRM model with both the Thue–Morse sequence and the period-
doubling sequence applied and in both cases M1Q(x, t) is used to predict the topological index of the system.
Section 5 then shows that the evolution of M1Q(x, t) quantitatively matches the evolution of the polarization
of the system without the discontinuous jump and that the evolution of the two are equivalent in the thermo-
dynamic limit. Lastly, section 6 reviews the paper and discusses the benefits of using the quasicrystal marker
to determine the topological index. The differences between the time dependent Bott index used in [26] and
M1Q(x, t) are also discussed along with the requirements a system needs to ensure that M1Q(x, t) correctly
predicts the topological index.

2. Quasicrystal 1D marker

In this section we will briefly review the 1D marker presented in [25] analysing each of the operators that
make up the 1D marker. Where needed we will alter the definition of these operators such that they are well
defined for both periodic and aperiodic systems. After this we will construct a new 1D marker which we label
the 1D quasicrystal marker from these operators creating a topological marker that works for both periodic
and aperiodic crystal structures.

It was shown in [25] that one can determine the topological index of a system with open boundary condi-
tions by calculating the change in the 1D marker over a full time period within the bulk of the system. The 1D
marker was defined as

M1(x, t) =
1

Vc
Trx(Û†P̂x̂P̂Û) (1)
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where Vc is the volume of the unit cell, P̂ projects into the occupied states of the Hamiltonian, x̂ is the unit
cell position operator, and Û is the adiabatic evolution operator. To understand equation (1) we analyse the
operators along with what is meant by Trx(Ô) (where Ô represents any operator) and adapt them to be well
defined for aperiodic systems.

The projector P̂ is traditionally defined using the Bloch states of the Hamiltonian for translationally invari-
ant systems. It is clear that this definition cannot be used for aperiodic systems and therefore we use an alternate
form for the projector given by

P̂ =
∑

E!EF

|ψE(t)〉〈ψE(t)| (2)

where |ψE(t)〉 are the instantaneous eigenvectors of the Hamiltonian at time t and EF is the Fermi-energy. This
definition is well defined for both periodic and aperiodic systems.

The adiabatic evolution operator Û can be determined using the projectors in the following way. First one
defines the effective adiabatic Hamiltonian, ĥ, given by [27–29]

ĥ = i[ ˙̂P, P̂] (3)

where ˙̂P = d
dt P̂ and the square brackets denote the commutator. After this, one solves the time evolution

equation for this effective Hamiltonian, i d
dt Û = ĥÛ , with the initial condition Û(t = 0) = ! to determine

its evolution operator. This evolution operator evolves the system adiabatically and we therefore label it the
adiabatic evolution operator. Using this operator one can then adiabatically evolve the projector in time using
P̂(t) = Û ˆ̄PÛ† where the over head bar indicates that the operator is evaluated at t = 0. The adiabatic evolution
operator, Û , is well defined for aperiodic systems when equation (2) defines the projector.

The position operator, x̂, is defined as

x̂ =
∑

x

x|x〉〈x| ⊗ !. (4)

In [25] x labels the unit cell of the system and ! incorporates possible additional internal degrees of freedom
like sites within a unit cell and spin. For systems with aperiodic structure the unit cell is ill defined and therefore
we choose x to label the position within the system and ! to label internal degrees of freedom of the system. In
this paper we will focus on lattice systems with x = an, where a is the lattice spacing and n is an integer which
labels the lattice site position. We will also only consider spinless systems and therefore the ! can be dropped
from equation (4).

Lastly, the local trace defined in [25] was a trace that considered all the sites within a specific unit cell of the
system. Again the unit cell is ill defined for aperiodic systems and therefore we will consider a trace over some
region R of the system given by

TrR(Ô) =
∑

n∈R

〈n|Ô|n〉 (5)

where n labels the lattice sites of the system. In this work we will typically restrict the region R to be in the
bulk of the system to ensure that we are calculating the behavior of the bulk. We also note that the prefactor
1/Vc in equation (1) normalizes the trace by its size and as such we replace this with the normalization factor
1/LR where LR = NRa. Here NR is the number of sites within the region R and a is the size of the lattice
spacing. Using the adjusted definitions of the operators and the trace, we now define the local 1D marker for
quasicrystals as

M1Q(x, t) =
1

LR
TrR

(
Û†P̂x̂P̂Û

)
. (6)

Throughout this paper we set the lattice spacing a to 1 meaning that LR = NR.
Now that we have defined the 1D marker for quasicrystals we will apply it to the well known AA model for

both the periodic and quasiperiodic cases.

