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Abstract

Topological physics is a rapidly developing field that could potentially open the door to utilising quan-

tum mechanics in electrical circuits. The discovery of local topological markers for two-dimensional

(2D) systems has allowed the investigation of disordered topological systems as well as topological

quasicrystal systems. However, adapting these topological markers to one-dimensional (1D) time-

dependent systems is not straight forward. The aim of this thesis is to develop topological markers for

1D time-dependent systems, three-dimensional (3D) time-dependent systems and 1D time-dependent

aperiodic systems.

We first develop a topological marker for 1D time-dependent systems and use it to determine the

topological structure of a known Hamiltonian. We then use this marker to investigate how differ-

ent types of disorder affect the topological structure of a system. We also show that this marker

can determine the polarisation of any system, topological or not. Next, we use the marker to anal-

yse the topological phase transitions of the Generalised Aubry-André model finding that this model

displays numerous topological phase transitions, some of which are between topologically trivial and

topologically non-trivial systems.

We then develop a topological marker that determines the second Chern number of a 3D time-

dependant system. We confirm its accuracy using a 3D Hamiltonian with known topological structure.

Afterwards, we adapt the 1D marker such that it can be used to determine the topological structure

of 1D time-dependent aperiodic systems. We then use this marker to investigate a quasicrystal with

known topological structure as well as a system with unknown topological structure and confirm the

accuracy of the adapted 1D marker. Next, we use this marker to investigate the topological structure

of two aperiodic systems which have previously been hard to study and show that both systems possess

a topological nature. Finally, we show that this marker can also determine the polarisation of aperiodic

systems.
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1
Introduction

Condensed matter physics is a staggeringly large field of physics which aims to describe the properties

of many-particle systems. These systems are described using both electromagnetism and quantum

mechanics with the other fundamental forces playing little part in the description. The study of

condensed matter systems is a vibrant field of study due to the fact that increasing the number of

particles within a system increases its complexity and in doing this allows emergent properties to arise.

Philip Warren Anderson, the theoretical physicist responsible for naming the field of condensed matter

physics, once wrote [2]

“The behavior of large and complex aggregates of elementary particles, it turns out, is not

to be understood in terms of a simple extrapolation of a few particles. Instead, at each

level of complexity entirely new properties appear.”

A large part of condensed matter physics is the understanding of phase transitions between different

states a system can take. One example of this is the phase transition between a ferromagnetic system

and a paramagnetic system. Within a ferromagnetic system all the magnetic moments are aligned

in the same direction and have equivalent magnitude; as such, the system has an overall magnetic

orientation and is therefore magnetic. As the temperature of the system is increased each magnetic

moment acquires more energy which allows them to change their orientation relative to one another.
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At the Curie temperature each magnetic moment has enough energy such that it can point in any

direction. This causes the magnetic moments to point in random directions and destroys the overall

magnetic orientation of the system resulting in the system no longer being magnetic; thus the system

has transitioned into a different phase. This phase transition can be described in terms of a breaking

of symmetry within the system. In the paramagnetic state the system has rotational invariance due

to the randomly orientated magnetic moments; transitioning to the ferromagnetic state breaks this

rotational symmetry and the system becomes more ordered. In fact, the use of symmetry breaking to

explain phase transitions is very general and can be applied to a variety of systems all across physics

[3]. However, in the latter part of the 20th century phase transitions which could not be described by

symmetry breaking started to be observed. It later transpired that a number of these phase transitions

were due to a change in the topological structure of the system.

In 1980 K. Klitzing observed one of the first topological effects of a system by analysing the Hall

resistivity of a 2D electron gas with a magnetic field applied perpendicular to it. It was seen that

the Hall resistivity took the form ρxy = h
e2

1
v with v being restricted to integer values. As such, the

Hall resistivity displayed plateaus, along with sharp increases, in its behaviour as the strength of the

magnetic field was increased [4]. This was contrary to the expected linear behaviour and this effect

is now known as the quantum Hall effect. In 1982 D. Thouless, M. Kohmoto, M.P. Nightingale, M.

den Nijs released a paper in which the behaviour of the Hall resistivity was ascribed to the change

in the Chern number of the system which describes the system’s topological phase [5]. It was shown

that the Chern number is restricted to take on integer values and can only change when the energy

gap considered closes or the number of bands occupied increases (which is the case in the quantum

Hall effect). This therefore explained the plateaued behaviour along with the sudden increases. Their

paper also highlighted that the Chern number is related to the change in the phase of the systems

wave function. This then clarifies why topological phase transitions cannot be described by traditional

symmetry breaking methods. These two papers played a fundamental role in the creation of a new field

in condensed matter physics known as topological insulators and were key in developing the broader

field of topological phases of matter. The year 1982 also saw the discovery of the Fractional Quantum

Hall Effect (FQHE) where the value of v in the Hall resistivity, ρxy = h
e2

1
v , can take on specific

fractional values (e.g. 1
3 , 2

5 , 3
7 ...). This effect was first observed by D. Tsui and H. Störmer and

requires electron-electron interactions in the system to be observed. The understanding of the FQHE

depends on fractionally-charged quasiparticles and quasihole excitations along with their interactions.

A large part of this understanding came from a theory proposed by R. Laughlin and was further

expanded upon by others to account for unexplained fractional cases [6, 7]. The FQHE will not be

addressed within this thesis and we refer the reader to [8, 7] for further details. Despite its relatively

young age, the field of topological phases of matter has already received 3 Nobel prizes; one in 1985
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awarded to Klaus von Klitzing for his work on measuring the quantum Hall effect, one in 1998 awarded

to Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui for their work on the fractional quantum

Hall effect and the discovery of a fractionally charged quantum fluid, and one more recently in 2016

awarded to David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz for their contributions

to the understanding of topological physics and topological phase transitions.

Since the 1980s the field of topological phases of matter has rapidly expanded and many new

interesting areas of study have developed within it. One of these areas is the study of 1D topological

pumps which was first proposed in 1982 by D. Thouless [9]. It was shown that if a 1D time-dependent

system is topological in nature then, as a result of this, it will pump a quantized amount of charge

across the system over a full time period with the quantized amount of charge directly proportional to

the Chern number of the system. Despite its early prediction, this phenomenon has only recently be

observed experimentally in cold atomic gas systems [10, 11, 12, 13]; as well as photonic systems [14,

15, 16]. This pumping effect has also been shown to exist in magneto-mechanical meta-materials and

elastic lattice systems [17, 18]. In the 1990s the modern theory of polarisation was developed and shed

a new light on the effect of topological pumping [19, 20, 21, 22, 23]. This new theory showed that the

Chern number for a 1D time dependent system is equal to the change in the polarisation of the system

over a time period which, in turn, explained why 1D topological systems exhibit quantized pumping.

Understanding and harnessing this effect of quantized pumping could have important implications for

systems requiring fine current control. One obvious area that this could greatly benefit is the control

of lasers for etching, shaping and imaging materials. The precise control of lasers is important in

many processes from microchip manufacturing to medical equipment design to experimental set-ups

in physics and chemistry.

At this point it is worth pointing out that while topological effects can be observed in photonic

systems the topology that arises here is slightly different than the topology that arises in cold atomic

systems. This is due to the fact that photonic systems consist of light particles which are bosons

where as cold atomic systems usually consist of electrons which are fermions. Due to this difference

the concept of a band structure makes sense for cold atomic systems but does not make sense for

photonic systems. Throughout this thesis we will concentrate on explaining the topological properties

that arise in fermionic systems rather than bosonic systems.

In the years since the discovery of the quantum Hall effect the topological structure of higher

dimensional systems has been investigated and it has been shown that for both three dimensional time-

dependent systems and four dimensional systems another topological index arises; this is known as the

second Chern number [24]. For the three dimensional time-dependent case it was shown that the second

Chern number can be linked to the change in the isotropic part of the magneto-electric polarisability

of the system over a full time period [24, 25, 26]. This has parallels with the relation between the first
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Chern number and the change in the polarisation of a one dimensional system mentioned previously.

Unlike the one dimensional case however, it is not clear what is pumped through the system in the

three dimensional case when no magnetic or electric field is present but the second Chern number of

the system takes on a non-zero value. More success has been found for the four dimensional case.

Considerable advances in the understanding of the topological structure of four dimensional systems

like the four dimensional quantum Hall effect (4D QHE) have been made [27, 28, 29]. As well as this,

despite the fact that the real world only possesses three spatial dimensions, not four, the 4D QHE has

been observed in both photonic and cold atomic experiments [30, 31]. In both cases this was achieved

by simulating two of the spatial dimensions with ‘synthetic’ dimensions. These experiments showed

that when the the 4D QHE is realised in two dimensions the edge state modes can exhibit more exotic

behaviours like corner to corner pumping and edge to edge pumping rather than propagating around

the edge of the system as seen in the two dimensional QHE.

At this point it is important to stress that the Chern number and the second Chern number are

not the only topological invariant used to classify the topological nature of a system. To understand

why more than one topological invariant is needed we first have to understand the types of systems

that can display topological behaviour. This has previously been understood via the classification

method known as the ‘ten-fold way’ and from this a periodic table of topological systems has been

developed for varying dimensions (shown in table 1.2) [32]. The Ten-fold way considers a generic

non-interacting single-particle Hamiltonian and classifies it into ten categories according to how the

Hamiltonian reacts under time-reversal symmetry, charge-conjugation symmetry and chiral symmetry

(sometimes referred to as ‘sublattice’ symmetry). To understand this classification let us take a closer

look at these symmetries.

A Hamiltonian, H, is invariant under time-reversal symmetry if the complex conjugate of H is

equal to H up to some unitary rotation UT :

U†T H
∗ UT = H. (1.1)

As well as this, if the system is time-reversal symmetric the square of the time-reversal operator can

be either plus the identity operator or minus the identity operator, T 2 = ±1. From this we label the

three possible cases with the value T as follows; if the system is not time-reversal symmetric we label

it with T = 0, if the system is time-reversal symmetric and T = +1 we label this with T = +1, and if

the system is time-reversal symmetric and T = −1 we label this with T = −1.

Next, we look at charge-conjugation. A system is invariant under charge-conjugation symmetry

if the complex conjugate of the Hamiltonian is equal to minus the Hamiltonian up to some unitary
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Symmetry Class T C S

A 0 0 0
AI +1 0 0
AII -1 0 0

AIII 0 0 1
BDI +1 +1 1
CII -1 -1 1

D 0 +1 0
C 0 -1 0
DIII -1 +1 1
CII +1 -1 1

Table 1.1: Table showing the 10 symmetry classes for single-particle Hamiltonians, classified by their
behaviour under time-reversal symmetry, T , charge-conjugation symmetry, C and chiral symmetry, S.

rotation:

U†C H
∗UC = −H. (1.2)

Like the time-reversal operator, the square of the charge-conjugation operator, C, can be plus or minus

the identity operator. We therefore have three cases which we label with C; if the system is not

invariant under charge conjugation we set C = 0, if the system is invariant under charge conjugation

and C2 = +1 we set C = +1, and if the system is invariant under charge conjugation and C2 = −1 we

set C = −1.

With these two symmetries we have 9 possible cases. The tenth case comes from considering the

chiral symmetry of the Hamiltonian. The chiral symmetry of the Hamiltonian is given by the combined

operation of time-reversal symmetry and charge conjugation symmetry such that S = T ·C, where S is

the chiral symmetry operator. For 8 of the possible 9 cases the chiral symmetry operator is determined

by the product of T and C and therefore does not contribute any more cases. However, for the case

where T = 0 and C = 0 the system can either be invariant under chiral symmetry, which we label with

S = 1, or not, which we label with S = 0 (for the 8 determined cases we set S = 0 if the product of

T and C is zero and S = 1 otherwise). This then gives us our extra case giving a total of ten possible

cases. These 10 cases are labelled in table 1.1.

Now we have introduced the different topological classes of the ten-fold way we can analyse these

classes in different dimensions and ask if the system is topological or not. Tabulating this information

makes up the ‘Periodic table of topological insulators’ and is shown in table 1.2 [33, 32]. This table

provides us with a bit more information than if the system can be topological or not, it also tells

us what values the topological invariant can take. With this table we are now ready to answer why

more than one topological invariant is needed. We previously mentioned that the Chern number can

be used to determine the topological structure of the 2D IQHE. This system falls into the symmetry
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Symmetry Class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A Z 0 Z 0 Z 0 Z 0 Z

AIII 0 Z 0 Z 0 Z 0 Z 0

AI Z 0 0 0 2Z 0 Z2 Z2 Z

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2

D Z2 Z2 Z 0 0 0 2Z 0 Z2

DIII 0 Z2 Z2 Z 0 0 0 2Z 0
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z
CII 0 2Z 0 Z2 Z2 Z 0 0 0
C 0 0 2Z 0 Z2 Z2 Z 0 0
CI 0 0 0 2Z 0 Z2 Z2 Z 0

Table 1.2: Table classifying the different types of topological systems stated in table 1.1 for varying
dimensions. The value 0 indicates that this system is not topological in nature and the values Z and
Z2 indicate that the system can be topological in nature with its topological invariant restricted to
values within the respected groups. The value 2Z again indicates that the system can be topological in
nature but its topological invariant can only take on even integers due to some doubling of the degrees
of freedom. An example of this doubling could be due to Kramers degeneracy.

class A and has a topological invariant restricted to Z. In general, the Chern number and its higher

dimensional forms can be used to describe the topological structure of any even dimensional (or odd

dimensional time-dependant) topological system labelled by Z. Looking at the symmetry class AIII

we see that these types of systems are described by a topological invariant restricted to Z and only

possess topological properties in odd dimensions. Due to the Chern number only being well defined for

systems with an even number of dimensions, it can not be used to describe the topological structure of

the symmetry class AIII. The topological structure of this class is determined by another topological

invariant known as the winding number. This then demonstrates the need for more than one type

of topological invariant. Over all there are four main topological invariants used to describe the

topological structure of all ten symmetry classes; the Chern number, the winding number, the Chern-

Simons invariant, and the Kane-Mele invariant (sometimes known as the Fu-Kane-Mele or the Fu-Kane

invariant). In this thesis we will concentrate on systems that can be described by the Chern number,

however, for more information on the other topological invariants see [32] and the citations therein.

In the past decade there has been another important advance in the field of topological physics;

the development of local topological markers. These objects can be used to measure the topological

index of a system but, unlike most methods, do not require translational invariance to be evaluated.

This is very useful as it allows one to determine the topological structure of a system that has an

inhomogeneous nature. These objects also allow one to investigate the topological structure within

a small region of a system meaning the effects of local defects within a system can be investigated.

Determining how local defects affect the topological properties of a system is a crucial step if topological

properties are to be utilised within modern technology. The most prevalent of these local topological
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markers is the Chern marker which is defined for two dimensional systems and was presented by

Raffaello Bianco and Raffaele Resta in 2011 [34]. The Chern marker has been used to probe the

topological phases along with topological phase transitions of many two dimensional inhomogeneous

systems [35, 36, 37, 38, 39, 40, 41, 42, 43]. Generally the Chern marker is used to measure the

topological structure of a system in equilibrium, however, recent work analysed the non-equilibrium

dynamics of the Chern marker for a system undergoing a quantum quench from a topological regime

to a non-topological regime [44]. It was shown that after the quench the value of the Chern marker

through the system fluctuated and displayed a current like behaviour. The Chern marker has also been

employed to investigate the topological aspects of non-Hermitian systems where boundary conditions

are important as they can affect the topological properties of the system [45]. It is clear then that the

Chern marker is very useful for investigating the topological properties of two dimensional systems.

Due to the way it is defined, however, it is not straightforward to apply the Chern marker to one

dimensional time-dependent systems or adapt it to analyse three dimensional time dependent systems.

One other developing subfield of topological physics is that of topological quasicrystals. To define

a quasicrystal system it is first best to define an aperiodic crystal; of which quasicrystals are a special

type. Aperiodic crystals are crystals that have some structural order, but do not possess translational

invariance. The structural order can be determined by analysing the Fourier transform of the lattice

structure to see if it possesses sharp diffraction peaks. If a system possesses sharp diffraction peaks

and is not translationally invariant it is said to be aperiodic. Quasicrystal systems are a special type

of aperiodic crystal in that they are said to have an almost periodic structure. These systems can

be differentiated by analysing the Fourier transform of their lattice structure to see if it displays a

countable set of diffraction peaks with a well-defined spacing [46]. For a more in-depth discussion

about aperiodic and quasicrystal order see [47].

Figure 1.1 shows a 2D quasicrystal pattern known as Penrose tiling. From this figure it can be seen

that this pattern has repeating sections along with rotational symmetry but does not have translational

invariance. It has been shown that the Penrose tiling, as well as other two dimensional quasicrystal

patterns, can possess topological properties [48, 49]. However, due to their non-transitionally invariant

structure the Chern number cannot be used for these types of systems and the Chern marker has to

be used to investigate the topology of 2D quasicrystal structures. Topological properties have also

been identified in one dimensional time-dependent quasicrystal systems. However, only a small subset

of these types of systems have been investigated [14, 50, 15, 51]. This is due to the fact that a one

dimensional time-dependent topological marker would be needed to investigate these types of systems.

Without this topological marker only one dimensional time-dependent quasicrystal systems that can

be mapped to two dimensional time independent systems can be investigated. The one dimensional

systems that have been investigated display complex topological structures that may prove useful in
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Figure 1.1: A 2D quasicrystal pattern known as Penrose tiling. The pattern is made of two types of
rhombi which are coloured differently to identify them.

the future.

Outline

Within this thesis we aim to introduce the reader to topological markers that can be used for one

dimensional and three dimensional time-dependent systems and demonstrate how useful these objects

can be when investigating topological systems. We also wish to demonstrate how the one dimensional

topological marker can be altered such that it can be used to investigate the topological structure of

any one dimensional quasicrystal or aperiodic system.

We start in chapter 2 by introducing the Chern number along with all the constituent parts needed

to make it. We derive it for both the discrete and continuous cases seen as the discrete case is very

useful when calculating the Chern number numerically. We also introduce the Diophantine equation,

which can be used to determine the Chern number of specific systems, as well as the second Chern

number seen as these will both be used later in the thesis. We also look at the effects a non-zero

topology has on a system by analysing edge modes that arise within these systems. We start by

analysing how edge state modes behave in one dimensional time-dependent systems and then move on

to analyse their behaviour in two dimensional systems.

In chapter 3 we introduce the Hamiltonians that will be analysed throughout this thesis. We

demonstrate the topological structure of some of these Hamiltonians but leave others unspecified when

the topological structure requires further specification of the Hamiltonian.

After this we introduce the Chern marker for 2D systems in chapter 4 and demonstrate its usefulness
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by using it to analyse the topological structure of the Hofstadter butterfly. We also define the Chern

marker for a four dimensional system system in this section, drawing parallels with the two dimensional

version.

Chapter 5 introduces the Bott index which is a different method for determining the topological

structure of a system. Here we first define the Bott index and then show analytically that the Bott

index is equivalent to the Chern number in both the continuous and the discrete cases. We then

analyse the relation between the local version of the Bott index and the Chern marker, finding that

the local Bott index and the Chern marker are equivalent when the system is of reasonable size.

In chapter 6 we define a local topological marker for one dimensional time-dependent systems and

demonstrate numerically that it can be used to correctly predict the topology of the system. We also

show that the change in the one dimensional marker over time is equivalent to the polarisation of the

system. We then use this marker to investigate systems with both local and random disorder and

analyse how this affects the topological structure of the system. Lastly, we investigate topological

phase transitions of the generalised Aubry-André model by producing a topological phase diagram.