3. Aubry–André model

Within this section we apply the 1D quasicrystal marker, M1Q(x, t), to the AA model and show that the change
in this value over a full time period gives the correct topological index of both periodic and aperiodic forms
of this model. We use the Diophantine equation to confirm the topological index of the system.

The AA model is an ideal model to evaluate M1Q(x, t) due to the fact that one can determine the topo-
logical index of this system when it possesses either a periodic or quasicrystalline nature. This is done using a
Diophantine equation which is applicable due the AA model’s close relationship with the Harper–Hofstadter
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Figure 1. The energy spectrum of the AA model for varying values of b. Here we set ∆/J = −2. Lines at energies E/J = −1 and
E/J = −1.3 are included to highlight the band gaps that exist at these energies for certain values of b.

model. It should be noted, however, that the Diophantine equation method only applies to select models like
the AA model and is not applicable in general.

The AA model is given by [12]

ĤAA = −J
∑

n

(|n〉〈n + 1| + h.c.)

−∆
∑

n

cos (2πbn − φ(t))|n〉〈n|
(7)

where n is an integer labeling the lattice sites of the system, J represents the strength of hoppings between sites
and ∆ represents the maximum magnitude of the on-site energy of the particles. The value b determines if
the system takes on a crystalline nature, achieved by setting b to a rational fraction, or quasicrystalline nature,
achieved by setting b to an irrational fraction like the inverse of the golden ratio, 1/τ = 2/(1 +

√
5). The

time-dependence is incorporated through φ(t) = 2πt/T where T is the time period of the system.
Figure 1 shows the energy spectrum for the AA model with varying b. The parameters of the system were

set to ∆/J = −2 and periodic boundary conditions were taken. From this figure it can be seen that gaps exist
for both b = 1/3 and b = 1/τ ≈ 0.618. In this section we will consider the AA model with these values of b
and analyse the topological index of the system when the Fermi-energy is placed within these gaps.

It has been show that, due to its close relationship with the Harper–Hofstadter model, the topological index
of the AA model can be determined by the following Diophantine equation [10, 11, 30]

ρr = Crb + tr. (8)

Above, ρr is the filling factor of the system, b is the parameter of the AA model, Cr is the Chern number of the
system and tr is an integer chosen such that Cr is also an integer. Equation (8) can also be referred to as the gap
labeling theorem [11].

We can now use M1Q(x, t) to predict the topological index of the AA model for the periodic and quasiperi-
odic cases and cross check it with equation (8). We will first apply M1Q(x, t) to the periodic version of the AA
model with b = 1/3 showing that it gives the correct topological index of a periodic system. For this system
the unit cell spans the length of three lattice sites.

Figure 2 shows the change in M1Q(x, t) over a full time period for varying NR with the parameters ∆/J =
−2 and a Fermi-energy of EF/J = −1.3. It can be seen from figure 1 that a gap exists at this Fermi-energy.
The figure shows that when NR equals an integer number of unit cells the change in M1Q(x, t) predicts the
topological index of this gap to be one with a high degree of accuracy. Using equation (8), one can show that
for this Fermi-energy the value of Cr is one. This then indicates that the change in M1Q(x, t) correctly predicts
the Chern number of the system when NR equals an integer number of unit cells. The figure also shows that the
change in M1Q(x, t) tends to the value of one for increasing NR and has an envelope of 1 + 1/NR. Interestingly,
it can be shown that this behavior persists when the denominator of b takes on a large value. This then suggests
that the behavior may also be present in quasicrystal systems seen as these systems can be approximated with
rational values of b with a large denominator.
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Figure 2. Change in M1Q(x, t) over a full time period for the AA model with varying NR and the parameter b set to the rational
value b = 1/3. The other parameters of the system were set to ∆/J = −2 and EF/J = −1.3. The total number of lattice sites
within the system was set to N = 360. The atomic spacing is normalized to unity. The red and orange lines highlight the envelope
of the change in M1Q(x, t) as it tends to the Chern number of the system.

Figure 3. Change in M1Q(x, t) over a full time period for the AA model with varying NR and the parameter b set to the irrational
value b = 1/τ , where τ is the golden ration. The parameters were set to ∆/J = −2 and EF/J = −1. The total number of lattice
sites within the system was set to N = 360. The red and orange lines highlight the envelope of the change in M1Q(x, t) as it tends
to the topological index of the system.

To check if this behavior persists for irrational values of b we next consider the AA model with b = 1/τ ,
where τ is the golden ratio. We set the Fermi-energy to EF/J = −1 such that we lie within a large energy gap; all
other parameters are set to those given in figure 2. For this case the AA model has the same topological structure
as the Fibonacci quasicrystal model [9]. Equation (8) has to be used to determine its topological index due to
the TKNN form of the Chern number being ill defined for irrational values of b. Using equation (8), one finds
that the topological index of the system is Cr = −1.

Figure 3 shows that for the AA quasicrystal model the change in M1Q(x, t) over a full time period tends to
the value of Cr with increasing NR. One can also see that the envelope of the change in M1Q(x, t) approximately
matches the one seen in the periodic case. When NR = 258 the change in M1Q(x, t) equals −1.0044 giving the
topological index of the system to two decimal places.

We also calculated the change in M1Q(x, t) for varying NR for the AA quasicrystal with a Fermi-energy of
EF/J = 2.18. From figure 1 one can again see that a gap exists at this Fermi-energy. Using equation (8), the
topological index can be shown to be Cr = −2. We found that in this case the change in M1Q(x, t) tended to
the value of −2 and had an envelope that could be approximated by −2 + 2/NR. This slightly differs from the
behavior of the upper bound seen in figure 3.

Considering both these cases it is easy to see that the change in M1Q(x, t) tends to the Chern number of
the system for increasing NR. We also observe by inspection that the envelope of the change in M1Q(x, t)
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can be approximated by Cr + α/NR where α is a dimensionless constant of order unity. This then gives an
approximate bound on the error of the change in M1Q(x, t) to be α/NR where the exact value of α is model
specific.

We have thus shown that M1Q(x, t) can be used to predict the topological index of both periodic and qua-
sicrystal systems. For the periodic case NR should be set to an integer number of unit cells within the bulk to
best predict the topological index. For the quasicrystal case NR should be set to a large region in the bulk and
will have an approximate bound on the error of α/NR with α being of order unity. Above, we considered a
system where the Diophantine equation can be applied. Next, we will consider a system where the Diophantine
equation cannot be applied and show that M1Q(x, t) correctly predicts the topological index of this system.

4. Modified Rice–Mele model

In what follows we introduce the MRM model which allows the possibility to investigate systems with aperiodic
structure and how this affects the topological structure of the system. There have been previous studies of
inhomogeneity within Rice–Mele (RM) model using topological markers, but these studies have tended to
asses inhomogeneity in the form of disorder and not quasicrystal structure [21]. Of the studies where the
effects of quasicrystal structures on the RM model were investigated the concentration was on applying the
Fibonacci sequence which has a well known topological structure [26]. Here we study the effects of the silver
mean sequence, the Thue–Morse sequence, and the period-doubling sequence on the topological structure of
the RM model. The latter two sequences are aperiodic sequences but are not quasiperiodic in nature.

At this point it is important to specify what a quasicrystal system is along with what an aperiodic system is
and highlight the difference between the two. It is easiest to define an aperiodic system as a system that does
not possess a periodic structure. A quasicrystal system is a special type of aperiodic system which possesses an
almost periodic structure. Another way of distinguishing quasicrystal systems from other aperiodic system is
by analyzing the Fourier transform of the lattice structure. When this is done a quasicrystal system will exhibit
a countable set of peaks with a well-defined spacing [31]. It can be shown that a system generated using the
silver mean sequence possesses a finite number of peaks in its Fourier transform and is therefore a quasicrystal.
However, this is not the case for aperiodic systems that have a structure defined by the Thue–Morse sequence
or the period-doubling sequence. As such, systems constructed using these sequences are aperiodic but not
quasicrystals. For a more in-depth discussion see [32].

In section 4.1 we choose to apply the silver mean sequence to the system which is a quasiperiodic sequence
and use M1Q(x, t) to predict the topological index of the system. To our knowledge there is no adaptation of
the Diophantine equation to this model. As such, we check the topological index of the system by analysing
the current in the bulk of the system as well as looking at the shift in the Wannier centers of the system. We also
show that one can look at the average behavior of a group of Wannier centers within the bulk of the system
over a time period and produce a single value that determines the topological index of the system. Comparing
the results of this method to the results from the change in M1Q(x, t) over a time period we show that M1Q(x, t)
provides a more accurate calculation of the topological index. In section 4.2 we introduce the Thue–Morse
sequence and the period-doubling sequence which are aperiodic sequences but are not quasiperiodic. We then
apply these sequences to the MRM model and use M1Q(x, t) to show that topological gaps appear for each
sequence.