We do this for the regime where the fixed hopping parameter in this system is set to one and for the

regime where it is set to zero. We find that the later case displays numerous phase transitions some

of which are from a topologically non-trivial system to a topologically trivial one.

Chapter 7 then goes on to develop a topological marker for three dimensional time-dependent

systems using similar techniques defined for the one dimensional topological marker. We also show

that the three dimensional marker is equal to the change in the Chern-Simons axion coupling over

time. After this the three dimensional marker is used to determine the topological structure of a three

dimensional time-dependent Hamiltonian with a known second Chern number and it is found that the

topological marker correctly predicts the second Chern number of the system.

With this we then move on to analyse a one dimensional time-dependent quasicrystal system in

chapter 8 using an altered version of the one dimensional marker introduced in chapter 7. It is shown

that this altered version of the marker can accurately predict the topological structure of both periodic

and quasicrystal systems. We then use the altered marker on a system with unknown topological

structure and confirm the markers accuracy by analysing the current through the system as well as

looking at the change in the Wannier centres of the system. As well as this, we show that, like in the

periodic case, the marker can be used to determine the topological structure of a region within the

system, but find that this region has to be considerably larger than in the periodic case to give an

accurate prediction. Having shown that the marker works for systems with a quasicrystal structure

we then investigate systems with aperiodic structure. We analyse the topological structure of two

systems; one with the Thue-Morse sequence determining the atomic structure and the other with the

Period-doubling sequence determining the atomic structure. We find that these aperiodic systems can
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possess a non-zero topological structure despite them not having a quasicrystaline nature. Finally, we

show in this chapter that the equality between the polarisation of the system and the one dimensional

marker persists for both quasicrystal and aperiodic systems also.

Chapter 9 demonstrates that the Aubry-André model can be used not only to determine the

topological structure of the Fibonacci chain, shown previously by Kraus and Zilberberg [50], but can

also determine the topological structure of any noble mean chain. It is then shown how the parameter

b of the Aubry-André model can be determined so that the topology of the desired noble mean chain

is realised.

Finally, chapter 10 concludes by reviewing the new material shown in this thesis as well as discussing

possible future directions and applications that could arise due to these findings.
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2
Chern Number

Topology is a well established field of mathematics and is concerned with classifying geometrical objects

through continuous deformations such as stretching, compressing, twisting and bending. Two objects

are said to be topologically distinguishable if one has to tear, glue or open or close holes within one

of the objects to deform it into the other. The most famous example of this is the coffee cup and the

doughnut; these objects are topologically equivalent because one can perform a continuous deformation

on the coffee cup and produce a doughnut. In this example the important feature of each shape is the

number of holes in the object. It is said that both the coffee cup and the doughnut have a genus of 1

and therefore they are topologically equivalent. Both of these objects are topologically distinct from

a ball seen as the ball has a genus of 0 due to it having no holes in it. From this it is obvious that the

topology of an object is a global property because it requires the analysis of the whole object.

The idea of classifying objects through continuous deformations is a very useful concept in con-

densed matter physics, especially when classifying insulators which will be the topic of this thesis.

Using electronic band structure theory a material is defined as an insulator when all the energy bands

are populated or when its Fermi-Energy lies between two separated bands. For the former case the

electrons in the material are fixed in place and the material does not conduct electricity. However, for

the latter case this is not strictly true and cases can arise where electrons can flow in very specific ways

through the system. To distinguish between these types of insulators we use the ideas from topology
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and ask whether two Hamiltonians can be continuously deformed into each other without the band gap

closing. If this is the case it is said that the two Hamiltonians are topologically equivalent and possess

the same topological band structure. It is important that the band gap remain open throughout the

deformation to ensure the topology of the system does not change. The application of topological

classification to insulators was a major break through in the condensed matter field and resulted in

the 2016 Nobel prize in physics being awarded for this work.

Just like the genus allows us to distinguish the topology of a coffee cup from the topology of a ball

one can define objects that classify the topology of Hamiltonians. Throughout this thesis we will refer

to these objects as topological indices. For two dimensional (2D) time-independent systems and one

dimensional (1D) time dependent systems there exists a topological index known as the Chern number

which can be used to determine the topological structure of these systems. For three dimensional

(3D) time-dependent systems and four dimensional (4D) time-independent systems another topological

index exists which is known as the second Chern number. In this section we will define both the first

and second Chern numbers.

This chapter is structured as follows. First, we will recap Bloch’s theorem for the continuous case

as well as for the discrete case. Here we will introduce specific notation that will be used throughout

this thesis. Next we derive the Berry phase, Berry flux and the Chern number for the discrete case.

Then, using the discrete case as a guide, we will derive the Berry phase, Berry flux and Chern number

for the continuous case. We will also show an alternate form of the Berry Flux and Chern number

that is useful in showing the relationship between the Hall conductance and the Chern number of a

2D topological system. After this, we will state the form of the second Chern number. Throughout

this thesis we will sometimes refer to the first Chern number as the Chern number. We also sometimes

refer to both the first Chern number and the second Chern number as the topological index of the

system but in each case it will be obvious which one we are referring to. Finally, we will look at the

properties that arise from a system being topological in nature by analysing the edge state modes of

the system.

2.1 Bloch’s Theorem Notation

Within this thesis we will be interested in the bulk properties of both periodic and aperiodic Hamil-

tonians, but we will start by analysing periodic Hamiltonians first. Felix Bloch pioneered the current

quantum mechanical understanding of electrons in a periodic structure with his thesis entitled “Quan-

tum Mechanics of the Electron in Crystal Lattices” [52]. Within this he demonstrated Bloch’s theorem

which states that for a potential V (x) with a periodicity equal to r, V (x) = V (x + r), the energy
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eigenstates take the form

ψk,n(x) = eik·xuk,n(x). (2.1)

Above, ψk,n(x) is the single-particle wave function, k is the wave vector and uk,n(x) is the correspond-

ing Bloch function which has the periodicity of the lattice, uk,n(x) = uk,n(x + r). The index n here

labels each band within the system. To solve the system one then has to solve for uk,n(x) by finding

the eigenvectors of Ĥ(k) which is defined as

Ĥ(k) = e−ik·x Ĥ eik·x. (2.2)

For a more in depth analysis of Bloch’s theorem see [53].

The above application is to a continuous system with periodicity, but we will be concerned with

tight binding models on a lattice. As such, we will adapt Bloch’s theorem for the tight binding case

and also introduce some useful notation that will be used later in the thesis. The methods laid out

here are presented in more detail in [54]. We take the Hilbert space of our tight binding Hamiltonian

to be spanned by the states

|m, α〉 → |m〉 ⊗ |α〉 ∈ Hlattice ⊗Hinternal (2.3)

where |m〉 is a vector labelling the unit cell and α is a vector labelling the internal degrees of freedom

within the unit cell. These states obey the normalisation conditions 〈m′|m〉 = δm′m and 〈α′|α〉 = δα′α.

Throughout this thesis we will generally label unit cells with roman numerals and internal degrees of

freedom of the unit cell with Greek symbols unless otherwise stated. Here we have chosen to separate

out the external degrees of freedom from the internal degrees of freedom as this will make future

calculations simpler. It is important to point out that the degrees of freedom within the unit cell

labelled by α covers the spin degrees of freedom and other intrinsic properties of the particles, but also

includes the position within the unit cell. For our lattice system we have translational invariance in

the bulk at the level of the unit cell such that

〈m| Ĥ |n〉 = 〈m+ L| Ĥ |n+ L′〉 (2.4)

where m,n, L, L′ ∈ Zd. We therefore define a normalised plane wave basis |k〉 as

|k〉 =
1√
VBZ

∑
x

eix·k |x〉 . (2.5)

Here VBZ is the volume of the Brillouin zone, which is related to the volume of the unit cell by
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Vc = (2π)d/VBZ, where d is the dimensionality of the system. We use the normalisation convention

〈k′|k〉 = δ(k′ − k) and 〈ukn|ukm〉 = δn,m, where δ(k′ − k) is the Dirac delta function and δn,m is the

Kronecker delta function. We restrict k to take on values within the first Brillouin zone of the system.

With this Bloch’s theorem is now given by

|ψk,n〉 = |k〉 ⊗ |uk,n〉 (2.6)

with n labelling the band and the state |uk,n〉 ∈Hinternal being the Bloch state with periodicity of the

unit cell. To determine the Bloch states one finds the eigenvalues of the Hamiltonian Ĥ(k) given by

Ĥ(k) = 〈k| Ĥ |k〉 =
∑
α,β

〈k, α| Ĥ |k, β〉 (2.7)

such that we have

Ĥ(k) |uk,n〉 = Ek |uk,n〉 . (2.8)

With this we can now start to define the Chern number which topologically defines insulating systems.

The first step is to understand the Berry phase which we will introduce in the next section.

2.2 Discrete Case

The Berry phase was first introduced by Michael Berry in 1983 in which he showed that when a system

is adiabatically evolved around a closed loop the system picks up a phase which does not return back

to itself, i.e. γ(0) 6= γ(T ) [55]. As we will show, the Berry phase plays a crucial part in identifying

topological insulating systems. For a more detailed definition we refer the reader to Berry’s original

paper or pedagogical introductions in [54, 23].

Just like Bloch’s theorem in the previous section, the Berry phase can be defined in a discrete

way and in a continuous way. Here we will first define it in the discrete way as it is slightly easier to

conceptualise and then we will define it for the continuous case. As well as being slightly easier to

understand, the discrete form of the Berry flux will prove useful when analysing the Bott index for the

discrete case in section chapter 5.

2.2.1 Berry Phase

In quantum mechanics a system is described by the state |Ψ〉 which can have some complex phase

eiφ. Observables of the system are required to be real values and are given by expectation values of

operators 〈Ψ| Â |Ψ〉. As such, observables are not affected by this complex phase and we can therefore
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choose the value of φ to be what we want. This is known as a gauge transformation and is defined as

|Ψ〉 → eiφ |Ψ〉 . (2.9)

Properties of the system are determined by observables and therefore these properties should also be

gauge invariant. We can define the relative phase between 2 states by considering

e−iγ12 =
〈Ψ1|Ψ2〉
|〈Ψ1|Ψ2〉|

(2.10)

and then taking the argument of this complex number such that

γ12 = −arg
〈Ψ1|Ψ2〉
|〈Ψ1|Ψ2〉|

. (2.11)

It is important to note that the relative phase, γ12, can only be defined modulo 2π seen as eiπ =

ei(π+2πM) where M ∈ Z. Performing a gauge transformation on the relative phase shows that it is not

invariant under a local gauge transformation and therefore cannot describe properties of the system;

|Ψj〉 → eiαj |Ψj〉 e−iγ12 → e−iγ12+i(α2−α1). (2.12)

Now consider a group of states arranged in a loop (see fig. 2.1). For this loop we can calculate the

phase around the loop by summing the relative phases between each of the states. We will call the

phase of the loop the Berry phase and label it by γL. We define the Berry phase in the following way

γL = −arg 〈Ψ1|Ψ2〉 〈Ψ2|Ψ3〉 ... 〈ΨN |Ψ1〉 = −arg Tr
[
|Ψ1〉 〈Ψ1|Ψ2〉 〈Ψ2|Ψ3〉 〈Ψ3| ... |ΨN 〉 〈ΨN |

]
. (2.13)

In the second equality we have expressed the Berry phase in terms of projectors which are inherently

gauge invariant. This then shows that the Berry phase, γL, is a gauge invariant quantity and could

thus describe observables of the system.

Figure 2.1: Berry phase path around a loop consisting of N states.
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Figure 2.2: Berry flux around each plaquette for a group of states arranged in a lattice.

2.2.2 Berry Flux

In the previous section we defined the Berry phase of an object around a closed loop and showed that

one can measure it by considering the projectors at each point along the loop. Here we consider a 2D

lattice system and show that the Berry phase around the edge of the system can be expressed as the

sum of the Berry phase around each plaquette in the system.

Consider a collection of states arranged in a square lattice and each state is labelled by 2 quantum

numbers kx and ky (see fig. 2.2). For this system we introduce a quantity called the Berry flux defined

as the Berry phase around a single plaquette (or unit square);

Fkx,ky = −arg
〈
Ψkx,ky

∣∣Ψkx+1,ky

〉 〈
Ψkx+1,ky

∣∣Ψkx+1,ky+1

〉 〈
Ψkx+1,ky+1

∣∣Ψkx,ky+1

〉 〈
Ψkx,ky+1

∣∣Ψkx,ky

〉
= −arg e−i (γkx,ky + γkx+1,ky + γkx+1,ky+1 + γkx,ky+1).

(2.14)

Using the Berry fluxes we can then calculate the Berry phase along any closed path on the lattice

by adding all the Berry fluxes that are contained within the closed path. This is possible because any

internal edge within the closed loop will be considered twice in the summation but in the opposite

direction. Using eq. (2.9) and eq. (2.10) it can be shown that the relative phase between two states

depends on the direction travelled such that γ12 = −γ21. Therefore, when all the Berry fluxes are

summed the internal edges are neglected and we have the relation

e−iγL = exp
(
− i

∑
kx,ky∈L

Fkx,ky

)
(2.15)

where L is a closed loop on the lattice and the summation is over positions labelled by kx and ky that

lie within the loop. It is important to note that the relation above only holds modulo 2π and therefore

we can only say that the Berry flux and the Berry phase are equal up to an integer value of 2π.
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2.2.3 The Chern number

As mentioned earlier, we are interested in systems with periodicity in the bulk and, as a result of this,

our system has periodic boundary conditions. We therefore need to consider the lattice on a torus

geometry which has an interesting effect on the Berry phase. Earlier, we stated that the Berry phase

of a region can be found by summing all the Berry fluxes within that region. Therefore, if we want to

find the Berry phase of the whole lattice we sum all the Berry fluxes of the lattice. Recall that the

internal edges of the lattice cancel out and only the external edges are left. If we now place the lattice

on a torus, interestingly, the external edges are matched and cancel each other out. As a result, the

product of the Berry flux phase factors is equal to 1;

∏
kx

∏
ky

e−iFkx,ky = 1. (2.16)

At this point it is important to stress that the above equation does not mean that Fkx,ky = 0, but

means that Fkx,ky = 2πN with N ∈ Z. This is because the matched external edges can still cancel

each other out when they differ by a value of 2π such that e−iγ12 = e−i(−γ21+2πN). Using eq. (2.16)

and eq. (2.14) we now define the Chern number of the system as

C1 =
1

2π

∑
kx,ky

Fkx,ky . (2.17)

From the above equation we can see that the Chern number is gauge invariant, due to it being

constructed from gauge invariant quantities, and is restricted to take integer values. With this we have

shown that the Chern number represents a property of the system and we will show later that it can

be used to distinguish 2D topological insulators from trivial insulators.

2.3 Continuous Case

In this section we define the Chern number for the continuous case. In this case we consider a system

described by the states |Ψ(k)〉 where k is a vector that spans the parameter space of the system. We

consider some smooth closed path in this parameter space such that all points along this path have

a well defined derivative. It should be noted that while it is not always possible for the whole of the

parameter space to be smooth it is always possible to perform some local gauge transformation such

that all points in some local region of the parameter space are smooth.
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2.3.1 Berry Phase

We first define the relative phase between two states along our closed path. We will take the states to

be infinitesimally close to one another and describe their difference by δk. Using eq. (2.10) we define

the relative phase as

e−i∆γ =
〈Ψk|Ψk+δk〉
|〈Ψk|Ψk+δk〉|

. (2.18)

Due to the states being infinitesimally close we take the limit δk � 1 and Taylor expand |Ψk+δk〉 to

first order in δk to get

|Ψk+δk〉 = |Ψk〉+ δk · ∇k |Ψk〉 (2.19)

where ∇k is the gradient operator. Acting on this from the left with 〈Ψk| we get

〈Ψk|Ψk+δk〉 = 1 + δk · 〈Ψk| ∇k |Ψk〉 . (2.20)

It can be shown that the second term is purely imaginary and therefore the magnitude of eq. (2.20) is

1. If we now Taylor expand the exponential of the Berry phase it can be shown that

∆γ = i 〈Ψk| ∇k |Ψk〉 · δk ≡ A · δk. (2.21)

to leading order in δk. Here we have defined the vector A = Ax, Ay which is known as the Berry

connection. We stated in the discrete case that the relative phase is not gauge invariant and therefore

∆γ shouldn’t be gauge invariant either. This implies that the Berry connection should not be gauge

invariant and indeed it isn’t;

|Ψk〉 → e−iαk |Ψk〉 A→ A+∇kαk (2.22)

where αk represents a local gauge transformation.

We are now ready to define the Berry phase in the continuum case. We defined the Berry phase,

in the discrete case, as the sum of all relative phases around a closed loop. In the continuum case this

sum becomes an integral and we define the Berry phase as

γ(L ) = −arg e−i
∮

L
A · dk, (2.23)

where the integral is over the closed path L . Just like the discrete case the Berry phase around a

closed path for the continuous case is gauge invariant. This is because under a gauge transformation

we pick up an additional phase that is a total derivative and therefore it will disappear when integrated
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over a closed path. Again, the Berry phase is only well defined modulo 2π seen as when we take the

argument of the exponential we restrict its value to between 0 and 2π.

2.3.2 Berry Flux

In the previous section we showed that the Berry phase involves integrating a gauge dependent quantity

known as the Berry connection. Therefore it would nice if we could define the Berry phase in terms of

gauge invariant quantities like in the discrete case. This can be done by using Stokes theorem which

states that one can rewrite an integral over a closed path as the integral over the surface bounded by

the closed path. Using this we get that

∮
L

dk · A =

∫
R

dS · B B ≡ ∇k ×A (2.24)

where R is the region enclosed by L and dS is an infinitesimal surface element. The objectB is known

as the Berry curvature. It can be shown that the Berry curvature is gauge invariant by noting that

∇× (∇f) = 0 and therefore the extra term that arises from the gauge transformation will disappear.

There is a subtlety in using Stokes’ theorem here which is that it can only be applied if the region

R is smooth. This can be achieved by separating R into smaller sections and performing a gauge

transformation on each small section such that it is locally smooth. One can then find the Berry flux

of R by summing all the contributions from the smaller sections. We can thus rewrite the Berry phase

as

γ(L ) = −arg e−i
∫

R
dS ·B. (2.25)

In the 2D case dS ·B reduces to dkxdky B(kx, ky).

2.3.3 Chern number

We are now ready to define the Chern number for the continuous case in 2D. As stated before we are

interested in periodic crystals and therefore we consider a toroidal geometry represented by T . Just

like in the discrete case, when we consider a toroidal geometry we have that

e−iγ(L ) = e−i
∫

T
dkB = 1 (2.26)

which restricts the integral of the Berry flux to an integer value multiplied by 2π. This can be seen by

noting that the continuous case is equivalent to the discrete case when the lattice spacing is tends to

zero and therefore the above equation also applies to the continuous case. In eq. (2.26) we have used

the short hand notation
∫
dk ≡

∫
dkxdky for convenience; we will used this notation from here on out.
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For a more in depth discussion of this please refer to [23].

The Chern number of the system is then defined as the integral of the Berry flux over the torus;

C1 =
1

2π

∫
T

dkB. (2.27)

From eq. (2.26) it can be seen that the Chern number of a system has to be an integer value due to

the fact that the integral of the Berry flux over a torus is required to be an integer value multiplied

by 2π.