The MRM model is very similar to the original RM model and was introduced in [26] where the Fibonacci
sequence was applied. The Hamiltonian is defined as

ĤMRM =
∑

n

[[(
J + (−1)fnδ(t)

)
|n〉〈n + 1| + h.c.

]

+ (−1)fnγ(t)|n〉〈n|
]

,

δ(t) = δ0 cos(2πt/T) γ(t) = γ0 sin(2πt/T).

(9)

Here n labels the lattice sites of the system, J is a fixed hopping value and δ(t) and γ(t) are time dependent
modulating components for the hopping and on-site potential respectively. The modulating components both
have the same period T. The key difference between the RM model and the MRM model is the value fn. For the
RM model fn = n which gives the system a periodic nature, however, the MRM model sets fn to equal some
aperiodic sequence of 0’s and 1’s. For our analysis we choose to set fn to the silver mean sequence which we
define in the next section.

4.1. Silver mean sequence
One way to define an aperiodic sequence is through the substitution method where the initial value is given
along with a number of substitution rules depending on how many different variables can be in the sequence.
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Figure 4. Energy spectrum of the MRM model with open boundary conditions and the silver mean sequence applied. The
parameters of the model were set to δ0/J = 0.9 and γ0/J = 0.8.

For the silver mean sequence the initial value is set to A and the substitution rules are given by g(A) = AAB
and g(B) = A. Using this method the first four generations of the silver mean sequence are given by

S0 = A

S1 = AAB

S2 = AABAABA

S3 = AABAABAAABAABAAAB

(10)

where the subscript on S is the generation number of the sequence. This sequence is a quasiperiodic sequence
and the ratio of A’s to B’s tends to the value of the silver mean ratio, υ = 1 +

√
2, as the length of the sequence

tends to infinity [32]. To apply this sequence to our model we need to convert the sequence of A’s and B’s to a
sequence of 0’s and 1’s. We do this by using the following rule

fn =

{
1 if the nth letter of Si is A

0 if the nth letter of Si is B.
(11)

Figure 4 shows the energy spectrum of the MRM model with open boundary conditions and parameters
δ0/J = 0.9 and γ0/J = 0.8. From this figure it can be seen that two eigenvectors traverse the energy gap around
E/J = −1.45 in the opposite direction. It can be shown that these eigenvectors are exponentially localised at
the edges of the system suggesting that they may be topological in nature. If this is the case then, from the bulk
boundary correspondence, the system will have a topological index of magnitude one when the Fermi-energy
is set to EF/J = −1.45 [33].

Figure 5 shows the change in M1Q(x, t) over a full time period for the RM model with varying sizes
of NR. The parameters are the same as in figure 4 and the Fermi-energy was set to EF/J = −1.45. We see
that the change in M1Q(x, t) tends to the value 1 suggesting that this is the topological index of the system.
This agrees with our previous prediction using bulk boundary correspondence that the magnitude of the topo-
logical index would be one. It can also be seen that the change in M1Q(x, t) possesses the same approximate
Cr + α/NR envelope seen in previous models. This then suggests that approximate bound on the error of the
change in M1Q(x, t) is given by α/NR for all periodic and aperiodic models with the value of α being model
specific.

To confirm the system’s topological index we use the fact that 1D topological systems pump an integer
amount of charge through the bulk over a full time period equal to the system’s topological index [1]. We
will assess this bulk pumping by dividing the system into two sections and observing how the particle number
changes in each half of the system over a full time period. We also confirm the topological index by analysing
the shift in the Wannier centers given by the eigenvalues of P̂x̂P̂. We show that the number of Wannier centers
passing through a point in the system over a full time period is equal to the topological index of the system.

7
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Figure 5. Change in M1Q(x, t) over a full time period for the MRM model with the silver mean sequence applied and varying NR.
The parameters were set to δ0/J = 0.9, γ0/J = 0.8 and T = 1. The Fermi-energy was set to EF/J = −1.45. The total number of
lattice sites within the system was set to N = 1393. The red and orange lines highlight the envelope of the change in M1Q(x, t) as it
tends to the topological index of the system.