For 2D periodic systems the torus structure represents the Brillouin zone and we can write the

Chern number of a specific band as

Cn1 =
i

2π

∫
BZ

dk
( 〈
∂kxuk,n

∣∣∂kyuk,n〉− 〈∂kyuk,n∣∣∂kxuk,n〉 ) (2.28)

where the subscript n labels the band considered and the integral is taken over the Brillouin zone. To

determine the Chern number of the system one sums the Chern numbers for each populated band.

2.3.4 Alternate Form of the Berry Curvature

There is another form of the Berry curvature which is very useful when calculating it numerically. To

see why there is a problem in calculating the Berry curvature using the previous definitions let us look

at the Berry curvature when we have a state |ukn〉 for a 2D system;

Bn = ∇k × i 〈ukn| ∇k |ukn〉 = i
( 〈
∂kxukn

∣∣∂kyukn〉− 〈∂kyukn∣∣∂kxukn〉 ) (2.29)

where 〈∂kiukn| = ∂ki(〈ukn|). From eq. (2.29) we can see that there are derivatives on the eigenvalues of

Ĥ(k). When working numerically the states are in discrete form which can make differentiating them

more complicated. It would be better if the derivatives were on another object that we can evaluate

analytically which in this case is the Hamiltonian. We can write equation (2.29) as

Bn = i
∑
n′ 6=n

(
〈∂kxukn|ukn′〉

〈
ukn′

∣∣∂kyukn〉− 〈∂kyukn∣∣ukn′
〉
〈ukn′ |∂kxukn〉

)
, (2.30)

where we have used the fact that
∑
n′ |ukn′〉 〈ukn′ | = 1. The n′ = n term is neglected because it can

be shown to be zero using 〈ukn′ |ukn〉 = δn′n and 〈∂kiukn′ |ukn〉 = −〈ukn′ |∂kiukn〉. If we now consider

the Hamiltonian acting on a state

Ĥ(k) |ukn〉 = Ekn |ukn〉 ; (2.31)
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(∂kiĤ(k)) |ukn〉+ Ĥ(k) |∂kiukn〉 = (∂kiEkn) |ukn〉+ Ekn |∂kiukn〉 ; (2.32)

〈ukn′ | ∂kiĤ(k) |ukn〉+ 〈ukn′ | Ĥ(k) |∂kiukn〉 = Ekn 〈ukn′ |∂kiukn〉 . (2.33)

In the third equality we have acted from the left with state 〈ukn′ | where n′ 6= n. Due to the Hamiltonian

being Hermitian we can act with it to the left or the right and we will get the same answer. As such,

acting to the left with Ĥ(k) in equation (2.33) we get that

〈ukn′ |∂kiukn〉 =
〈ukn′ | ∂kiĤ(k) |ukn〉

Ekn − Ekn′
(2.34)

The above equation can then be used to rewrite the Berry curvature as

Bn = i
∑
n′ 6=n

〈ukn| ∂kxĤ(k) |ukn′〉 〈ukn′ | ∂kyĤ(k) |ukn〉
(Ekn − Ekn′)2

−
〈ukn| ∂kyĤ(k) |ukn′〉 〈ukn′ | ∂kxĤ(k) |ukn〉

(Ekn − Ekn′)2
.

(2.35)

Inputting this new form of the Berry curvature into the definition for the Chern number we get that

the Chern number can be written as

Cn1 = − i

2π

∫
BZ

dk
∑
n′ 6=n

[
〈ukn| ∂kxĤ(k) |ukn′〉 〈ukn′ | ∂kyĤ(k) |ukn〉

(Ekn − Ekn′)2

−
〈ukn| ∂kyĤ(k) |ukn′〉 〈ukn′ | ∂kxĤ(k) |ukn〉

(Ekn − Ekn′)2

]
.

(2.36)

This form of the Chern number is important in proving the relationship between the Hall conduc-

tivity and the Chern number [5, 8]. To see this we will look at the form of the Hall conductance.

From linear response theory it can be shown that the Hall conductance of a single band in a 2D lattice

system is given by [8]

σnxy = i~
∑
n′ 6=n

∫
BZ

dk

(2π)2

〈ukn| Ĵy |ukn′〉 〈ukn′ | Ĵx |ukn〉 − 〈ukn| Ĵx |ukn′〉 〈ukn′ | Ĵy |ukn〉
(Ekn′ − Ekn)2

. (2.37)

Here Ĵx and Ĵy are current operators in the x and y directions respectively and n labels the bands

of the system. This looks very similar to eq. (2.36). If we then define the current operator in the

following way

Ĵ =
e

~
∂Ĥ(k)

∂k
(2.38)
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and input this into eq. (2.37) we get

σnxy =
i e2

(2π)2~
∑
n′ 6=n

∫
BZ

dk

[
〈ukn| ∂kyĤ(k) |ukn′〉 〈ukn′ | ∂kxĤ(k) |ukn〉

(Ekn′ − Ekn)2

−
〈ukn| ∂kxĤ(k) |ukn′〉 〈ukn′ | ∂kyĤ(k) |ukn〉

(Ekn′ − Ekn)2

] (2.39)

where ∂ki = ∂
∂ki

. Finally, if we compare this to eq. (2.36) we get that

σnxy =
−e2

2π~
Cn1 . (2.40)

To find the conductance for the whole system one just sums up the conductance of each populated

band of the system. This relationship is known as the TKNN formula and was shown by Thouless,

Kohomoto, Nightingale and den Nijs [5].

2.4 The Diophantine equation

We have previously defined the Chern number for the discrete case and the continuous case. However,

there is another way in which one can determine the Chern number for topological systems with an

applied magnetic field. It was shown by Thouless et al. that the Chern number of a system with an

applied magnetic field obeys a Diophantine equation of the form [5]

r = Crp + trq. (2.41)

Above, r labels the band gap; tr is restricted to take on integer values; and Cr is the Chern number

of the system. The values p and q describe the applied magnetic field per unit cell Φ in terms of

Φ0 = 2π~/e in the following way

Φ =
p

q
Φ0 (2.42)

where p and q are integers. In this case q determines the number of bands within the system. For

specific models the magnitude of Cr is restricted to lie between two values when p and q take on integer

values. In our case we are interested in the Aubry-André mode and the Harper-Hofstadter model and

for these models the Chern number is restricted by

0 ≤ |Cr| ≤
q

2
. (2.43)
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Using the Diophantine equation one can determine the Chern number of the system analytically and

not have to worry about the possible complications from numerics. We will use the Diophantine

equation frequently throughout this thesis. The Chern number of the rth band is given by Cr −Cr−1.

It is worth mentioning briefly that when p/q is set to an irrational value one can approximate the

irrational value as a rational one with large p and q. As such, the Diophantine equation can still be

used to determine the Chern number in this case as long as p and q take on large enough values. In

this case the Chern number is not restricted and can take on any value seen as the irrational value is

only truly achieved when q →∞. We will look more at the case where p/q is an irrational value when

we consider quasicrystals later in the thesis.

2.5 Second Chern number

Within this thesis we will look at both 3D time-dependent systems and 4D systems. The topological

structure of such systems is represented by the second Chern number and therefore we introduce it in

this section.

Earlier we defined the first Chern number for a 2D system in the following way

C1 =
1

2π

∑
n

∫
BZ

dk Bn =
1

2π

∑
n

∫
BZ

dk
(
∂kxA

n
y − ∂kyA

n
x

)
(2.44)

where Bn is the Berry curvature for the nth band and An
j is the Berry connection for the nth band

in the jth direction. Using this notation the second Chern number is defined in the following way [24]

C2 =
1

32π2

∫
BZ

dk εijkl Tr
(
F ij F kl

)
(2.45)

with

F ij = ∂iA
nm
j − ∂jAnm

i + i [Anm
i , Anm

j ]. (2.46)

In the above equations εijlk is the 4D Levi-Civita symbol and we have used the Einstein summa-

tion notation for the indices i, j, k, l. In eq. (2.46) n and m label the occupied bands and Anm
i =

i 〈ukn| ∂ki |ukm〉. The trace in eq. (2.45) then traces over the labels n and m. Note that strictly speak-

ing one should define the Chern number for 2D systems as a trace over the Berry connection given in

eq. (2.46). In this case the commutator disappears due to the trace of a commutator being zero and we

arrive at the definition given in eq. (2.44). However, once the commutator is multiplied by something

else it no longer disappears when traced over and thus it has to be included in the definition of the

second Chern number.

With this we have defined the second Chern number which determines the topological index of
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3D time-dependent systems and 4D systems. We will use this definition later when we define the 3D

marker as well as when we investigate the topology of a 3D time-dependent Hamiltonian.

2.6 Edge state modes

So far we have stated that topological states can be distinguished from trivial states by analysing the

Chern number of the system. But how does this topological difference affect the system, if at all?

And if it does, what is the relation between this phenomenon and the Chern number? The answers to

these questions lie within the analysis of edge state modes and the bulk boundary correspondence. To

explore these questions we first need to look at what edge state modes are.

Edge state modes are special eigenstates of topological Hamiltonians that traverse the band gap

of the system. These eigenstates are exponentially localised on the edges of 2D systems, the ends of

1D systems and the surface of 3D systems. As such, the edge state modes are only visible when the

Hamiltonian has open boundary conditions. Examples of edge state modes can be seen in fig. 3.1.

It is possible to see that the eigenstates at the edges of a 2D system play a special role even from

a semi-classical perspective. Consider a set of electrons on a two dimensional surface with a magnetic

field applied perpendicular to the 2D surface. All electrons undergo cyclotron motion, but the electrons

at the edge of the system have half of their path obstructed (see Figure 2.3). Due to this these electrons

collide with the wall and skip around the edge of the sample resulting in edge modes circulating in a

specific direction.

Figure 2.3: Illustration of skipping orbits for a charged particle in a uniform magnetic field. In the
bulk, the semi-classical dynamics of a wave packet leads to a circular cyclotron orbit. The reflection
of such an orbit from the (hard wall) edge leads to a skipping motion around the sample edge. This
figure was take from [1].

While this argument is semi-classical it can be shown quantum mechanically that edge state modes

circle around the edge of a 2D system. It can also be shown that a 1D time-dependant system pumps

a quantised amount of charge across the system over a full time period. We show both cases below.

We will first show that when a 1D time-dependent system is topological in nature it displays a
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quantized current when the system is adiabatically evolved, despite it being an insulator. We start by

analysing the current operator for a single band in a 1D system with periodic boundary conditions.

Using eq. (2.38) we have

〈J(t)〉 =
e

~
1

2π

∫
BZ

dk 〈ukn(t)| ∂kĤ(k) |ukn(t)〉

=
e

~
1

2π

∫
BZ

dk

(
∂k
[
〈ukn(t)| Ĥ(k) |ukn(t)〉

]
− 〈∂kukn(t)|Ĥ(k) |ukn(t)〉

− 〈ukn(t)| Ĥ(k) |∂kukn(t)〉
)
.

(2.47)

The first term is a total derivative and therefore when integrated over the Brillouin zone it gives zero.

If we now use the time-dependent Schrödinger equation for our Bloch states, i~ |∂tukn〉 = Ĥ(k) |ukn〉,

and its hermitian conjugate we get

〈J(t)〉 =
ie

2π

∫
BZ

dk
(
〈∂tukn(t)|∂kukn(t)〉 − 〈∂kukn(t)|∂tukn(t)〉

)
. (2.48)

At this point we restrict our system to be periodic in time such that Ĥ(0) = Ĥ(T ) where T is the time

period of the system; this is equivalent to making a 2D system periodic in a chosen direction. With

this we now integrate both sides of the above equation over a full time period T to get

Q =
ie

2π

∫ T

0

dt

∫
BZ

dk
(
〈∂tukn(t)|∂kukn(t)〉 − 〈∂kukn(t)|∂tukn(t)〉

)
. (2.49)

Above, Q is the amount of electric charge flowing through the system over a time period T . Noticing

that the time integral and the crystal momentum integral are both closed integrals the above equation

looks a lot like the Chern number given in eq. (2.28). As a result, the amount of charge pumped

through a 1D time-dependent topological system over a full time period of the system is quantized

and we have

Q = e Cn1 . (2.50)

For systems with multiple bands occupied the amount of charge flowing through the system is given

by the summation of the Chern numbers for each band multiplied by the charge of the electron. We

have thus shown that 1D time-dependent topological systems display quantized pumping effects. This

was first shown by Thouless in his paper “Quantization of particle transport” [9].

To consider the 2D case we will consider the 1D time-dependent case and promote the time variable,

t, to the crystal momentum variable in the y direction, ky. Doing this the system now becomes a 2D

system with a magnetic field applied perpendicular to its surface (i.e. the system considered earlier

for the semi-classical case). This also means that the system is infinite in the y direction and finite in
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the x direction. To calculate the current on the edges of the system we can consider the gradient of

the edge state modes localised on each side of the system. The easiest way to do this is to consider

the energy-spectrum of the system for varying ky. Doing this it can be seen that the gradient of the

right edge state mode is non-zero and positive and the gradient of the left edge state mode is the same

as the right but negative (see fig. 3.1). The current along the infinite y edge is given by the gradient

of the edge state modes, Ĵy = e
~∂kyĤ(k). As such, the right edge state mode propagates up in the

y direction along the right edge and the left edge state mode propagates down the left edge in the y

direction. With this we have shown that the edge state modes propagate along the edge of the system

for a 2D topological system. As well as this, the number of propagating edge state modes is determined

by the Chern number of the system; this is known as the bulk boundary correspondence [56, 57]. This

effect has been observed experimentally in many different ways; for more information on experimental

techniques to observe this phenomena we refer the reader the the following reviews [58, 59, 60].
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3
Topological Insulator Models

Now that we have established how to analyse the topological index of a system and looked at how

topological structure affects different systems we are now ready to introduce the topological insulator

models that will be considered within this thesis. The Hamiltonians that we will analyse are the 1D time

dependent Aubry-André model; the 2D Harper-Hofstadter model; a 3D time-dependent Hamiltonian

which is a combination of the Aubry-André model and the Harper-Hofstadter model; and a quasicrystal

Hamiltonian which we call the Rice-Mele quasicrystal Hamiltonian. We start by introducing the 1D

Aubry-André model, stating its topological index and showing its energy spectrum. We then introduce

the 2D Harper-Hofstadter model and show that it is topologically equivalent to the Aubry-André model.

We also show the energy spectrum of this model with open boundary conditions to demonstrate the

bulk boundary correspondence. After this, we construct a 3D time-dependent Hamiltonian using the

Aubry-André model and the Harper-Hofstadter model, stating its topological index and showing its

energy spectrum for both periodic boundary conditions and open boundary conditions. Finally, we

introduce the Rice-Mele quasicrystal model.
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3.1 Aubry-André model

In this section we introduce the Aubry-André (AA) model, which can also be known as the Harper

model or the Aubry-André-Harper model. The time-dependent Aubry-André model is a non-interacting

model with a Hamiltonian given by [61, 62]

ĤAA = −J
∑
n

(|n〉 〈n+ 1|+ h.c.)−∆
∑
n

cos
(
2πbn− φ(t)

)
|n〉 〈n| . (3.1)

The first term describes simple hoppings between lattice sites and the second term describes an on-site

energy which is time-dependent. The value ∆ sets the maximum and minimum value of the on-site

energy. The quantity n takes on integer values which label the lattice sites of the system and the time

dependence of the system enters through the on-site phase via φ(t) = 2πt/T , where T is the period of

the potential.

The value b = p/q determines whether the periodicity of the potential aligns with the periodicity

of the lattice. In the case where p and q take on integer values the periodicity of the potential is equal

to q times that of the lattice; this is known as the commensurate case. For the case where the values

of p or q, or both, are irrational the periodicity of the potential can not align with that of the lattice;

this is known as the incommensurate case. It was shown that for the incommensurate case where

b = 2/(1 +
√

5) the AA model has the same topology as the Fibonacci quasicrystal [14]. Because of

this the incommensurate AA model is used to study the topological structure of quasicrystal systems.

We will consider the commensurate case b = p/q for now and discuss the incommensurate qua-

sicrystal case later in the thesis. In the commensurate case the unit cell is extended to encompass q

lattice sites so that the system can be written as Bloch periodic. In this case we can relabel the lattice

in the following way |n〉 = |x〉 ⊗ |α〉. Here the state |α〉 labels the q lattice sites within the unit cell

and |x〉 labels the unit cell. Note that the states |α〉 can also label other internal degrees of freedom

within the unit cell like spin etc., however, for simplicity we neglect them here. Because the system is

periodic in x we introduce the plane wave basis states |k〉 = 1√
VBZ

∑
k e

ikx |x〉 where VBZ is the volume

of the Brillouin zone. Using the new definition of the states |n〉 as well as the plane wave basis states

we can rewrite the AA model as

ĤAA =
∑
k

|k〉 〈k| ⊗
[
− J

( q−2∑
α=0

|α+ 1〉 〈α|+ eik |α = 0〉 〈α = q − 1|+ h.c.
)

−∆

q−1∑
α=0

cos
(
2πbα̂− φ(t)

)
|α〉 〈α|

]
.

(3.2)

Above we have defined α̂ = 1⊗
∑
α α |α〉 〈α| where α ∈ {0, 1, 2, .., q− 1}. The term in the large square
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Figure 3.1: The energy spectrum for the non-interacting Aubry-André model with open boundary
conditions. The parameters of the model have been set to ∆/J = −2 and b1 = 1/3. The red band
labels the lowest N/3 states, the green band labels the highest N/3 states and the blue band labels
the remaining N/3 states; where N is the total number of states in the system.

brackets is the Bloch Hamiltonian and is labelled ĤAA(k). As stated earlier, the eigenvectors of the

Bloch Hamiltonian give the cell-periodic part of the Bloch states, |ukn〉.

In Figure 3.1 the energy spectrum of the non-interacting Aubry-André model is shown. We have

set b = 1/3 and used open boundary conditions to show the edge state modes that traverse between

the bands. The colouring of the bands within the energy spectrum indicates how we define the bands

of the system. This way each band always contains N/q states, where N is the total number of states

and q is the total number of internal degrees of freedom.

If periodic boundary conditions are taken, so that the bands are gapped at all times, it can be

shown that the Chern number of each band in Figure 3.1 are as follows; the bottom band has a Chern

number of 1, the middle band has a Chern number of -2, and the top band has a Chern number of 1.

This can also be show using the Diophantine equation. We stated earlier that for a 1D time-dependent

topological system the Chern number determines the amount of electric charge pumped through a

system per time cycle. From this, we then expect that if only the bottom band of the system is

populated then one unit of electric charge will be transmitted through the system per time cycle.
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3.2 Harper-Hofstadter model

Next, we analyse the Harper-Hofstadter (HH) model and show that it has the same Bloch Hamilto-

nian as the Aubry-André model. Due to this, the Harper-Hofstadter model has the same topological

properties as the Aubry-André model. The Hamiltonian of the Harper-Hofstadter model is given by

ĤHH =
∑
n,m

(
− J ′ |n,m+ 1〉 〈n,m| −∆′ e−i2πb

′m |n+ 1,m〉 〈n,m|+ h.c.
)

(3.3)

where n and m label the lattice sites in the x and y directions respectively. The first term above

describes lattice hoppings in the y-direction. The second term describes lattice hoppings in the x-

direction with a phase factor dependent on the lattice position in the y-direction. In this model the

value of b′ = p/q represents an applied magnetic flux per unit cell perpendicular to the system in units

of Φ0 = 2π~/e [61, 8, 1]. This extends the periodicity in the y direction to that of q times the lattice

spacing. When p and q are integers the unit cell is extended such that it encompass q lattice sites

in the y direction. Now we know the periodicity of the Harper-Hofstadter Hamiltonian we can write

its Hamiltonian in Bloch form and compare it to the Bloch form found for the Aubry-André model,

assuming that p and q take on integer values.

We can rewrite ĤHH in a slightly different form by using |n,m〉 = |x〉⊗|α〉 where x = {x, y} labels

the unit cell position and α labels the internal degrees of freedom of the unit cell. Using this we get

that

ĤHH = −J ′
∑
x

[( q−2∑
α=0

|x〉 〈x| ⊗ |α+ 1〉 〈α|
)

+ |x+ ey〉 〈x| ⊗ |α = 0〉 〈α = q − 1|

]
+ h.c.

−∆′
∑
x

q−1∑
α=0

e−i2πb
′α̂ |x+ ex〉 〈x| ⊗ |α〉 〈α|+ h.c.

(3.4)

Above, ei is a vector in the ith direction with a length of the lattice spacing in the ith direction. The

states |α = 0〉 and |α = q − 1〉 represent the first and last lattice site in the unit cell respectively and

the operator α̂ is defined as in the previous section. Therefore, in the above equation we have that the

first term represents hoppings within the unit cell; the second term represents hoppings between unit

cells in the y direction and the third term represents hoppings between unit cells in the x direction.

If we now use the plane wave basis states |k〉 = 1√
VBZ

∑
k e

ik·x |x〉, where k = {kx, ky}, in the above
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equation we get that

ĤHH =
∑
k

|k〉 〈k| ⊗
[
− J ′

( q−2∑
α=0

|α+ 1〉 〈α|+ eiky |α = 0〉 〈α = q − 1|+ h.c.
)

− 2∆′
q−1∑
α=0

cos
(
2πb′α̂− kx

)
|α〉 〈α|

] (3.5)

Comparing eq. (3.2) and eq. (3.5) it is clear that the Bloch Hamiltonians of the Harper-Hofstadter

model and the Aubry-André model are identical if J = J ′, ∆ = 2∆′ and b = b′; here we identify kx

with the phase φ(t) from the AA model. Therefore, when these conditions are met, the models have

the same Bloch Hamiltonian and are therefore topologically identical meaning the bands have the same

Chern numbers.

3.3 3D topological model

Now we have defined the Aubry-André model and the Harper-Hofstadter model we can now develop

a 3D time-dependent topological pumping model. We will use this model later to show that one can

generate a real-space local topological marker for 3D time-dependent systems which gives the second

Chern number of the system.

It has been shown that for a Hamiltonian that decouples in the following way

Ĥ = Ĥa ⊗ 1+ 1⊗ Ĥb (3.6)

the second Chern number of this system is given by the product of the first Chern numbers of Ĥa

and Ĥb [27]. Therefore, we define our 3D Hamiltonian by using eq. (3.6) and setting Ĥa equal to the

Harper-Hofstadter model and Ĥb equal to the Aubry-André model. Doing this our 3D Hamiltonian is

given by

Ĥ3D(t) =
∑
x

[(
− J ′ |x+ ey〉 〈x| −∆′ e−i2πby |x+ ex〉 〈x|

− J(|x〉 〈x+ ez|+ h.c.
)
−∆cos

(
2πbz − φ(t)

)
|x〉 〈x|

]
.

(3.7)

Above x = {x, y, z} labels the lattice points and ei is a vector in the ith direction with a length of the

lattice spacing in the ith direction.

Figure 3.2 shows the energy spectrum of Ĥ3D with periodic boundary conditions for specific values

kzaz = π/3 and φ(t) = π/2. We have set b = b′ = 1/3 which extends the unit cell such that it contains

9 lattice sites and thus 9 energy bands in the energy spectrum. From Figure 3.2 it can be seen that

both the bottom band and the top band are separated from all other bands. It can be shown that
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Figure 3.2: The energy spectrum for Ĥ3D(t) with kz = π/3 and φ(t) = π/2 where ax, ay, az are the
lattice constants of the system. We have used periodic boundary conditions and set the Brillouin zone
to run from −π to π in all spatial directions. The parameters have been set to J/J ′ = 1, ∆′/J = −1,
∆/J = −2 and b = b′ = 1/3.

these bands remain gapped for all values kzaz and φ(t) and, as such, the second Chern number is well

defined for these bands. Due to the decoupled nature of Ĥ3D, the second Chern number of the bottom

band is given by the product of the first Chern number of the bottom band of the Harper-Hofstadter

model and the first Chern number of the bottom band of the Aubry-André model. As such, the second

Chern number of the bottom band of Ĥ3D is 1.

In fig. 3.3 we display the energy spectrum of Ĥ3D with open boundary conditions. Figure 3.3a

displays the energy spectrum with each line coloured to indicate the probability of finding it on the

surface of the system. From this figure it is clear that only surface modes lie within or traverse the

band gaps of the system. Figure 3.3b displays the same energy spectrum but colours the lines to

indicate if it lies on an xz or yz surface plane. This figure shows that most of the modes traversing the

band gap from one band to another are located on the xy surface planes of the system. This is due

to the structure of the 3D Hamiltonian being a tensor product of the HH model and the AA model

with the AA model occupying the z dimension and the time dimension. These figures demonstrate
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Figure 3.3: The energy spectrum of Ĥ3D with open boundary conditions. (a) The eigenvalues of
Ĥ3D are coloured to indicate the probability that it is located on the surface of the system. (b) The
eigenvalues of Ĥ3D are coloured to indicate the probability that it is located on a surface of the system
in the xz or yz plane

that Ĥ3D possesses surface modes with complex time dependence.

3.4 Rice-Mele Quasicrystal

In this section we introduce the Rice-Mele quasicrystal. This model allows one to investigate how

different aperiodic sequences can give rise to different topological structures. This model was first

introduced by Yoshii et al. in [51]. Here they applied the Fibonacci sequence to the model and

labelled it the Rice-Mele-Fibonacci model. We will be applying different aperiodic sequences in this

thesis and therefore we will refer to it as the Rice-Mele quasicrystal model. We also choose not analyse

the topological structure of this Hamiltonian or look at the energy spectrum until later when we

introduce the aperiodic sequences that will be investigated. This is because both the energy spectrum

and the topological structure of the system are highly dependent upon the sequence that is applied.

The Rice-Mele quasicrystal (RMQ) model is very similar to the original Rice-Mele (RM) model

and its Hamiltonian is defined as

ĤRMQ =
∑
n

J |n〉 〈n+ 1|+ (−1)fnδ(t) |n〉 〈n+ 1|+ h.c.+
∑
n

(−1)fnγ(t) |n〉 〈n| ,

δ(t) = δ0 cos(2πt/T ) γ(t) = γ0 sin(2πt/T ). (3.8)

Here n labels the lattice sites of the system, J is a fixed hopping value and δ(t) and γ(t) are time-

dependent modulating components for the hopping and on-site potential respectively. We choose the
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modulating components to have the same period T for our investigation but they do not have to

be in general. The key difference between the RM model and the RMQ model lies in the values fn

takes. For the RM model fn = n which gives the system a periodic nature, however, the RMQ model

sets fn to equal some aperiodic sequence of 0’s and 1’s with a length equal to that of the system.

Later in this thesis we will investigate what happens when fn is set to the silver mean sequence, the

Period-doubling sequence and the Thue-Morse sequence. Due to this model being aperiodic when fn

is set to an aperiodic sequence the Chern number defined in eq. (2.28) is not well defined and we will

investigate the topological index of this system using a different method which we will introduce later.

With this we have introduced the topological insulating models that will be considered in this

thesis. In the next chapter we will introduce the Chern marker which is a topological marker defined

for 2D systems and allows one to determine the topological structure in a local region of the system.
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4
Chern marker in 2D and 4D

The Chern marker is a real-space local quantity that can be used to determine the topological index of

a system despite this being a global property. This is possible because the topology is a bulk property

and therefore for systems with translational invariance a single unit cell contains all the information

needed to determine a system’s topological index. It is important that this unit cell is located far

from the edges of the system so that bulk properties of the system dominate and edge effects can be

neglected.

The Chern marker was proposed by Raffaello Bianco and Raffaele Resta for 2D systems in order to

develop a way of measuring the topological index of these systems without translational invariance [34].

Due to this property it has been used to analyse topological phases and topological phase transitions of

2D inhomogeneous systems [35, 36, 37, 38, 39, 40, 41, 42, 43]. As well as this, other work has shown that

topological currents measured by the Chern marker can arise when the system undergoes a quantum

quench [44]. Due to its local nature, one could view the Chern marker as a local topological order

parameter similar to traditional local order parameters for other types of phase transitions; however,

it is important to stress that the Chern marker does not analyse the breaking of symmetries within

the system like an order parameter.

Another useful property of the Chern marker is that it can determine the topological index of a

system with open boundary conditions as long as it is calculated within the bulk where the edge state

49



modes do not contribute. This has recently been show to be very useful as it allows one to predict the

topological index of non-Hermitian systems where the boundary conditions are important due to the

non-Hermitian skin effect [45].

In this chapter we first introduce the Chern marker for 2D systems and show that it is equal to the

Chern number of the system. After this, we then go on to develop a Chern marker for four-dimensional

systems and show that it equals the second Chern number of a four-dimensional system.

4.1 Notation

Before we define the Chern marker for 2D systems we first have to introduce some notation that will

be used frequently throughout the rest of the thesis. Earlier we introduced Bloch’s theorem which

allows us to separate out the periodic part of a wave function from the non-periodic part. We restate

it here for ease.

|ψkn〉 = |k〉 ⊗ |ukn〉 |k〉 =
1√
VBZ

∑
x

eix·k |x〉 (4.1)

where |ukn〉 is the cell-periodic part of Bloch state, n labels the band and k labels the wave vector.

From this we can define the operator P̂ which projects into the occupied states for a given Hamil-

tonian. The projector P̂ is defined in the following way

P̂ =

occ∑
n

∫
dk |ψkn〉 〈ψkn| =

∫
dk |k〉 〈k| ⊗ P̂k (4.2)

where the summation over n runs over all occupied states. Here we have taken the continuous limit

and therefore we get an integral over k. From here onwards all integrals over k are taken over the first

Brillouin zone and we sometimes drop the BZ subscript for notational ease. In the second equality we

have introduced a new projector P̂k which we define as

P̂k =

occ∑
n

|ukn〉 〈ukn| . (4.3)

The above projector is the translationally invariant part of the projector P̂ . Note that it is denoted

with a scripted letter. Throughout this thesis we will use scripted letters to denote k-dependent

(translationally invariant) objects and sometimes drop the subscript k for notational convenience. It

is important to stress that the projector P̂ can also be defined for inhomogeneous systems, but P̂k
requires translational invariance. We also define the complementary operator Q̂ = 1 − P̂ , along with

Q̂k = 1 − P̂k, which projects in to the unoccupied bands of the system. Because P̂ projects into

occupied bands and Q̂ projects into unoccupied bands the product of the two gives P̂ Q̂ = 0.
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Next, we need to define the position operator. Due to the translational invariance of the system

there are 2 ways in which we can define the position operator. One way is to define the position

operator to label the lattice sites of the system and the other is to define it so that it labels the unit

cells of the system. We will use both definitions throughout this thesis but for this section we define

it so that it labels the unit cell in the following way

x̂ =
∑
x

x |x〉 〈x| ⊗ 1. (4.4)

Above, 1 is the identity matrix with dimension equal to the number of degrees of freedom within the

unit cell. Note that the choice of how we define the position operator does not change the results of

the Chern marker but just makes our analytical calculations easier.

Lastly, we need to introduce the unit cell trace of an object. Unlike a traditional trace, which traces

over the whole system, we want to consider a single unit cell in the system. We do this by defining

the unit cell trace in the following way

trx(Ô) =
∑
α

(〈x| ⊗ 〈α|) Ô (|x〉 ⊗ |α〉). (4.5)

As stated earlier, x labels the unit cell and α labels the internal states of the unit cell. We have

summed over the internal states of the unit cell only meaning that a unit cell trace of an operator

analyses that operator within a single unit cell and produces a local object. From this we can then

write the full trace of an object as Tr (Ô) =
∑
x trx (Ô). We are now ready to define the Chern

marker for a 2D system.

4.2 2D Chern marker

In this section we will define the 2D marker and show that it is equal to the Chern number of the

system. The Chern marker, M2(x), for a 2D system is defined as [34]

M2(x) =
2πi

Vc
trx

([
P̂ x̂P̂ , P̂ ŷP̂

])
= −4π

Vc
Im trx(P̂ x̂Q̂ŷP̂ ),

(4.6)

where the square brackets denote the commutator and Vc is the volume of the unit cell. In the second

line we used P̂ = 1− Q̂ as well as the fact that position operators commute. To show that the Chern

marker is equal to the Chern number of the system we first have to analyse P̂ x̂Q̂ further.

The following analysis is valid for arbitrary dimensions. We denote the position operators in a
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specific direction for a d-dimensional system as x̂i (i ∈ 1, ..., d) and use the notation ∂i ≡ ∂ki for

derivatives with respect to the crystal momentum in a specific direction. To analyse P̂ x̂i Q̂ we use

eq. (4.2) to get

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk dk′ |ψkn〉 〈ψkn| x̂i |ψk′m〉 〈ψk′m| . (4.7)

Using Bloch’s theorem and the definition of the position operator we find that

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk

∫
dk′ |k〉 〈k| x̂i

∣∣k′〉 〈k′∣∣ ⊗ |ukn〉 〈ukn|uk′m〉 〈uk′m| . (4.8)

If we then use the definition of |k〉 and how the position operator acts on it in the above equation we

see that

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk

VBZ

∫
dk′

VBZ

∑
x,x′′

eix·ke−ix
′′·k′ ∑

x′

x′ie
ix′·(k′−k) |x〉 〈x′′| ⊗ |ukn〉 〈ukn|uk′m〉 〈uk′m| .

(4.9)

We can rewrite the terms in the summation over x′ as a partial derivative to get

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk

VBZ

∫
dk′

VBZ

∑
x,x′′

eix·ke−ix
′′·k′ ∑

x′

−i∂k′i(e
ix′·(k′−k)) |x〉 〈x′′|

⊗ |ukn〉 〈ukn|uk′m〉 〈uk′m| .

(4.10)

Integrate by parts and use 1
VBZ

∑
x′ eix

′.(k′−k) = δ(k′ − k) it can be shown that

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk

∫
dk′ |k〉

〈
k′
∣∣ δ(k′ − k)⊗ |ukn〉 〈ukn|

(
i∂k′i |uk′m〉

)
〈uk′m| . (4.11)

When carrying out the integration by parts we used that a total derivative over a closed manifold

vanishes. As well as this, any other terms that arise apart from the one above are zero due to

〈ukn|ukm〉 = δm,n. We therefore have that

P̂ x̂iQ̂ =

occ∑
n

unocc∑
m

∫
dk
(
|k〉 〈k| ⊗ i |ukn〉 〈ukn|∂i ukm〉 〈ukm|

)
. (4.12)

If we now use the definition of P̂k given in eq. (4.3) along with the definition of Q̂k we get that P̂ x̂iQ̂

is given by

P̂ x̂iQ̂ =

∫
dk |k〉 〈k| ⊗ iP̂k(∂iQ̂k). (4.13)

Above, we again used the fact that 〈ukn|ukm〉 = δm,n. From the definition of Q̂k it can be seen that
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∂iQ̂ = −∂iP̂. Using this we get the final form of P̂ x̂iQ̂ as

P̂ x̂iQ̂ =

∫
dk |k〉 〈k| ⊗ (−i)P̂(∂iP̂). (4.14)

The above identity is very useful identity that will be used numerous times throughout this thesis.

Using eq. (4.14) we can now show that the Chern marker for a 2D system is equal to the Chern

number of the system. Substituting eq. (4.14) into the definition of the Chern marker given in eq. (4.6)

we get that

M2(x) =− 4π

Vc
Im

∫
dk 〈x|k〉 〈k|x〉

∑
α

〈α| P̂(∂kxP̂)(∂ky P̂)P̂ |α〉

=
2πi

Vc

∫
dk 〈x|k〉 〈k|x〉

∑
α

〈α| P̂
[
(∂kxP̂), (∂ky P̂)

]
P̂ |α〉 .

(4.15)

If we then use the fact that 〈x|k〉 = 1√
VBZ

eik·x along with VBZ = (2π)2

Vc
for a 2D system we get that

M2(x) =
i

2π

∫
dk Trα

(
P̂
[
(∂kxP̂), (∂ky P̂)

]
P̂
)
. (4.16)

Above we have defined the trace over internal degrees of freedom as Trα(Ô) =
∑
α 〈α| Ô |α〉. When

the objects inside this trace are all translationally invariant operators, which is true above, this trace

obeys all the rules of a normal trace. Finally, using the definition of P̂, as well as the cyclic properties

of the trace, it can be shown that that the Chern marker defined in 2D takes the form

M2(x) =
i

2π

occ∑
n

∫
dk εij 〈∂iukn|∂jukn〉 . (4.17)

where εij is the 2D Levi-Civita symbol. Comparing this to eq. (2.28) we notice that the above equation

is the summation of the Chern numbers for each band and as such M2(x) is equal to the Chern number

of the system.

Above we have shown that the Chern marker is equal to the Chern number of a 2D system.

Although, we defined the position operator to label the unit cell it can be shown that the Chern

marker is still equal to the Chern number if the position operator is defined to label the lattice sites

of the system [34].

To demonstrate the Chern marker numerically we use it to determine the topological indices of the

Hofstadter butterfly. The Hofstadter butterfly depicts the energy spectrum of the Harper-Hofstadter

model, defined in eq. (3.3), for different values of b′ [63]. We have reproduced this energy spectrum in

fig. 4.1 for ∆′/J ′ = −1. It has been shown that within the gaps of the Hofstadter butterfly the Chern

number of the system takes on different non-zero values [64]. As such, we use the Chern marker to

depict the different topological regimes within the Hofstadter Butterfly.
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Figure 4.1: The energy spectrum of Harper-Hofstadter model for varying values of b′. The parameters
have been set to ∆′/J ′ = −1. This image is famously known as the Hofstadter butterfly.
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Figure 4.2: The Chern marker for the Harper-Hofstadter model with varying Fermi-energies and values
of b′. The parameters of the system were set to ∆′/J ′ = −1 and the Fermi-energy is given in units of
J ′.
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To achieve this we consider a range of b′ values and Fermi-energies, εF /J
′, and calculate the Chern

marker of the system for each; the results are shown in fig. 4.2. This figure clearly captures the general

shape of the Hofstadter butterfly and shows that for the largest gaps in the Hofstadter butterfly the

Chern number of the system has a magnitude of 1 and for the next largest gap the Chern number has a

magnitude of 2. The image in fig. 4.2 agrees with the previous findings shown in [64] where the Chern

numbers of the system were found using the Diophantine equation which we will introduce later.

As such, we have demonstrated numerically that the Chern marker is an effective way of determining

the Chern number of a system. The advantages of the Chern marker are that it is a local measurement

and does not require translational invariance. Together these properties make the Chern marker a

very useful tool to probe the topological properties of a system.