Figure 6. The change in the particle number in each half of the system over time for the MRM model with the silver mean
sequence applied. The parameters of the system are the same as those in figure 5. The light blue line represents the change in the
particle number on the left side of the system and the orange line represents the change in the particle number on the right side of
the system.

Figure 6 shows how the particle number in each half of the system changes over time. The particle number
for the left-hand side of the system was calculated in the following way

NLHS(t) =
∑

n∈LHS

〈n|P̂|n〉 (12)

where n labels the lattice sites of the system. The particle number for the right side of the system was calculated
in a similar way. The discontinuous jumps in this figure occur where the Fermi-energy intersects with the edge
state modes. These jumps are present because we disclude the edge state modes from the calculation of the
particle number once their energy is above the Fermi-energy level which then leads to an integer change in the
particle number. Because the discontinuous jumps represent edge state effects we can ignore them as we are
only interested in bulk effects. Ignoring the discontinuities, it can be seen that the particle number for the left
of the system is decreasing over time and over a full time period decreases by one; the particle number on the
right of the system is the reverse, increasing by one over a full time period. This shows that an integer amount
of charge flows across the divide in the system over a time period. It can also be shown that, as long as the
partition lies within the bulk of the system, it does not matter where the system is divided, there will always be
an integer amount of charge that passes through the partition over a full time period. We have therefore shown
that one unit of charge flows through the bulk over a full time period, thus confirming that the topological
index of the system is one and supporting the result we found using M1Q(x, t).
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Figure 7. The time evolution of a group of Wannier centers in the bulk of the system over a full time period. The system
considered was the MRM with the silver mean sequence applied. The parameters of the system are the same as in figure 5. The
horizontal blue line represents a divide in the system located half way between the 707th and 708th lattice site.

We now move on to show the shift in the Wannier centers of the system. It has previously been shown that
one can define localised Wannier centers of both periodic and aperiodic 1D systems from the eigenvalues of
P̂x̂P̂ where P̂ is given by equation (2) [34–36]. In the periodic case one can consider the change in a single
Wannier center deep within the bulk to determine the topological index of the system, however, this is not the
case for aperiodic systems. In this case the aperiodic nature allows the Wannier centers to change by different
amounts over a full time period rendering the method used in the periodic case unfruitful. However, we show
here that the topological index of the system can be determined by analysing how many Wannier centers cross
a horizontal line over a given period. One could ask whether the position of the line is important; we will
show that it is not now. The periodic nature in time of the Hamiltonian, Ĥ(T) = Ĥ(0), ensures that the final
position of a Wannier center in the bulk is equal to the initial position of the next Wannier center. This means
that it does not matter where one places the horizontal line as the number of Wannier centers that cross it over
a full time period will remain the same as long as it is placed within the bulk. The horizontal line corresponds
to a specific point in the system.

Figure 7 shows the time evolution of a group of Wannier centers located in the bulk of the system. The
horizontal light blue line represents a divide in the system placed between the 707th and 708th lattice sites.
From this it can be seen that one Wannier center passes up through the horizontal line indicating that the
topological index is one. This agrees with both M1Q(x, t) and the current through the system.

Summarizing this section so far, we have shown that M1Q(x, t) correctly predicts the topological index of the
1D time dependent MRM model. We confirmed the value of the topological index first by analysing the current
through the system and showing it is quantised to the predicted topological value, and then by analysing the
shift in the Wannier centers of the system. To the authors knowledge the Wannier center method presented
above has not been used to determine the topological index of an aperiodic system before.

One could then ask why M1Q(x, t) should be used to determine the topological index rather than the Wan-
nier center method or the current method show above. One advantage M1Q(x, t) has over the current method is
that it does not contain discontinuous jumps in it evolution in time which can become cumbersome for higher
topological indices. As well as this, M1Q(x, t) does not require visual analysis to determine the topological index
of the system, unlike the Wannier center method presented above. However, one of the most important advan-
tages of M1Q(x, t) is that it can be generalized to 3D systems using the results found in [25]. We are unaware
of a generalization of the current method to 3D systems and Wannier centers are only necessarily localized for
1D systems.