4.3 Chern marker in 4D

In the previous section we introduced the 2D Chern marker and showed that it is equal to the Chern

number. Topological systems in 2D have been studied extensively, but there has also been considerable

progress in theoretically understanding phenomena in 4D topological quantum systems such as the

quantum Hall effect [27, 28, 29]. For 4D systems the topological index of the system is given by the

second Chern marker which we define later in this section [24]. Recent advancements in topological

photonics and cold atomic systems have allowed some of these 4D topological effects to be observed

experimentally with 2 of the dimensions being ‘synthetic dimensions’ [30, 31]. Such 4D topological

systems can also be related to 3D time-dependent systems by the process of dimensional reduction

[24]; however, the properties of the system that emerge due to the topological structure can manifest

differently.

With this increased interest in 4D topological systems it is natural to ask whether a similar type

of real-space local topological marker exists for 4D systems. In this section we will define the Chern

marker for a 4D system and show that it is equal to the second Chern number of the system which

describes the topological nature of a 4D system.

Before defining the Chern marker for a 4D system it is useful to rewrite the Chern marker for a 2D

system in a slightly different form; this will make the generalisation to four dimensions easier to see.

The Chern marker for a 2D system can be written as

M2(x) =
2πi

Vc
εij
∑
α

〈x, α| P̂ x̂iQ̂x̂jP̂ |x, α〉 (4.18)

where |x, α〉 = |x〉 ⊗ |α〉 and x̂1 = x̂ and x̂2 = ŷ. Here we have used P̂ = 1 − Q̂ along with the fact

that the position operators commute with each other. Using the above equation as a template, we
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now define the Chern marker in 4D as

M4(x) =
2π2

Vc
εijkl

∑
α

〈x, α| P̂ x̂iQ̂x̂jP̂ x̂kQ̂x̂lP̂ |x, α〉 , (4.19)

where εijkl is the 4D Levi-Civita symbol and {x̂1, x̂2, x̂3, x̂4} = {x̂, ŷ, ẑ, ŵ} (with w labelling the fourth

spatial dimension). If we now use the identities P̂ P̂ = P̂ and Q̂Q̂ = Q̂ and substitute the form of P̂ x̂Q̂

given in eq. (4.14), along with its Hermitian conjugate, into eq. (4.19) we get that

M4(x) =
2π2

Vc
εijkl

∫
dk 〈x|k〉 〈k|x〉

∑
α

〈α| P̂(∂iP̂)(∂jP̂)P̂(∂kP̂)(∂lP̂)P̂ |α〉 . (4.20)

Using |〈x|k〉|2 = 1
VBZ

and VBZ = (2π)d

Vc
we see that

M4(x) =
εijkl

8π2

∫
dk Trα

(
P̂(∂iP̂)(∂jP̂)P̂(∂kP̂)(∂lP̂)

)
=
εijkl

32π2

∫
dk Tr

(
Bij Bkl

)
.

(4.21)

HereBjk = ∂jÃk−∂kÃj−i[Ãj , Ãk] is the matrix Berry curvature for a 4D system, Ãnmj = i 〈ukn|∂j ukm〉

is the matrix Berry connection, with n and m labelling the occupied bands, and the trace in the second

equality is a trace over the occupied bands. Note earlier we defined the Berry curvature B with out

the commutator; this is because it disappears in the 2D case due to the trace of a commutator being

zero but does not disappear for the 4D case. The last equality is the definition of the second Chern

number [24]. We have thus shown that the Chern marker for a 4D system is equal to the second Chern

number of the system. It is also worth pointing out that the Chern marker in 4D can correctly predict

the topology of a system even if the occupied bands overlap. This is due to the fact that it is defined

using the projectors of the system.

It was stated earlier that the Chern marker in 2D has been used to investigate the topology of

2D non-Hermitian Hamiltonians. It would therefore be interesting to see if the Chern marker in 4D

could be used to investigate the topology of 4D non-Hermitian Hamiltonians, however, this will not

be investigated in this thesis.
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5
Bott index

At this point we have defined the Chern number of a system using the TKNN form. This, however,

is not the only way in which the topological index of a system can be calculated. Another way is by

calculating the Bott index. In this chapter we will introduce the Bott index and show analytically that

it is equivalent to the Chern number of the system, both for the discrete case and the continuous case.

We will also show that one can define a local version of the Bott index and analyse how this object

is related to the Chern marker. Lastly, we will discuss the pros and cons of both the local Bott index

and the Chern marker.

5.1 Bott Index and Chern Number

When investigating the bulk properties of systems with translational invariance one generally takes

periodic boundary conditions. As a result the position operator becomes multivalued. To see this

consider a 2D system with length Lx and Ly in the x and y directions respectively and periodic

boundary conditions in each direction. This system is invariant under the transformations x̂→ x̂+Lx

and ŷ → ŷ + Ly. This means that any point with the position x can also be labelled by x + nLxî +

mLy ĵ, where n,m ∈ Z. Here î and ĵ are unit vectors in the x and y directions respectively. This is

clearly not desirable. When we act on the wave function, ψ(x), with a position operator we therefore
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only wish to know the spatial position modulo L, where L = {Lx, Ly}. Our current definition of the

position operator does not do this, but we can construct something that does. We define the position

operators for a 2D periodic system as

x̂p = −i L
2π

ln
(
eix̂ 2π/L

)
(5.1)

where x̂ is given by eq. (4.4) and ln is the natural logarithm. From this the components of x̂p are

given by

x̂p = −iLx
2π

ln
(
eix̂ 2π/Lx

)
, ŷp = −iLy

2π
ln
(
eiŷ 2π/Ly

)
. (5.2)

We are now in a position to define the Bott index and start to analyse its relationship with the

Chern number. Let us first discuss why the Bott index is useful and what it exactly measures. The

Bott index was initially derived in a mathematical sense to determine if a pair of matrices that do not

commute exactly are either close to commuting or far from commuting. It was later adapted to the

aspect of topological insulators by Loring and Hastings where they used the Bott index to measure if

the state was in a topological regime or a trivial one [65, 66, 67]. For a mathematical perspective of

the Bott index and references to the original work see [68]. The Bott index can be used to distinguish

trivial states from topological states because, as we showed with the Chern marker, the projected

position operators, P̂ x̂iP̂ , of a topological system do not commute, but those of a trivial system do

commute. Another benefit of using the Bott index is it can be used on systems that contain disorder

which breaks translational invariance within the system [65], just like the Chern marker, where as the

Chern number cannot. With this we will now introduce the Bott index and show it is equal to the

Chern number in the periodic case.

The Bott index is defined for a 2D system in the following way

B = − 1

2π
ImTrln(UV U†V †), (5.3)

where U and V are defined as

U = P̂ eix̂ 2π/Lx P̂ + Q̂, (5.4)

V = P̂ eiŷ 2π/Ly P̂ + Q̂. (5.5)

Because the system we are considering is translationally invariant we can decompose the projectors
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using eq. (4.2). Doing this we find that the Bott index takes the form

B = − 1

2π
Im Tr ln

( ∑
k1k2k3k4k5

|k1〉 〈k1| eix̂2π/Lx |k2〉 〈k2| eiŷ2π/Ly |k3〉 〈k3| e−ix̂2π/Lx |k4〉

〈k4| e−iŷ2π/Ly |k5〉 〈k5| ⊗ P̂k1
P̂k2
P̂k3
P̂k4
P̂k5

+ Q̂
)
.

(5.6)

Here we have defined the Bott index for a discrete system and will take the continuum limit later; we

have also chosen the position operators to label the unit cells rather than the lattice sites. In the above

equation we have not decoupled the internal and external degrees of freedom of Q̂ to keep the equation

condensed. We can analyse how the exponential acts on |k〉 by using eq. (2.5) which we restate here

for ease;

|k〉 =
1√
N

∑
x

eix·k |x〉 . (5.7)

Above we have defined |k〉 for the discrete case with N being the number of unit cells in the system.

Doing this we get that

eix̂ 2π/Lx |k〉 =
1√
N

∑
x

e{i x (2π/Lx+kx)+i y ky} |x〉

=
∣∣∣k + 2π/Lxî

〉
.

(5.8)

Using this in eq. (5.6) the Bott index becomes

B = − 1

2π
Im Tr ln

(∑
k

[
|k〉 〈k| ⊗ P̂kP̂k− 2π

Lx
îP̂k− 2π

Lx
î− 2π

Ly
ĵP̂k− 2π

Ly
ĵP̂k

]
+ Q̂

)
. (5.9)

From this equation we can explore the relation between the Bott index and the Chern number for both

the continuous regime and the discrete regime.

We will first analyse the continuous regime where we have Lx →∞ and Ly →∞. Due to this we

can Taylor expand P̂k− 2π
Lx
î in terms of P̂k. The expansions are given below

P̂k− 2π
Lx
î = P̂k − ∂kxP̂k δx +

1

2
∂kx∂kxP̂k δ2

x + ... (5.10)

P̂k− 2π
Lx
î− 2π

Ly
ĵ = P̂k − ∂kxP̂k δx − ∂ky P̂k δy +

1

2
∂kx∂kxP̂k δ2

x +
1

2
∂ky∂ky P̂k δ2

y + ∂kx∂ky P̂k δxδy + ...

(5.11)

where δx = 2π/Lx and δy = 2π/Ly. From here on we will also assume that Lx = Ly, which is possible

because we are going to take the limit Lx, Ly → ∞, and consider terms up to order O(δ2) where

δ = min{δx, δy}. Using these expansions and the projector identities P (∂iP )P = 0 and P (∂i∂jP )P =

−P (∂iP )(∂jP )P − P (∂jP )(∂iP )P , and carrying out a lot of simple algebra, it can be shown that the
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Bott index is given by

B = − 1

2π
Im Tr ln

(∫
BZ

dk |k〉 〈k| ⊗
(
P̂k + Q̂k+P̂k

[
∂kxP̂k, ∂ky P̂k

]
P̂k

+
1

2
P̂k(∂kx∂kxP̂k)P̂k +

1

2
P̂k(∂ky∂ky P̂k)P̂k

))
.

(5.12)

Above we have taken the limit Lx, Ly → ∞ and therefore the summation and the delta objects

become an integral. The next key thing to realise is that the projector is Hermitian and self-adjoint

and therefore the second derivative is also Hermitian and self-adjoint meaning that the imaginary parts

of the last two terms in equation (5.12) are zero. We have thus shown that the Bott index is given by

B = − 1

2π
Im Tr ln

(
1+

∫
BZ

dk |k〉 〈k| ⊗ P̂
[
∂kxP̂, ∂ky P̂

]
P̂
)
. (5.13)

where above we have dropped the subscript k for ease of notation. The next step is to look at the

expansion of the logarithm. The expansion gives

ln (1 +A) = A− 1

2
A2 + ... (5.14)

Thus, when working to order O(δ2), the Bott index is given by

B = − 1

2π
Im Tr

(∫
BZ

dk |k〉 〈k| ⊗ P̂
[
∂kxP̂, ∂ky P̂

]
P̂
)
. (5.15)

Using the definition of P̂ one can show that

∫
BZ

dk |k〉 〈k| ⊗ P̂
[
∂kxP̂, ∂ky P̂

]
P̂ =

occ∑
n

∫
BZ

dk |ψkn〉 〈ψkn|
( 〈
∂kxukn

∣∣∂kyukn〉− 〈∂kyukn∣∣∂kxukn〉 )
(5.16)

Using this and the cyclic properties of the trace we get that

B = − 1

2π
Im

occ∑
n

∫
BZ

dk
( 〈
∂kxukn

∣∣∂kyukn〉− 〈∂kyukn∣∣∂kxukn〉 ) (5.17)

Using the definition of the Berry curvature given in eq. (2.29) we see that the Bott index is in fact the

Chern number,

B =
1

2π

occ∑
n

∫
BZ

dkBn
xy = C1 (5.18)

A more in depth comparison has also been carried out in [69]. It should be noted that above we defined

the Bott index with a minus sign out front. This ensures that the Bott index is equivalent to the Chern
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number as we previously defined it. If the Chern number is defined with a minus sign out front, which

some times it is, then the minus sign in the definition of the Bott index should be removed to ensure

that the Bott index and the Chern number are equivalent.

We will now show that a similar relationship exists for the discrete case. Starting from equation

(5.9) we need to analyse the chain of P̂ projectors in terms of the periodic states, |ukn〉. Doing this

one gets

P̂ P̂k+δx î
P̂k+δx î+δy ĵ

P̂k+δy ĵ
P̂

= (5.19)∑
n

|uk,n〉
〈
uk,n

∣∣∣uk+δx î,n

〉〈
uk+δx î,n

∣∣∣uk+δx î+δy ĵ,n

〉〈
uk+δx î+δy ĵ,n

∣∣∣uk+δy ĵ,n

〉〈
uk+δy ĵ,n

∣∣∣uk,n〉 〈uk,n| .
The right hand side of the above equation contains a loop around a plaquette in k-space and therefore

measures the phase around this loop. This is very similar to the discrete version of the Berry flux

given in eq. (2.14). As such, we define Fkx,ky as

Fkx,ky = −arg
〈
uk

∣∣∣uk+δx î

〉〈
uk+δx î

∣∣∣uk+δx î+δy ĵ

〉〈
uk+δx î+δy ĵ

∣∣∣uk+δy ĵ

〉〈
uk+δy ĵ

∣∣∣uk〉 . (5.20)

Using this we then get that

P̂P̂k−δx îP̂k−δx î−δy ĵP̂k−δy ĵP̂ = P̂e−iFkx,ky . (5.21)

The summation of all the plaquettes in the system should give us the loop around the whole system

which is the Berry phase as discussed earlier. Substituting equation (5.21) into equation (5.9) we now

have that the Bott index is given by

B = − 1

2π
Im Tr ln

(
P̂
∑
k

e−iFkx,ky + Q̂
)
. (5.22)

From here we need to use the identity ln(aP̂ + Q̂) = ln(a)P̂ . The proof of this identity is given below.

eln(a)P̂ =

∞∑
n=0

ln(a)n

n!
P̂n = 1+ P̂

∞∑
n=1

ln(a)n

n!
= 1+ P̂ (eln(a) − 1) = 1− P̂ + P̂ a = Q̂+ P̂ a

⇒ ln(a)P̂ = ln(Q̂+ P̂ a).

(5.23)

Using this identity the Bott index now becomes

B = − 1

2π
ImTr

(
ln
(∑

k

e−iFkx,ky
)
P̂

)
. (5.24)
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This then reduces to the form of the discrete Chern number defined in eq. (2.17),

B =
1

2π

∑
kx,ky

Fkx,ky = C1 (5.25)

With this we now confirm that Fkx,ky is the Berry flux through a plaquette of the discrete system.

It is important to stress that no approximation has been made here and the Bott index reduces exactly

to the discrete Chern number.

We have thus shown that the Bott index and the Chern number are equivalent in both the con-

tinuous and discrete regimes for a system. Just like the Chern marker, the Bott index is well defined

for systems without translational invariance where the Chern number is not well defined. In the next

section we will introduce a local version of the Bott Index and show that it is equivalent to the Chern

marker.

5.2 Local Bott index and Chern marker

In the previous section we introduced the Bott index, showing that it is equal to the Chern number of

the system. From the definition of the Bott index, given in eq. (5.3), we can define a local Bott index

as

B(x) = −LxLy
2π

Im trx

(
ln(UV U†V †)

)
B =

1

LxLy

∑
x

B(x) (5.26)

where Lx and Ly are the lengths of the system in the x and y directions respectively. The local Bott

index then analyses the topological index of a single unit cell rather than the whole system. With this

we will now investigate the relation between the Chern marker and the local Bott index. It is easy to

show that UV U†V † is invariant under the transformations;

U = P̂ eix̂δx P̂ + Q̂ → U ′ = P̂ ei(x̂−Cx)δx P̂ + Q̂, (5.27)

V = P̂ eiŷδy P̂ + Q̂ → V ′ = P̂ ei(ŷ−Cy)δy P̂ + Q̂ (5.28)

where δx and δy were previously defined and Cx and Cy are real constants. If we then chose Cx and

Cy such that (x̂−Cx)δx << 1 and (ŷ−Cy)δy << 1 we change the exponential to be an exponential of

a small quantity allowing us to expand to leading order. Carrying out this expansion it can be shown

that

U ′V ′U†
′
V †

′
= 1 +

[
P̂ (x̂−Cx)P̂ , P̂ (ŷ−Cy)P̂

]
δxy − P̂ (x̂−Cx)P̂ (x̂−Cx)P̂ δ2

x− P̂ (ŷ−Cy)P̂ (ŷ−Cy)P̂ δ2
y

(5.29)
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to order O(δ2). Above, δxy = δxδy and the square brackets represent the commutator. Next, we

expand the logarithm of U ′V ′U†
′
V †

′
to order O(δ2) and get an expression for the local Bott index of

the form

B(x) = −LxLy
2π

Im trx

([
P̂ (x̂− Cx)P̂ , P̂ (ŷ − Cy)P̂

]
δxy

− P̂ (x̂− Cx)P̂ (x̂− Cx)P̂ δ2
x − P̂ (ŷ − Cy)P̂ (ŷ − Cy)P̂ δ2

y

)
.

(5.30)

The last two terms in the brackets give zero when you take their imaginary part. As well as this, if

one expands out the brackets of the first term, any term with a Cx or Cy will disappear due to the

commutator and the fact that Cx and Cy are constants and therefore commute with the projectors.

From this we then find that to order O(δ2) the local Bott index is given by

B(x) = −LxLy
2π

Im trx

([
P̂ x̂P̂ , P̂ ŷP̂

])
δxy. (5.31)

Finally, using the definition of δxy we get that

B(x) = 2πi trx

([
P̂ x̂P̂ , P̂ ŷP̂

])
=M2(x) (5.32)

We have therefore shown that the local Bott index is equal to the Chern marker up to order O(δ2).

As such, if Lx and Ly are large then the Chern marker is a good approximation of the Bott index.

Both the Bott index and the Chern marker can accurately predict the system’s topological index

with open boundary conditions when they are measured far from the edges of the system. This ensures

that we are determining the topological index of the bulk and edge state modes do not contribute to

the calculation. If periodic boundary conditions are taken then the edge state modes are not present

and the position operator is given by x̂p, defined in eq. (5.1). In this case the components of the

position operator are discontinuous at certain point in the system. The discontinuous nature of the x

component of x̂p can be seen in fig. 5.1. In this case the Bott index correctly calculates the topological

index wherever the local trace is taken. However, this is not the case for the Chern marker which has

Figure 5.1: Plot showing the discontinuous nature of the x component of the position operator, x̂p.
Here, Lx is the system size in the x direction. The red ellipse highlights the discontinuous region.
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to be calculated away from the discontinuities in x̂p in order to correctly predict the topological index

of the system. This is due to the fact that around the discontinuities the first order expansion given

in eq. (5.29) is not a good approximation and higher order terms need to be considered.