It is possible to consider the average of a group of Wannier centers located in a region R in the bulk to
gain an overall picture of the systems bulk behavior. From this one can then calculate its change over time and
normalize it such that it give a single value that can determine the system’s topological index. However, as we
will show, this method is less accurate than using M1Q(x, t). One can consider the average of the bulk Wannier
centers normalized in the following way

Mwan(t) =
1

WM+1(0) − W1(0)

M∑

m=1

Wm(t) (13)
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Figure 8. The error for both the change in M1Q(x, t) and Mwan(t) compared to the true topological index for varying region size
NR. The Wannier centers considered in Mwan(t) were selected such that their initial positions at time t = 0 lay within the region
R. The system considered was the MRM with the silver mean sequence applied. The parameters of the system are the same as in
figure 5. The green line plots 1/NR and shows that the error for both M1Q(x, t) and Mwan(t) is of order O(1/NR).

where Wm represents the Wannier centers and the summation considers Wannier centers positioned within
the region R at time t = 0. Calculating the change in Mwan(t) over a full time period will then give you a single
value that can be used to determine the topological index of the system.

Figure 8 shows how the error for the change in M1Q(x, t) compares to the error for the change in Mwan(t)
for increasing region size, NR. It can be seen from this figure that the error on both these values is of order
O(1/NR), highlighted by the green line. It can also be seen that the error of M1Q(x, t) is generally lower than
that of Mwan(t). Note that the axes of figure 8 are logarithmic. As such, whilst one can produce a single value
that determines the topological index from the Wannier centers it is less accurate than M1Q(x, t).

Another advantage of M1Q(x, t) is that one can use it to determine the topological index of different parts
of the system and investigate how localized disorder affects the topological index in different regions of the
system. We carried this out by separating the system into 10 sections and placed a local defect in one of these
regions. Doing this we found that the topological index in the region where the local disorder was placed was
affected, but the topological index of the other regions remained unaffected by the local disorder.

4.2. Thue–Morse and period-doubling sequence
Previously we chose to apply the silver mean sequence, which is a quasiperiodic sequence, to the MRM model. It
is then interesting to ask whether other aperiodic sequences that are not quasiperiodic also exhibit topological
behavior. In this section we apply the Thue–Morse sequence as well as the period-doubling sequence to the
MRM model to generate two aperiodic systems that do not have a quasicrystal nature. We then show that these
non-quasicrystal aperiodic systems can demonstrate topological behavior.

We first consider the Thue–Morse aperiodic sequence applied to the MRM model. The Thue–Morse
sequence is generated by setting the initial value of the sequence to A and then using the following substi-
tution rules; g(A) = AB and g(B) = BA. This sequence is aperiodic but not quasiperiodic which is highlighted
by the fact that the ratio of A to B for this sequence is one for any sequence length greater than one and not an
irrational fraction like for the silver mean sequence or the Fibonacci sequence. Using equation (11), we apply
the Thue–Morse sequence to the MRM and analyse its energy spectrum.

Figure 9 shows the energy spectrum for the MRM with the Thue–Morse sequence applied and the param-
eters δ0/J = 0.9 and γ0/J = 0.8. From this figure it can be seen that an energy gap exists at an energy of −1.15
and two edge state modes traverse this band gap, suggesting that it is topological in nature. Using M1Q(x, t) we
confirmed that the gap is indeed topological in nature and has a topological index of one.

Next we consider the application of the period-doubling aperiodic sequence to the MRM model. The
period-doubling sequence is generated with an initial value of A and the substitution rules g(A) = AB and
g(B) = AA. This sequence, like the Thue–Morse sequence, is aperiodic but not quasiperiodic which is high-
lighted by the fact that the ratio of A to B for this sequence tends to the value of 2 and not an irrational fraction.
We again use equation (11) to apply this sequence to the MRM model.

Figure 10 shows the energy spectrum for the MRM with the period-doubling sequence. Here the parameters
were set to δ0/J = 0.75 and γ0/J = 0.25. This figure shows that for the period-doubling sequence an energy
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Figure 9. Energy spectrum of the MRM model with open boundary conditions and the Thue–Morse sequence applied. The
parameters of the model were set to δ0/J = 0.9 and γ0/J = 0.8.

Figure 10. Energy spectrum of the MRM model with open boundary conditions and the period-doubling sequence applied. The
parameters of the model were set to δ0/J = 0.75 and γ0/J = 0.25.

gap exists at an energy of 0 and edge state modes traverse this band gap. Calculating the change in M1Q(x, t)
we confirmed that the gap is topological in nature with a topological index of one.