In this section we have shown how to define the local Bott index and have also shown that it

is equivalent to the Chern marker in the large system limit. We also pointed out that when open

boundary conditions are taken one has to evaluate both the Bott index and the Chern marker far

from the edges of the system to ensure they capture the correct value for the topological index. If

periodic boundary conditions are taken then the local Bott index correctly predicts the topological

index everywhere, but the Chern marker has to be evaluated away from the discontinuities in the

position operator.
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6
Topological pumping in one

dimension

As stated earlier, 1D topological pumps are characterised by the fact that they transmit an integer

amount of electrons across the system when evolved over a full time cycle. The number of electrons

transported across the system is determined by the first Chern number. As such, the current in the

bulk of the system is quantized. As well as this, because the Fermi-energy of the system lies within a

band gap of the system the current is robust against perturbations. This is a very attractive electrical

property.

Topological pumping in one dimensional time-dependent systems has been explored experimentally

in photonic systems [14, 15, 16] and cold atomic gas systems [10, 11, 12, 13], as well as in magneto-

mechanical meta-materials and elastic lattice systems [17, 18]. The pumping within these systems can

be understood by calculating numerically the change in polarisation, or equivalently the Zak phase,

over a time cycle. Alternatively, one can describe the pumping through the shift in the Wannier centres

deep within the bulk [20, 70, 23]. The topological index of the system can be discerned from these

methods by considering their change over a full time period. One can also use the TKNN form of the

Chern number to find the topological index by treating the time dimension as a spatial dimension.
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However, most of these methods generally require translational invariance and therefore do not have

the same desirable properties that a local topological marker has.

In this chapter our aim is to develop a 1D real-space local topological marker, labelled the 1D

marker, that describes the topological pumping of 1D time-dependent systems. To do this we consider

the non-interacting Aubry-André model, given in eq. (3.1), and first demonstrate the pumping through

the shift in the Wannier centres deep within the bulk. We then develop the 1D marker and show that

its change over a full time period is equal to the first Chern number of the system. After this, we

show numerically that the evolution of the 1D marker for the Aubry-André model is the same as

the Wannier-centre evolution. We also investigate how the 1D marker is affected by the size of the

system for the Aubry-André model, highlighting the limit at which the change in the 1D marker starts

to fail to represent the topological index of the system. Next, we add different types of disorder

to the non-interacting Aubry-André model and use the 1D marker to investigate how this affects the

topological index of the system both locally and as a whole. Lastly, we use the 1D marker to investigate

the topological phase transitions of the generalised Aubry-André model when the parameters of the

system are varied. We find that the system displays numerous phase transitions, some of which are

phase transitions between a topological regime and a non-topological regime. All the numerical analysis

within this chapter is done on a finite system with open boundary conditions.

6.1 Wannier centre evolution

In this section we introduce Wannier functions and their relation to the polarisation of the system.

We then use the Aubry-André model to show numerically that the Wannier centres shift by an integer

number of unit cells equal to the Chern number of the system. This behaviour is well known from the

modern theory of polarisation [23].

The Aubry-André model has both spatial and temporal translational invariance in the bulk when

the value of b is set to a rational fraction. As a result, in this case, the eigenstates of the Aubry-André

Hamiltonian are described by Bloch states that are delocalised in real space. One can generate a

localised state by superimposing numerous Bloch states with different k values; the more Bloch states

used the more localised the new state will be. This is the premise of Wannier functions. A Wannier

function is defined as [71, 70]

|Wxn〉 =
1

VBZ

∫
dk e−ikx |ψkn〉 . (6.1)

This has a gauge freedom which is used to ensure that the Wannier functions are as localised as

possible. The exponential acts to translate the localised state from the origin of the system to the unit

cell labelled by the vector x. It can be shown that the Wannier functions form an orthonormal basis
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and if we take its Fourier transform we get that

|ψkn〉 =
∑
x

eikx |Wxn〉 . (6.2)

If we then substitute this into the definition of the projector given in eq. (4.2) we see that the projector

can be written in terms of the Wannier functions in the following way

P̂ =

occ∑
n

∫
dk |ψkn〉 〈ψkn| =

occ∑
n

∑
x

|Wxn〉 〈Wxn| . (6.3)

Because in our analysis we consider a local trace within the bulk of the system, the edge state modes

can be ignored and eq. (6.3) can be used. Ref. [70] gives a more in-depth introduction to Wannier

functions and their applications.

It has been shown that Wannier functions can be used to calculate the change in the polarisation

of a system via the Wannier centres [20]. To demonstrate this we consider the Wannier centre in the

unit cell located at the origin of the system. Using eq. (6.1) and similar techniques used in Section 4.2,

it can be seen that

W0n =

occ∑
n

〈W0n| x̂ |W0n〉 =
i

VBZ

occ∑
n

∫
dk 〈ukn| ∂kx |ukn〉 . (6.4)

The above equation shows the clear link between the polarisation of the system and the Wannier centre

near the origin of the system. It can also be shown that the Wannier centre located in an arbitrary

unit cell represented by x is given by

Wxn =

occ∑
n

〈Wxn| x̂ |Wxn〉 = x+
i

VBZ

occ∑
n

∫
dk 〈ukn| ∂kx |ukn〉 . (6.5)

Here x labels the unit cell of the system. From this we see that, because the system is invariant under

a time translation T , the change in the Wannier centres over a full time period is given by the Chern

number of the time-dependent system;

Wxn(T )−Wxn(0) =
i

VBZ

occ∑
n

∫ T

0

dt

∫
dk

[〈
d

dt
ukn

∣∣∣∣∂kxukn〉−〈∂kxukn∣∣∣∣ ddtukn
〉]

= Cn1 , (6.6)

where Cn1 is the first Chern number of the nth band. It is important to point out that when calculating

the time evolution of the Wannier centre numerically there will be a discontinuity with a magnitude

equal to the size of the unit cell present. This discontinuity corresponds to the Wannier centre exiting

the far end of the unit cell and reentering at the start of the unit cell and is related to the fact that
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the polarisation of the system can only be determined modulo 2π. Ignoring this discontinuity one can

determine the Chern number of the system.

It was shown by Marzari and Vanderbilt that for 1D systems one can determine the optimally

localised Wannier functions by finding the eigenfunctions of the projected position operator P̂ x̂P̂ [71].

As such, if one wants to analyse the Wannier centres this can be done by finding the eigenvalues of

P̂ x̂P̂ . This method applies to both the single band and multiband case. Using this method we can

numerically calculate the evolution of the Wannier centres, and thus the polarisation, of the system

over a time cycle.
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Figure 6.1: The change in a Wannier center, W, deep within the bulk of the system over a full time
period for the lowest band of the time-dependent Aubry-André model. The parameters have been set
to ∆/J = −2; b = 1/3 and the finite system is composed of 40 unit cells. Here we have ignored the
discontinuity that arises when the Wannier centre leaves and reenters the unit cell.

Figure 6.1 shows the evolution of a Wannier centre deep within the bulk of the system for the

Aubry-André model with only the lowest band populated. We have set b = 1/3 and ∆/J = −2

and used the eigenvalues of P̂ x̂P̂ to determine the Wannier-centre values. We have also ignored the

discontinuity that arises when the Wannier centre leaves and reenters the unit cell. It can be seen that

the Wannier centre shifts by one lattice constant when evolved over a time period and therefore the

first Chern number is 1.

We have thus confirmed numerically that the Chern number of the lowest band of the Aubry-André

model is 1 as well as determining how the polarisation of the lowest band evolves over a time period.

We will use this evolution later to compare with how the 1D marker evolves over time.
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6.2 Adiabatic evolution and operator Berry connection

In this section we introduce the adiabatic evolution operator which is a key concept needed for the

derivation of the 1D marker. This allows one to adiabatically evolve the projection operator, P̂ , in

time. We then use this operator to define the operator Berry connection and show how this is related

to the conventional Berry connection. We will also use this evolution operator later in this thesis to

derive the 3D marker.

Topological pumping systems are normally analysed in the adiabatic regime and as such we restrict

ourselves to analysing the dynamics of systems within this regime. The adiabatic regime ensures that

if a system begins in the instantaneous ground state it will remain in this state under the following

conditions; there is a sufficient gap between the instantaneous ground state and all other states, and

the system is evolved slowly enough such that excitations across this gap cannot take place. To ensure

we remain within the adiabatic regime we use the adiabatic evolution operator, which is an effective

time-evolution operator, to evolve the system in time. Using this operator, as opposed to the true

time-evolution operator, is a matter of convenience and all results will hold for the true time-evolution

of the system as long as one remains within the adiabatic regime.

To derive the form of the adiabatic evolution operator we start by stating the relation we desire;

P̂ (t) = Û ˆ̄PÛ†. (6.7)

The operator Û is the adiabatic evolution operator which adiabatically connects the initial projector

ˆ̄P to the projector P̂ (t) which projects onto the occupied instantaneous eigenstates at time t. The bar

on an operator denotes that it is evaluated at time t = 0. The adiabatic evolution operator Û obeys

i
d

dt
Û = ĥÛ (6.8)

with the initial condition Û(t = 0) = 1. Above, ĥ is an effective Hamiltonian which describes the

evolution of the system in the adiabatic regime. To find the form of ĥ we take the time derivative of

eq. (6.7) and substitute in eq. (6.8) and its Hermitian conjugate. Doing this we get

˙̂
P = −i[ĥ, P̂ ], (6.9)
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where
˙̂
P = d

dt P̂ . We then use this to get the relations

˙̂
PP̂ = −i(ĥP̂ − P̂ ĥP̂ ) (6.10)

P̂
˙̂
P = −i(P̂ ĥP̂ − P̂ ĥ). (6.11)

Using these it can be shown that

i([
˙̂
P, P̂ ])P̂ = ĥP̂ − P̂ ĥP̂ . (6.12)

From eq. (6.9) we know that ĥ has to be given by some function of
˙̂
PP̂ , P̂

˙̂
P . It can also be shown

using the projector relation
˙̂
P = d

dt (P̂
2) = P̂

˙̂
P +

˙̂
PP̂ it can be shown that P̂

˙̂
PP̂ = 0. As such, the

last term in eq. (6.12) has to give zero and therefore the form of ĥ is given by [72, 73]

ĥ = i[
˙̂
P, P̂ ]. (6.13)

One can also show that the above equation satisfies eq. (6.9) by using the explicit form of the projector.

We have thus shown that one can construct the adiabatic evolution operator by solving eq. (6.8) using

ĥ defined above. Further more, this adiabatic evolution retains the correct Berry phase information of

the original time-dependent Hamiltonian.

We would like to point out that so far we have not assumed anything but adiabatic evolution and

therefore the results up to this point apply to any Hamiltonian as long as it stays within the adiabatic

regime. If, however, one has a translationally invariant system then ĥ can be simplified to

ĥ =

∫
dk |k〉 〈k| ⊗ ĥk (6.14)

where the translationally invariant part of the effective Hamiltonian is given by ĥk = i[
˙̂P, P̂]. As a

result, the adiabatic evolution operator simplifies to

Û =

∫
dk |k〉 〈k| ⊗ Ûk. (6.15)

Throughout this chapter we will only consider time-dependent systems that preserve discrete transla-

tional invariance and therefore eq. (6.14) and eq. (6.15) will apply. With this we can write Ûk explicitly

as

Û =
∑
n

|ukn(t)〉 〈ukn(0)| (6.16)

where the cell periodic states |ukn(t)〉 are the instantaneous eigenstates of the Bloch Hamiltonian and

can be used to generate the projectors P̂k(t) =
∑occ
n |ukn(t)〉 〈ukn(t)| and Q̂k(t) =

∑unocc
n |ukn(t)〉 〈ukn(t)|.
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There is a subtlety with the above equation which is that the cell periodic states above do not in gen-

eral correspond to the eigenvectors of the Bloch Hamiltonian of the original system but can be made

up of a collection of eigenvectors of the original Hamiltonian.

To show this subtlety we label the eigenstates of the original Bloch Hamiltonian as |ũnk〉 and

therefore P̂k =
∑occ
n |ũnk〉 〈ũnk| and similar for Q̂k. We then define a collection of states within the

occupied space as |ukn〉 =
∑occ
n′ Vn′n |ũkn〉 where Vn′n are elements of a unitary matrix. One can

show straightforwardly that P̂k is unchanged when |ukn〉 is replaced with |ũkn〉. We can then use this

symmetry to bring hk into a more simple form. We chose V such that 〈ukn|∂tukn′〉 = 0 for any n and

n′ corresponding to occupied states. Such a unitary matrix can be found by by solving the following

matrix differential equation

i∂tVnn′ = −
occ∑
n′′

Cnn′′Vn′′n′ (6.17)

with Vnn′(t = 0) = δnn′ and Cnn′′ = i 〈ũkn|∂tũkn′′〉. In practice one does not have to solve the above

equation but only know that such a unitary matrix exists. This procedure can also be repeated to find

|ukn〉 for the unoccupied states of the system. With this we can now write hk in the following way

hk = i[
˙̂Pk, P̂k] = i

˙̂PkP̂k + i
˙̂QkQ̂k = i

∑
n

|∂tukn〉 〈ukn| (6.18)

where in the last equality we have used the fact that 〈ukn|∂tukn′〉 = 0 when n and n′ label occupied

bands or when they label unoccupied bands which is enforced by our choice of the unitary matrix

V . We have thus shown that while the states defining the adiabatic evolution operator in eq. (6.16)

are not the eigenvectors of Bloch Hamiltonian one can still use these to determine observables of the

system. The above considerations are only important when one is considering multiple occupied bands

and are not necessary when a single band is occupied.

With the adiabatic evolution operator defined, we now use it to define the operator Berry connection

in the following way

Âi =

∫
dk |k〉 〈k| ⊗ Âi with Âi = i ˆ̄PÛ†(∂iÛ) ˆ̄P. (6.19)

Again, the bar on ˆ̄P denotes that it is evaluated at t = 0. This expression has similarities with the

Berry connection used in Ref. [74]. It is clear from the name of Âi that we are implying that it is some

how connected to the conventional Berry connection given by Ãnmi = i 〈ukn|∂i ukm〉, where n and m

label occupied bands. To show that it is, we use eq. (6.16) along with the definition of P̂ in eq. (6.19)

and get

Âi =

occ∑
nm

|ukn(0)〉 〈ukm(0)|
(
Ãnmi (t)− Ãnmi (0)

)
. (6.20)
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From this we see that the operator Berry connection gives the change in the conventional Berry

connection between an initial time t = 0 and some later time t. With this we are now ready to define

the 1D marker.

6.3 The 1D marker

We now derive the 1D marker, which is a real-space local topological marker that determines the first

Chern number of a system. Within this section all local traces will be taken within the bulk of the

system such that edge state modes can be ignored.

In the previous section we determined the evolution of the Wannier centre by finding the eigenvalues

of the matrix P̂ x̂P̂ . This may motivate one to consider the local trace of this matrix as a potential

candidate for the 1D marker. We consider this below and get

trx(P̂ x̂P̂ ) = trx(x̂P̂ )− trx(Q̂x̂P̂ ). (6.21)

Analysing the second term from the above equation using the form of P̂ x̂Q̂ given in eq. (4.12) we get

that

trx(Q̂x̂P̂ ) =

occ∑
n

unocc∑
m

∑
α

∫
dk
(
|〈k|x〉|2 ⊗ i 〈α|ukn〉 〈ukn|∂i ukm〉 〈ukm|α〉

)
=

occ∑
n

unocc∑
m

i

VBZ

∫
dkTrα

(
|ukn〉 〈ukn|∂i ukm〉 〈ukm|

) (6.22)

where Trα(Ô) =
∑
α 〈α| Ô |α〉 is a trace over all the internal degrees of freedom of the unit cell.

Because this trace only includes the internal states |ukn〉 of the unit cell and its derivatives the cyclic

permutation properties of the full trace also apply here. Using the fact that 〈ukm|ukn〉 = 0 for n 6= m

we see that the above equation gives zero and therefore we get that

trx(P̂ x̂P̂ ) = xNc (6.23)

where Nc denotes the number of particles within the unit cell; for the case where only one band is

populated Nc = 1. This shows that the local trace of the matrix P̂ x̂P̂ is constant for all snapshots in

time and therefore the pumping within the system is not reflected in this local quantity.

However, we could try to evolve the matrix P̂ x̂P̂ with adiabatic time evolution operators and then

take the local trace. This way the history of the system is retained. We will now therefore consider

M1(x, t) =
1

Vc
trx
(
Û†P̂ (t)x̂P̂ (t)Û

)
=

1

Vc
trx
( ˆ̄PÛ†x̂Û ˆ̄P

)
. (6.24)
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It turns out that the above quantity does indeed possess the desired time dependence and we will

therefore identify it as the 1D marker. The prefactor 1
Vc

, where Vc is the volume of the unit cell (or

the lattice constant in 1D), has been included to make the 1D marker dimensionless. From this point,

for ease of notation, we will suppress the time notation and denote P̂ (t) as just P̂ .

We now show that the change in the 1D marker over a full time period gives the first Chern number

of the system. To do this we start by analysing Û†x̂Û using eq. (6.15) to get

Û†x̂Û =

∫
dkdk′ |k〉 〈k| x̂ |k′〉 〈k′| ⊗ Û†kÛk′ . (6.25)

We showed earlier that 〈k| x̂ |k′〉 = 1
VBZ

∑
x−i∂k′(ei(k

′−k)x). Using this in the above equation and

integrating by parts we get

Û†x̂Û =

∫
dkdk′

VBZ

∑
x

ei(k
′−k)x |k〉 i∂k′ 〈k′|+

∫
dkdk′

VBZ

∑
x

ei(k
′−k)x |k〉 〈k′| ⊗ i Û†k∂k′ Ûk′ , (6.26)

where we have used the fact that the total derivative vanishes due to the periodicity of the system in the

bulk. Using the definition of |k〉 given in eq. (2.5) as well as the identity 1
VBZ

∑
x e

i(k′−k)x = δ(k′ − k)

it can be shown that

Û†x̂Û = x̂+

∫
dk |k〉 〈k| ⊗ i Û†k∂kÛk. (6.27)

Using the above equality and eq. (6.19) it is easy to show that

ˆ̄PÛ†x̂Û ˆ̄P = ˆ̄Px̂ ˆ̄P + Â. (6.28)

This establishes a direct relationship between the evolved position operator and the change in the Berry

connection over time. A similar relationship exists in the semi-classical dynamics of wave-packets in

lattice systems [75]. Noting that the 1D marker is defined as the local trace of the right hand side of

eq. (6.28) it can then be seen that

M1(x, t) =
Nc
Vc
x+

1

2π

∫
dk Trα(Â). (6.29)

It was shown in eq. (6.20) that Â is related to the change of the Berry connection over time. Using

this relation it can then be seen that the 1D marker is given by

M1(x, t) =
Nc
Vc
x+

i

2π

occ∑
n

∫
dk
(
〈ukn(t)| ∂kukn(t)〉 − 〈ukn(0)| ∂kukn(0)〉

)
, (6.30)

where x labels the unit cell at time t = 0. The second term in the above equation gives the change
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in the polarisation of the system between some initial time t = 0 and some later time t. Using the

relation between the polarisation and the Wannier centre given in eq. (6.5) one can relate the change

in the 1D marker to the change in the Wannier centre between time t = 0 and t via the following

equation

M1(x, t)−M1(x, 0) =
1

Vc

(
Wx(t)−Wx(0)

)
. (6.31)

From this it is evident that the change in the 1D marker over a full time period, T , gives the Chern

number of the system.

We have thus shown that the 1D marker, M1(x, t), possesses the correct time dependence to

describe the topological pumping within 1D time-dependent systems when it is evaluated in the bulk of

the system. Due to its real-space localisation, the 1D marker can be used to investigate the topological

structure of 1D time-dependent systems with disorder or other spatial inhomogeneities applied.