Both figures 9 and 10 show that topological properties can arise not just from quasicrystal ordering but
also from general aperiodic ordering. As well as this, these figures show that, while the topological structure of
the Thue–Morse chain and the period-doubling chain cannot currently be investigated directly [10], one can
investigate the topological structure induced by these aperiodic sequences through the MRM model.

5. Quasicrystal 1D marker and polarization

We have shown that the change in the 1D marker over a full time period can be used to determine the topolog-
ical index of both periodic systems and aperiodic systems. However, it is also useful to know the polarization
of the system and how it evolves over time. As such, in this section we show that the evolution of M1Q(x, t) over
time quantitatively matches the evolution of the polarization of the system in the thermodynamic limit when
NR →∞.

It is known that for a 1D system with open boundary conditions the polarization of the system is equal to
the dipole moment per unit length which is given by [37]

Pel(t) =
1
N

Tr(P̂x̂) =
1
N

∫
dxxρ(x) (14)
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Figure 11. The time evolution of M1Q(x, t) over a full time period for the MRM with the silver mean sequence applied. The
parameters of the system are the same as in figure 5. NR spans all the lattice sites between, and including, N = 348 and N = 1044.

Figure 12. The time evolution of the polarization, Pel, over a full time period for the MRM with the silver mean sequence
applied. The parameters of the system are the same as in figure 5 and the polarization was calculated using equation (14). The
discontinuity is located at the point where the right edge state mode crosses the Fermi-energy causing a discontinuity in the
polarization of magnitude one. The left edge state mode has a negligible effect on the polarization due to the fact we set the
position of the far left site to 1.

where the trace is over the whole of the system and ρ(x) is the density. We will therefore compare the evolution
of M1Q(x, t) to the evolution of equation (14) and show that they are equivalent when edge state effects are
neglected.

Figure 11 shows the evolution of M1Q(x, t) over a full time period for the MRM model with the silver mean
sequence applied. The parameters of the system along with the Fermi-energy and the number of lattice sites
were set to the values stated in figure 5 and the region R encompassed the sites from N = 348 to N = 1044.

Figure 12 shows the polarization, Pel(t), over a full time period for the same system. The discontinuity in
Pel(t) coincides with where the right edge state mode crosses the Fermi-energy and has a magnitude of approx-
imately one. Such discontinuities of course will not occur for systems with periodic boundary conditions. On
the other hand, using equation (14) to obtain the polarization is problematic for systems with periodic bound-
ary conditions. The right edge state mode is exponentially localised at the position N and using equation (14)
it can be seen that its contribution to Pel is approximately one. As such, when the right edge state mode crosses
the Fermi-energy it is no longer considered in the polarization causing a discontinuity in Pel of approximately
one. This shows that the discontinuity is purely an edge state effect and seen as M1Q(x, t) only considers the bulk
behavior we will ignore the discontinuity when comparing the evolution of the two. It should be noted that
the left edge state mode does not cause a discontinuity in the polarization because we chose to label the far left
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site with position one meaning that the left edge state mode has a negligible contribution to the polarization
of the system.

Comparing figures 11 and 12 it can be shown that once the discontinuity is ignored the evolution of
M1Q(x, t) quantitatively matches the evolution of Pel(t). This then shows that the evolution of M1Q(x, t) can be
used to describe the evolution of the bulk polarization of a system. It can also be shown that the discrepancy
between the evolution of these two values decreases when NR is increased and the edge state region A, which
contains all the lattice points not considered in region R, is fixed. This then suggests that if one takes the ther-
modynamic limit by taking NR →∞ and keeping region A fixed and finite then the evolution of M1Q(x, t)
tends to the evolution of the polarization of the system.

We have therefore shown that M1Q(x, t) can be used to accurately determine the evolution of the polar-
ization over any period of time t when the region R covers a large proportion of the system and in the
thermodynamic limit the evolution of M1Q(x, t) tends to the evolution of the polarization. Though we have
been primarily interested in topological systems in this work where the polarization changes by quantized
values, it is important to note that this method works equally well for determining the bulk polarization of
non-topological systems which is also of interest.

6. Discussion and conclusion

We have shown in this paper that the change in M1Q(x, t) can be used to determine the topological index
of aperiodic systems where traditional methods of determining the topological index fail. We checked the
topological index of the aperiodic system by analysing the flow of the Wannier centers across a partition in
the bulk along with analysing the change in particle number on each side of this partition. It was also pointed
out that one can consider the average behavior of a large group of Wannier centers in the bulk over a time
period to gain a single value which can give the topological index of the system, similar to M1Q(x, t). However,
we then showed that the accuracy of this method was less than that of M1Q(x, t). Lastly, we showed that the
evolution of M1Q(x, t) quantitatively matches the evolution of the polarization of the system for large NR. Here
we considered spinless models for ease, however, M1Q(x, t) can easily be applied to spin-dependent models in
the same way.

Throughout this paper we have demonstrated that a system’s topological index can be determined in a few
different ways and therefore it is natural to ask why one should use the quasicrystal marker M1Q(x, t) over these
other methods. While all these other methods have their place, the quasicrystal marker is a real space local topo-
logical marker that can vary over different regions of the system. This is useful when analysing systems with
disorder and how this disorder affects the topological pumping through the system. The quasicrystal marker
also produces a single valued output therefore making it desirable when analysing how the topological index
changes with different parameters. Another important property of the quasicrystal marker is that it naturally
generalizes to higher dimensional systems. If one uses the 3D generalization presented in [25] a 3D quasicrystal
marker that determines the second Chern number of the system could easily be generated. Unlike the quasicrys-
tal marker, a generalization to higher dimensions does not exist for the dipole moment or the Wannier center
methods presented in this paper. For instance, as discussed in [25], evaluating εijk Tr(P̂x̂iP̂x̂jP̂x̂k), where εijk

is the Levi-Civita symbol, for finite systems does not reveal topological behavior like that displayed for 1D in
figure 12. We would also like to highlight that while we have used the quasicrystal marker on systems with open
boundary conditions it can be used on systems with periodic boundary conditions as long as it is evaluated
away from the region where the position operator, x̂, is discontinuous which can be viewed as a ‘branch cut’
to be placed at a convenient point.

Another area in which topological physics is important is in non-Hermitian systems. It is therefore impor-
tant to be able to identify the topological structure of these systems. As well as this, the bulk-boundary
correspondence fails for certain non-Hermitian topological systems and, as such, a local topological marker
could be useful for investigating these systems due to its local nature [38]. Therefore, it would be useful if
the 1D marker could be adapted so that it can be applied to these types of systems. It can be shown that the
method used in this paper to evolve the projectors adiabatically in time can also be used for non-Hermitian
Hamiltonians if one defines the projector as

P̂ =
∑

n

|ψR
n (t)〉〈ψL

n(t)|. (15)

Here |ψR
n (t)〉 is the eigenvector of the Hamiltonian, Ĥ, at time t, |ψL

n(t)〉 is the eigenvector of the Hermitian
conjugate of the Hamiltonian, Ĥ†, at time t and n labels the occupied bands. The eigenvectors are normalized
such that 〈ψL

n |ψR
n′ 〉 = δn,n′ . Due to this, we expect that the 1D marker can be used to identify the topological
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structure of both periodic and aperiodic non-Hermitian systems when the projector is defined as above and
Û† is replaced with the inverse of the adiabatic evolution operator, U−1; however, this needs to be confirmed.

It is important to point out that a time dependent version of the Bott index exists that has previously
been used to analyse the topological index of an aperiodic system with periodic boundary conditions [26].
Whilst both the Bott index and MQC(x, t) can be used to determine the topological index of the system it is
clear that these two objects differ in structure, the prime difference being the use of the adiabatic evolution
operator in MQC(x, t). It would therefore be interesting to compare these two methods both analytically and
computationally to see how they differ and what advantages each one possesses.

The models considered within this paper all smoothly evolve in time, which is not the case for all quasicrys-
tal models. An example where this is not the case is the time dependent Fibonacci quasicrystal model where
either the onsite potential or the hopping potential abruptly alternates between two values at some point in
time [11, 39]. The abrupt change in the Hamiltonian means that adiabatic evolution is not possible for this
model and consequently one cannot construct the adiabatic evolution operator meaning that M1Q(x, t) can-
not correctly predict its topological index. From this we conclude that for M1Q(x, t) to correctly indicate the
topological index of a system the system needs to be continuous in time to the degree that the adiabatic approx-
imation can be applied. This is the only requirement needed to ensure that the change in the 1D quasicrystal
marker accurately represents the topological index of a 1D time-dependent Hamiltonian.
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