Upon reflection, it is not too surprising that the local trace of P̂ x̂P̂ fails to describe the polarisation

of the system. This is due to the fact that one can describe this quantity in terms of the charge density

alone and it is known that to determine the polarisation of the system one requires more information

than just the charge density of the system. The time evolution present in M1 provides the required

history-dependence needed to determine the polarisation of the system.

6.4 Numerical investigation of the 1D marker

In the previous section we defined the 1D marker and showed that its time evolution, evaluated in the

bulk of a system, can be related to the time evolution of the Wannier centres. It is then natural to

confirm this relation numerically, which we will do in this section using the Aubry-André model. As

well as this, we investigate the change in the 1D marker over a full time period near the edges of the

system where the equality between the change in the 1D marker and the first Chern number breaks

down.

We start this section with an overview of the numerical procedure used to calculate 1D marker.

To calculate M1(x, t), one starts by discretising the time interval between 0 and T using sufficiently

small time steps ∆t. Then, for each discrete time point, the projector P̂ (t) is calculated from the

instantaneous eigenvalues of Ĥ(t). Using P̂ at times t−∆t and t+ ∆t,
˙̂
P can then be calculated using

the finite difference method. With both P̂ (t) and
˙̂
P (t) the effective Hamiltonian ĥ can be constructed

using eq. (6.13). With the initial condition Û(0) = 1, the time evolution operator for subsequent times

can be computed using Û(t+ ∆t) = e−iĥ(t)∆tÛ(t), which contains an error of order (∆t)2 but remains

unitary up to numerical accuracy. Lastly, one uses eq. (6.24) to calculate M1(x, t). The convergence

in the time spacing of ∆t should be checked.
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Figure 6.2: The change in the 1D marker M1(x, t) over a full time period for the lowest band of the
Aubry-Andre model with same parameters as Figure 6.1. The local trace was taken over the 20th unit
cell, x = 20, for a system size of 40 unit cells.

With the numerical procedure outlined we now analyse the evolution ofM1(x, t) over a time period.

Equation (6.31) highlights the relation between the evolution of the 1D marker and the evolution of

the Wannier centres showing that, in the bulk, the evolution of the 1D marker should be identical to

the evolution of the Wannier centres when the volume of the unit cell is set to unity, Vc = 1.

Figure 6.2 shows the evolution ofM1 over time for a finite system with open boundary conditions.

We have set the volume of the unit cell to unity and used a system size of 40 unit cells. We have

taken the local trace over the 20th unit cell of the system to ensure M1 is evaluated within the bulk

of the system. From this figure it can be seen that that the evolution of M1 and the evolution of the

Wannier centre, shown in Figure 6.1, is very similar and comparing the two directly shows that they

match quantitatively. This numerically confirms eq. (6.31). It should also be noted that one does not

have to worry about discontinuities when evaluating the 1D local topological marker due to its local

nature.

The agreement between the change inM1(x, t) over a full time period and the first Chern number

deteriorates when the local trace of M1 is taken over a unit cell close to the boundary of the system.

This is due to the fact that the approximation of treating the system as translationally invariant breaks

down towards the edges of the system. In fact it can easily be shown that the sum of the local 1D
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Figure 6.3: The change in the 1D marker M1(x, t) over a full time period for varying systems sizes
for the lowest band of the Aubry-Andre model with same parameters as Figure 6.1. N is the total
number of unit cells within the system. The local trace was taken over the centre most unit cell of the
system.

marker over the whole system,
∑
xM1(x), is time independent. This is shown in the following way

∑
x

M1(x, t) =
1

Vc

∑
x

trx
(
Û†P̂ x̂P̂ Û

)
=

1

Vc
Tr
(
Û†P̂ x̂P̂ Û

)
=

1

Vc

∑
x

trx
(
P̂ x̂P̂ ). (6.32)

Using eq. (6.23) it can be seen that the last equality in eq. (6.32) is time independent, confirming that

the sum of the local 1D marker over the whole system is time independent.

Given the above argument, it is then natural to ask where the 1D marker has to be evaluated to

give an accurate representation of the first Chern number. To address this question we evaluate the 1D

marker within the centre most unit cell of the Aubry-André model for varying system sizes. Figure 6.3

shows how the change of M1(x, t) over a full time period depends on the size of the system. From

this figure it can be seen that the change in M1 increases rapidly until it approaches the value of 1,

which happens around a system size of N = 9. This then shows that, for the Aubry-André model with

∆/J = −2 and b = 1/3, M1 correctly predicts the topology of the system if one analyses a unit cell 5

lattice vectors or more from the edges of the system and thus translational invariance can be assumed

in this case. Because the bulk can be defined as the area in which edge state modes have negligible

effect, fig. 6.3 then suggests that the probability density of the edge state modes rapidly decay away

from the edges of the system and have a negligible effect at distances of 5 unit cells or greater from the
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Figure 6.4: A plot showing the amplitude squared of the edge state modes shown in red in Figure 3.1
for t/T = 0.82 (top) and t/T = 0.84 (bottom). The Aubry-André model was set with same parameters
as Figure 6.1 for a system size of 40 unit cells.

edge of the system. We analyse this in Figure 6.4 by plotting the probability density of the edge state

mode highlighted in red in Figure 3.1 at 2 different times; one at t/T = 0.82 when the edge state mode

is localised on the right of the system, and one at t/T = 0.84 when the edge state mode is localised

on the left of the system. From this it can be seen that the edge state modes of the Aubry-André

model do rapidly decay. Further analysis shows that this decay is exponential in nature and by 5 unit

cells in from the systems edges the probability density of the edge state modes are 5 × 10−5 or less.

This supports the statement that 5 unit cells from the edge of the system the edge state modes have

negligible effect and therefore translational invariance can be assumed.

We have thus confirmed that the 1D marker accurately reflects the polarisation of a 1D time-

dependent topological system when analysed in the bulk, with the bulk of the system being defined

such that the edge state modes of the system are negligible. We have also confirmed that the change in

M1 over a full time period accurately reflects the topological index of the system given by the Chern

number.
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6.5 Disorder and the 1D marker

It was mentioned earlier that, due to its local nature, the 1D marker could be used to investigate

disorder within a system. Within this section we will apply disorder to the Aubry-André model and

show that the topological index of the system is robust to disorder when the bands of the system

remain gapped.

To analyse how disorder affects the topological index of a system, we first introduce disorder into

the Aubry-André model by adding a random on-site potential in the following way

Ĥω = ĤAA +W
∑
n

ωn |n〉 〈n| , (6.33)

where ωn takes on random values between − 1
2 and 1

2 and W is a constant which sets the strength of

the random disorder. By setting W to different values this allows us to control the strength of the

disorder and analyse how the topology is affected by different disorder strengths.

Figure 6.5 shows the change of the 1D marker,M1, over a time period averaged over 100 different

random matrices for a range of disorder strengths, W . We set the Fermi-energy to εF /J = −1.3 such

that we project into the same gap considered in fig. 6.1. It also shows the corresponding average band

gap size as well as the percentage of random matrices which caused the band gap to close. This analysis

was carried out on a system size of 40 unit cells with ∆/J = −2 and b = 1/3. From this figure we see

that the topology of the system remains unaffected until the disorder strength is W/J = 2.3. At this

disorder strength the on-site energy term due to disorder can take on a magnitude of 1.15, which is

comparable to the size of the band gap when W/J = 0. As such, at this disorder strength the random

disorder is strong enough to close the band gap. From this figure we therefore see that the value of

the 1D marker is only affected by disorder strengths which are comparable to the band gap size at

W/J = 0. This then suggests that the topological pumping of the system is robust against random

disorder as long as the disorder strength is not comparable to the band gap at W/J = 0.

The 1D marker also allows us to investigate how a point defect in the system affects the topology

of the system locally. This investigation is only possible with the 1D marker due to its local nature.

To carry out this investigation we again use the Aubry-André model and add an on-site energy shift

of size W to a lattice point within the system. This is achieved by using Ĥω and setting ωn = δn,m

where m labels the site in which you wish to place the point defect.

Figure 6.6 shows the change inM1(x, t) over a time period for each unit cell within the system for

the Aubry-André model with a point defect located on the first site of the 20th unit cell. The point

defect has a disorder strength of W/J = 0.2. This figure shows that the change inM1(x, t) in the bulk

of the system is quantized to 1 throughout the bulk and the topology of the system is not affected by a
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Figure 6.5: A plot showing the change in M1 over a full time period for Ĥω with varying disorder
strength, W , which is measured in units of J . For each value of W M1 was averaged over 100 different
disorder matrices. The plot also shows the corresponding average size of the band gap along with the
percentage of disorder matrices which caused the band gap to close. The parameters of the Aubry-
André model were the same as in fig. 6.1 and the system size was set to 40 unit cells. The Fermi-Energy
was set to εF /J = −1.3 such that we consider the same gap considered in fig. 6.1.
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Figure 6.6: The energy spectrum of the Aubry-André model with a point defect of strength W = 0.2
located on the first site of the 20th unit cell. The parameters of the system and the Fermi-energy are
the same as in Figure 6.5 and the system contains 40 cells.
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Figure 6.7: (a) The energy spectrum of the Aubry-André model with a point defect of strength
W/J = 8 located on the first site of the 20th unit cell. The parameters of the system are the same
as in Figure 6.1 and the system contains 40 cells. (b) The change in M1 over a time period for each
unit cell within the system for the Aubry-André model with a point defect located on the first site of
the 20th unit cell. The disorder strength, parameters and system size are the same as in (a) and the
Fermi-energy was set to εF /J = −1.3.

disorder strength of W/J = 0.2. Next, we will analyse the change in M1(x, t) throughout the system

for a larger disorder strength and see how this affects the local topology.

Figure 6.7a shows the energy spectrum for the Aubry-André model with a point defect of strength

W/J = 8 and Figure 6.7b shows the corresponding change inM1(x, t) over a full time period for each

unit cell. The energy spectrum shows that there are now three modes which traverse the bottom band

gap, however, it can be shown that only two are localised on the edges of the system and the other

is delocalised across the whole system. To calculate the change in M1(x, t) over a time period for

this model the projector P̂ is projected into all the eigenstates below the Fermi-energy εF /J = −1.3.

Figure 6.7b shows that around the point defect the change inM1(x, t) is no longer quantized, however,

the change in M1 away from the defect remains quantized to the topology of the system. This then

suggests that the pumping behaviour still exists far from the defect. It is also interesting to point out

that the average of M1 over the bulk of the system is still equal to the topology of the system and

therefore may suggest that topological pumping through the system remains even when strong local

disorder is applied to the system. It is clear that further investigation is needed to fully understand how

strong disorder affects the topological structure of the system as well as how it affects the topological

properties that can arise.

In this section we have shown that if one adds disorder to to a 1D time-dependent topological system

through a random disorder matrix then the system retains its topological pumping until the disorder

strength is strong enough to close the band gap. We have also shown that if one adds a point like
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defect to the system only the topological index around the defect is affected and the topological index

far from the defect remains quantized. We also pointed out that the average value of the topological

index over the bulk remains quantized even in the presence of a strong local defect, however, further

investigation is needed to determine if topological pumping through the system remains in the presence

of a strong point like defect.

6.6 Topological phase transitions of the generalised Aubry-

André model

In previous sections we have chosen to investigate the topological structure of the Aubry-André model

using the 1D marker. There exists a more general version of the Aubry-André model aptly named

the generalised Aubry-André (GAA) model. This model was first introduced by Ganeshan et al. and

possesses cosine modulations, identical to the one present in the AA model, for both the hopping terms

and the on-site terms of the Hamiltonian. It has been shown that this model can display topological

properties when just the on-site cosine modulation is considered or just the hopping cosine modulation

is considered [50]. It is then interesting to ask whether richer topological behaviour can arise in the

GAA model compared to the Aubry-André model along with whether the topological properties of this

system can be tuned by the hopping strength and other parameters of the system. In this section we

will show that the topological index of the GAA model is dependent on the ratio between the amplitude

of the hopping modulation and the amplitude of the on-site modulation as well as dependent on the

ratio between the time periods of each modulation.

We start by introducing the generalised Aubry-André model Hamiltonian below;

HGAA =
∑
n

[
J + V2 cos

(
2πbn+

2πt

T2

)]
|n+ 1〉 〈n|+ h.c.

+
∑
n

V1 cos
(

2πbn+
2πt

T1

)
|n〉 〈n|

(6.34)

Here J is a fixed hopping parameter, V2 and T2 set the amplitude and the time period of the hopping

cosine modulation respectively, V1 and T1 set the amplitude and the time period of the on-site cosine

modulation respectively and b determines whether the cosine modulations are commensurate with the

lattice structure. We will set b = 1/3 throughout this section and therefore consider modulations that

are commensurate with the lattice structure. Because the system has two cosine modulations with

different time periods the full time period of the system is given by the lowest common multiple of T1

and T2.

With the GAA Hamiltonian defined we will now use the 1D marker to investigate the topological
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index of each gap for varying values of V2/V1, T2/T1 and J . We first analyse the system with J = 1

and vary the ratios V2/V1 and T2/T1. Figure 6.8 shows the topological phase diagrams for the GAA

model when these parameters are varied. The value of the change in M1 over a full time period is

indicated by the colour in the phase diagram with the colour bar assigning each colour a numerical

value.

Figure 6.8a is the topological phase diagram for the GAA model with the bottom band populated

only with J = 1. We can see from this diagram that for most of the values of V2/V1 and T2/T1 the

change in M1 over a full time period is −1. When the V2/V1 is small the change in M1 varies from

the value −1 but does not seem to settle on a specific value. When the value ofM1 does not equal an

integer this indicates that the gap in the system has closed. This closing of the gap is required for the

topological index of the system to change value. As such, the behaviour seen for small values of V2/V1

indicates that if a gap opens up it is small and can close again with a small change in the parameters

of the system. This then tells us that while the value of the topological index may deviate from −1

for small V2/V1 its new topological index is not stable.

Figure 6.8b shows the topological phase diagram of the GAA model with the bottom band and the

second to bottom band populated and J = 1. Again, we see that for the majority of values of V2/V1

and T2/T1 the change inM1 over a full time period is 1. We also see that the change inM1 for small

values of V2/V1 varies from the value 1, but again this new value is not stable. However, this is not

the case for T2/T1 = 2. In this case when V2/V1 takes on values between 0.1 and 0.4 the change inM1

is equal to 2 meaning that the topological index of the system for these parameters is 2. We also see

that when V2/V1 takes on values between 0.5 and 1 the change inM1 deviates from this integer value

and when V2/V1 takes on values greater than 1 the change in M1 equals 1 meaning the topological

index of the system is 1. This is an example of a topological phase transition where the system has

a topological index of 2 and by varying the parameters of the system the topological gap closes and

then reopens with a different topological index of 1.

The phase diagrams shown in fig. 6.8 above considered the GAA model with J = 1 meaning that

even if V2 = 0 the Hamiltonian still has a non-zero hopping term. We observed that for this case the

topological index of the system was largely the same for different values of the parameters. It is then

interesting to ask whether more interesting topological phase transitions would exist if J = 0 such

that the hopping term of the GAA Hamiltonian was solely determined by the cosine modulation. The

topological phase transitions of the GAA model with J = 0 are shown in fig. 6.9. It can immediately

be seen that setting J = 0 causes the system to exhibit a much more varied array of topological values.
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Figure 6.8: Topological phase diagrams of the Generalised Aubry-André model with J = 1. The
topological index of the system is indicated by colour. We vary the ratio of the amplitudes V2/V1

along with the ratio of the time periods T2/T1. (a) The topological phase diagram for GAA model
with the bottom band populated. (b) The topological phase diagram for GAA model with the bottom
two bands populated.
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Figure 6.9: Topological phase diagrams of the Generalised Aubry-André model with J = 0. The
topological index of the system is indicated by colour. We vary the ratio of the amplitudes V2/V1

along with the ratio of the time periods T2/T1. (a) The topological phase diagram for GAA model
with the bottom band populated. (b) The topological phase diagram for GAA model with the bottom
two bands populated.
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Figure 6.9a shows the topological phase diagram for the GAA model with the bottom band pop-

ulated. We see that for values of V2/V1 greater than 2.4 the change in M1 over a full time period is

equal to 2 for any T2/T1 and therefore the topological index of the system is 2 when V2/V1 is greater

than 2.4. It can also be seen that the topological index of the system for values of V2/V1 lower than

this is highly dependent on the value of T2/T1. These topological indices also seem to be stable in

places given that they persist for large ranges of V2/V1. For example, when T2/T1 = 6 and V2/V1 is

varied one can see a clear phase transition between a system with a topological index of −2 to a system

with a topological index of 2. More complex phase transitions happen for T2/T1 = 3 and T2/T1 = 5

where the system undergoes two phase transitions and three phase transitions respectively. For the

case where T2/T1 = 3 the system has a topological index of −1 when V2/V1 takes on values between

0.5 and 1.2; a topological index of 1 when V2/V1 is between 1.6 and 1.9; and a topological index of 2

when V2/V1 is greater than 2.1. For the case where T2/T1 = 5 the topological index of the system is

−3 when V2/V1 takes on values between 0.3 and 0.6; a topological index of −1 when V2/V1 is between

0.9 and 1.4; a topological index of 1 when V2/V1 is between 1.7 and 1.9; and a topological index of 2

when V2/V1 is greater than 2.5.

Figure 6.9b shows the topological phase diagram for the GAA model with two bands populated

and J = 0. Like fig. 6.9a, this phase diagram also contains more phase transitions than the J = 1

case. What is unique about this case though, is that we have phase transitions between topologically

trivial phases and topologically non-trivial phases; this behaviour is not seen when only the bottom

band of the system is populated. A specific example of this behaviour can be seen when T2/T1 = 2. In

this case the topological index of the system is 0 for values of V2/V1 less than 1.8 and the topological

index of the system is −2 for values of V2/V1 greater than 2.7. Another very interesting case is when

T2/T1 = 6. In this case we see that for V2/V1 between 0.2 and 0.7 the topological index of the system

is 4; for V2/V1 between 1.1 and 1.8 the topological index is 0; and for V2/V1 greater than 2.1 the

topological index of the system is −2. Both these cases could prove very useful when using topological

properties of a system to control the flow of particles or light.

At this point it is useful to further investigate the phase transitions seen for specific values of T2/T1

from both fig. 6.9a and fig. 6.9b. We will first analyse the topological phase transitions seen when

V2/V1 is varied and T2/T1 = 5 with only the bottom band of the GAA model populated. This analysis

is shown in Figure 6.10. The top graph in this figure shows how the change in M1 over a full time

period varies for increasing values of V2/V1. From this graph we see that when V2/V1 lies between 0.3

and 0.65 the topological index of the system is −3. As V2/V1 is increased above 0.65 the system goes

through a topological phase transition in which the band gap closes and then reopens. This can be

seen from the middle graph which plots the size of the energy gap between the first and second energy

bands of the GAA model. When the gap reopens the topological index of this gap has a value of −1.
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Figure 6.10: Analysis of the phase transitions when the bottom band of the GAA model is populated
with J = 0 and T2/T1 = 5. The top graph displays the change in M1 over a full time period for
varying values of V2/V1. The middle graph shows the size of the energy gap above the bottom band
of the system. The bottom graph plots the energy at the centre of this band gap.

Two other topological phase transitions can be seen where the topological index changes from −1 to 1

and then from 1 to 2 for increasing values of V2/V1 where each time the band gap closes. The bottom

graph plots the energy value at the centre of the band gap. This graph shows that for increasing values

of V2/V1 the energy gap shifts downwards. This does not matter for systems with a fixed filling factor

but would be important for systems that populate all states below a set Fermi-energy.

Next, we analyse the topological phase transition seen when T2/T1 = 2 with the bottom two bands

populated; this analysis is depicted in fig. 6.11. From this figure we see that when V2/V1 is less than

1.9 the system has a topological index of 0 and therefore does not display topological pumping. We

also see that at V2/V1 = 2 the energy gap closes and the system goes through a topological phase

transition. When V2/V1 is greater than 2.1 the band gap has reopened and the change in M1 is −2

indicating that the topological index of the system is now −2. Again, we also see that the centre of

the band gap gradually changes, increasing in energy value as V2/V1 is is increased.

Lastly, we analyse the case where T2/T1 = 6 and the bottom 2 bands of the GAA model are

populated. This analysis is depicted in fig. 6.12. This figure shows that the system has a topological

index of 4 when V2/V1 lies between 0.2 and 0.7. At the point 0.9 the band gap closes and the system

undergoes a topological phase transition. After this the band gap reopens and when V2/V1 = lies

between 1 and 1.9 the system has a topological index of 0 meaning it is topologically trivial in nature
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Figure 6.11: Analysis of the phase transition when the bottom two bands of the GAA model are
populated with J = 0 and T2/T1 = 2. The top graph displays the change in M1 over a full time
period for varying values of V2/V1. The middle graph shows the size of the energy gap above the
bottom two bands of the system. The bottom graph plots the energy at the centre of this band gap.
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Figure 6.12: Analysis of the phase transition when the bottom two bands of the GAA model are
populated with J = 0 and T2/T1 = 6. The top graph displays the change in M1 over a full time
period for varying values of V2/V1. The middle graph shows the size of the energy gap above the
bottom two bands of the system. The bottom graph plots the energy at the centre of this band gap.
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and the system exhibits no pumping. At the point V2/V1 = 2 the band gap closes again and the system

undergoes another topological phase transition. When the band gap reopens the topological index of

the system is −2 and remains at this value for all values of V2/V1 greater than 2.1. The bottom graph

again shows that the centre of the band gap increases in energy for increasing V2/V1.

In this section we have shown that the GAA model displays interesting and potentially useful

topological phase transitions when the value J is set to zero so that only a cosine modulation determines

the hopping term of the Hamiltonian. It was also shown that when the bottom 2 bands of the

system are populated topological phase transitions exist between the topologically trivial case and the

topologically non trivial case. The most interesting case was found to be when T2/T1 = 6 with the

lowest two bands populated. In this case the system can possess a positive, a negative, or a trivial

topological index which means that the quantized current flowing through the system can be pumped

forwards or backwards or be stopped altogether. This high degree of current control could be very

useful in engineering practices that require moving objects with a high degree of positional accuracy.

This property may also be useful in the controlling of photons within optical systems.
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7
Topological pumping in three

dimensions

The advancement in experimental techniques to investigate four-dimensional topological physics, as

well as the advancement in the understanding of topological structure in higher dimensions, has opened

the door to the possibility of exploring topological pumping in three dimensional time-dependent

systems. It is known that both 4D topological systems and 3D time-dependent topological systems are

characterised by the second Chern number of the system [24, 31, 76]. However, unlike 1D topological

pumping systems, it is not fully clear what is being pumped in the 3D case when there is no magnetic

or electric field applied to the system.

The development of hybrid Wannier functions has also contributed to the understanding of topo-

logical pumping in three dimensions. However, due to their delocalization in two of the three spatial

dimensions, this technique is not always useful when investigating inhomogeneous or non-Hermitian

topological systems. As such, the development of a 3D real-space local topological marker, just like

the 1D marker, would allow the investigation and characterisation of 3D time-dependent Hamiltonians

that are inhomogeneous in nature. This local marker could also shed further light on what exactly is

pumped in the 3D case when no magnetic or electric fields are present.
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Like in the 1D case, throughout this chapter we will consider time-dependent Hamiltonians that

do not break discrete translational invariance in the bulk. As such, the translationally invariant forms

of the projectors and the adiabatic evolution operator can be used along with the definition of the

position operators that label the unit cell of the system.

Within this chapter we start by reviewing previous relevant work and motivate the development

of the 3D marker. We then develop the 3D marker in such a way that, in the bulk, its change over a

pumping period gives the second Chern number of a system. With the 3D marker defined, we then

introduce the Chern-Simons axion coupling and show that the 3D marker is directly proportional to

the change in the Chern-Simons axion coupling over time. This relationship has parallels with the

relationship previously found between the polarisation and the 1D marker. Finally, we support our

analytical findings with numerical calculations and investigate when the agreement between the 3D

marker and the second Chern number breaks down.

7.1 Extensive Chern-Simons axion coupling

We start this chapter by motivating the derivation of the 3D marker. We do this by showing that

the extensive Chern-Simons axion coupling, θ0, which has been previously used to demonstrate pump-

ing in 3D topological models [26, 76], fails to describe the topological structure of finite decoupled

Hamiltonians.

As we showed earlier, the projected position operators, P̂ x̂iP̂ , do not commute for topological

systems and as a result the Wannier transform can only be carried out in one dimension. Hybrid

Wannier functions do just this resulting in Wannier sheets for 3D systems rather than the normal

Wannier centres for 1D systems. Hybrid Wannier functions have been used to explore topological

pumping in 3D systems by using them to investigating the following expression under periodic boundary

conditions in 2 directions and open boundary conditions in the third direction [76];

θ0 = −4π2

3i
εijkTr

(
P̂ x̂iP̂ x̂jP̂ x̂k

)
, (7.1)

where εijk is the Levi-Civita symbol. It was found that, for this model, the change in θ0 over a

full time period was equal to the second Chern number. But interestingly, this expression is always

zero for finite decoupled Hamiltonians even if the system has a non-zero second Chern number. We

demonstrate this below.

It has been shown that for a Hamiltonian which decouples in the following way

Ĥ = Ĥa ⊗ 1+ 1⊗ Ĥb (7.2)
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the second Chern number of this system is equal to the first Chern number of Ĥa multiplied by the

first Chern number of Ĥb [27].

To show that θ0 is always zero for these types of Hamiltonians we consider the following Hamiltonian

Ĥ = Ĥxy + Ĥz (7.3)

where the operators x̂ and ŷ act on the Hilbert space of Ĥxy and the operator ẑ acts on the Hilbert

space of Ĥz. The eigenvectors of this Hamiltonian then take the form

|ψn〉 = |φl〉 ⊗ |χm〉 (7.4)

with n labelling the bands of Ĥ and l and m labelling the corresponding occupied bands of Ĥxy and Ĥz

respectively. We have suppressed the k dependence in the above equation for notational conciseness

and will do so through out this section. The eigenvalues of this system obey

E = Exy + Ez (7.5)

where E is given by the eigenvalues of Ĥ, Exy is given by the eigenvalues of Ĥxy and Ez is given by

the eigenvalues of Ĥz. With this we can then define the projector P̂ of the system as

P̂ =
∑
l,m

alm |φl〉 〈φl| ⊗ |χm〉 〈χm| . (7.6)

The summation runs over all values of l and m and alm takes on values of 0 if the corresponding

band labelled by n is unoccupied and 1 if the corresponding band labelled by n is occupied; one can

determine alm by using eq. (7.5). Next, it can be shown using the cyclic properties of the trace that

εijkTr(P̂ x̂iP̂ x̂jP̂ x̂k) = 3
(

Tr(P̂ x̂P̂ ŷP̂ ẑ)− Tr(P̂ ŷP̂ x̂P̂ ẑ)
)
. (7.7)

We now analyse Tr(P̂ x̂P̂ ŷP̂ ẑ) using eq. (7.6) and find that

Tr
(
P̂ x̂P̂ ŷP̂ ẑ

)
=
∑
l,l′,m

almal′m 〈φl| x̂ |φl′〉 〈φl′ | ŷ |φl〉 〈χm| ẑ |χm〉

=
∑
l,l′,m

almal′m 〈φl| ŷ |φl′〉 〈φl′ | x̂ |φl〉 〈χm| ẑ |χm〉

= Tr
(
P̂ ŷP̂ x̂P̂ ẑ

)
.

(7.8)

From this, it can be seen that εijkTr(P̂ x̂iP̂ x̂jP̂ x̂k) is zero for any finite decoupled Hamiltonian at any
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time t and therefore the change in eq. (7.1) over a time period is always zero for any finite decoupled

Hamiltonian. However, as shown in [27], decoupled Hamiltonians can have non-zero topology. As such,

we find that the change in θ0 cannot describe the topology of finite decoupled Hamiltonians.

The fact that the change in θ0 coupling does not correctly describe the topology of finite decoupled

Hamiltonians, along with the benefits of a real-space local topological marker, then motivates the

development of the 3D marker.

7.2 The 3D marker

With the motivation for the 3D marker established, we now move on to define the 3D marker. We start

by defining the object R, which is a natural extension of the 1D marker, and show that the change of

this quantity over a time period is equal to the second Chern number of the system plus extra terms.

With this we then define the 3D marker such that its change over a pumping period is equal to the

second Chern number of the system.

To derive the 3D marker we start by defining R as

R = −i εijktrx( ˆ̄PÛ†x̂iÛ
ˆ̄PÛ†x̂jÛ

ˆ̄PÛ†x̂kÛ
ˆ̄P ), (7.9)

where ˆ̄P is the projector at time t = 0. Neglecting the constant, the above equation is a viable

extension of the 1D marker to three dimensions. To simplify notation slightly we define X̂i ≡ P̂ x̂iP̂

and remind the reader that P̂ = Û ˆ̄PÛ†. We can then rewrite R as

R = − i
2
εijktrx(Û†X̂iÛ Û

†[X̂j , X̂k]Û), (7.10)

where the square brackets in the above equation denote the commutator. The commutator above can

be written as

− i
[
X̂i, X̂j

]
= i
(
P̂ x̂iQ̂x̂jP̂ − P̂ x̂jQ̂x̂iP̂

)
(7.11)

where we have used P̂ = 1− Q̂. If we then use the form of P̂ x̂iQ̂ given in eq. (4.14), it can be shown

that

− i
[
X̂i, X̂j

]
=

∫
dk |k〉 〈k| ⊗ i P̂

[
∂iP̂, ∂jP̂

]
P̂. (7.12)

It is useful to define

F̂ij ≡ −i
[
X̂i, X̂j

]
and F̂ij ≡ i P̂

[
∂iP̂, ∂jP̂

]
P̂, (7.13)
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where F̂ij is the translationally invariant part of F̂ij . With this notation

R =
1

2
εijktrx

(
Û†X̂iÛ Û

†F̂jkÛ
)
. (7.14)

Next, using Û†X̂iÛ = ˆ̄Px̂i
ˆ̄P + Âi which is found from using P̂ = Û ˆ̄PÛ† in eq. (6.28), we find that

R =
εijk

2

(
trx( ˆ̄Px̂i

ˆ̄PÛ†F̂jkÛ) + trx(ÂiÛ
†F̂jkÛ)

)
. (7.15)

We will now show that the first term in the brackets is time independent. To do this, we first

analyse ˆ̄Px̂i
ˆ̄P to get

ˆ̄Px̂i
ˆ̄P = −i

∫
BZ

dk dk′ |k〉 ∂k′i
(
δ(k′ − k)

)
〈k′| ⊗ ˆ̄Pk ˆ̄Pk′ , (7.16)

where we have used 〈k|xa |k′〉 = −i∂ki
(
δ(k′ − k)

)
, which can be shown using the definition of |k〉

given in eq. (2.5). If we then integrate by parts and again use the definition given in eq. (2.5) we get

that

ˆ̄Px̂i
ˆ̄P = xi

∫
dk |k〉 〈k| ⊗ ˆ̄Pk − i

∫
dk |k〉 〈k| ⊗ ˆ̄Pk

(
∂ki

ˆ̄Pk
)
, (7.17)

where xi is the ith component of the vector labelling the unit cell position. From the definition of F̂jk

given in eq. (7.13), as well as the definition of Û given in eq. (6.15), it can also be seen that

Û†F̂jkÛ =

∫
dk |k〉 〈k| ⊗ Û†F̂jkÛ , (7.18)

where above we have dropped the subscript k for notational convenience. Combining eq. (7.17) and

eq. (7.18) it can be shown that

ˆ̄Px̂i
ˆ̄PÛ†F̂jkÛ = xi

∫
dk |k〉 〈k| ⊗ ˆ̄PÛ†F̂jkÛ − i

∫
dk |k〉 〈k| ⊗ ˆ̄P

(
∂ki

ˆ̄P
)
Û†F̂jkÛ . (7.19)

If we then use Fjk = P̂FjkP̂, as well as Û P̂ = ˆ̄PÛ , the second term in the above equation contains

ˆ̄P(∂i
ˆ̄P) ˆ̄P which we previously stated is equal to zero. As such, we get that

ˆ̄Px̂i
ˆ̄PÛ†F̂jkÛ = xi

∫
dk |k〉 〈k| ⊗ Û†F̂jkÛ . (7.20)

From this, the first term in eq. (7.15) becomes

trx
( ˆ̄Px̂i

ˆ̄PÛ†F̂jkÛ
)

= xi

∫
dk

VBZ
Trα

(
Û†F̂jkÛ

)
= xi

∫
dk

VBZ
Trα

(
F̂jk
)
. (7.21)
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In the second equality above we used the fact that when the trace over internal degrees of freedom,

Trα, contains only transitionally invariant operators it possesses the cyclical properties of the full trace.

Using the definition of F̂jk, it can be shown that Trα
(
F̂jk
)

= Tr
(
B̃jk), where B̃jk = ∂jÃk − ∂kÃj −

i[Ãj , Ãk] is the matrix Berry curvature, Ãnmj = i 〈ukn|∂j ukm〉 is the matrix Berry connection with n

and m labelling the occupied bands and the trace over these objects is a trace over matrices. Using

this, we get that

trx
( ˆ̄Px̂i

ˆ̄PÛ†F̂jkÛ
)

= xi

∫
dk

VBZ
Tr
(
∂jÃk − ∂kÃj

)
. (7.22)

We can now analyse the time dependence of the above equation. Any time dependence in the above

equation has to come from the trace seen as xi labels the initial unit cell. As such, we will now analyse

d
dtTr

(
∂jÃk − ∂kÃj

)
. Performing integration by parts, it can be shown that

d

dt
Tr
(
∂jÃk − ∂kÃj

)
= ∂j

( 〈
d
dtukn

∣∣∂kukn〉− 〈∂kukn∣∣ ddtukn〉 )
− ∂k

( 〈
d
dtukn

∣∣∂jukn〉− 〈∂jukn∣∣ ddtukn〉 ). (7.23)

In the above equation each term is a total derivative with respect to a direction in k-space and therefore

if we integrate the above equation over the Brillouin zone we get zero due to the translational invariance

of the system. With this we have show that the first term in eq. (7.15) is time independent.

Using this result we now see that when one takes the time derivative of R the first term disappears

and we get
d

dt
R =

εijk

2
trx

(( d
dt
Âi

)
Û†F̂jkÛ + Âi

d

dt

(
Û†F̂jkÛ

))
. (7.24)

All the terms in local trace above can be written in a translationally invariant form and doing this we

get that
d

dt
R =

εijk

2

∫
dk

VBZ
Trα

(( d
dt
Âi
)
Û†F̂jkÛ + Âi

d

dt

(
Û†F̂jkÛ

))
. (7.25)

To analyse the above equation we first analyse d
dt Âi. Using eq. (6.19), it can be shown that

d

dt
Âi = i

d

dt

(
ˆ̄PÛ†

(
∂iÛ

) ˆ̄P
)

= i ˆ̄P
( d
dt
Û†
)(
∂iÛ

) ˆ̄P + i ˆ̄PÛ†∂i
( d
dt
Û
) ˆ̄P.

(7.26)

If we use i ddt Û = h Û , which can be shown by combining eq. (6.8) with eq. (6.14) and eq. (6.15), and

its Hermitian conjugate in the equation above we find that

d

dt
Âi = i Û†P̂∂i

(
[

˙̂P, P̂]
)
P̂Û = i Û†P̂[

˙̂P, ∂iP̂]P̂Û = Û† F̂ti Û , (7.27)

where in the last equality we have defined F̂ti ≡ i P̂[ ddt P̂, ∂iP̂]P̂. Using the above equation in the first
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term of eq. (7.25) we see that

εijk

2

∫
dk

VBZ
Trα

(
d

dt

(
Âi
)
Û†F̂jkÛ

)
=

Vc
16π3

εijk
∫
dkTrα

(
F̂tiF̂jk

)
. (7.28)

The above equation is proportional to the second Chern number, given in eq. (2.45), when integrated

over a full time period, T [24].

With this, we next move on to evaluate the second term in eq. (7.25). To do this we use the identity

Û†F̂ijÛ = ˆ̄P(∂iÂj − ∂jÂi − i[Âi, Âj ]) ˆ̄P + ˆ̄F ij (7.29)

which is proved in appendix A. Above, the last term is just F̂ij evaluated at time t = 0 and is therefore

defined as ˆ̄F ij ≡ i ˆ̄P[∂i
ˆ̄P, ∂j ˆ̄P] ˆ̄P. Using the above identity in the second term of eq. (7.25) we get

εijk

2

∫
dk

VBZ
Trα

(
Âi

d

dt

(
Û†F̂jkÛ

))
=
εijk

2

∫
dk

VBZ
Trα

(
Âi∂j∂tÂk−Âi∂k∂tÂj−iÂi∂t[Âj , Âk]

)
, (7.30)

where above we used ˆ̄PÂi = Âi. If we then perform integration by parts on the first two terms, noticing

that the total derivatives are zero due to translational invariance, and use the cyclic properties of Trα

we find that

εijk

2

∫
dk

VBZ
Trα

(
Âi

d

dt

(
Û†F̂jkÛ

))
=
εijk

2

∫
dk

VBZ
Trα

(
(∂tÂi)(∂jÂk)− (∂tÂi)(∂kÂj)

− iÂi∂t[Âj , Âk]

)
.

(7.31)

Due to the fact that ∂tÂi = ˆ̄P(∂tÂi) ˆ̄P, we can use eq. (7.29) along with eq. (7.27) to rewrite the first

two terms in the above equation and get

εijk

2

∫
dk

VBZ
Trα

(
Âi

d

dt

(
Û†F̂jkÛ

))
=
εijk

2

∫
dk

VBZ
Trα

(
F̂tiF̂jk − (∂tÂi) ˆ̄F jk −

2i

3
∂t(ÂiÂjÂk)

)
. (7.32)

In the above equation we used the properties of the Levi-Civita symbol and the cyclic property of

the trace to obtain the last term. The last two terms can be written as total derivatives in time and

will therefore disappear when integrated over the full time period T . As well as this, the first term is

proportional to the second Chern number of the system. If we now substitute eq. (7.28) and eq. (7.32)

into eq. (7.25) we find that

d

dt
R =

Vc
8π3

εijk
∫
dkTrα

(
F̂tiF̂jk

)
− Vc

16π3
εijk

∫
dk

d

dt
Trα

(
Âi ˆ̄F jk +

2i

3
ÂiÂjÂk

)
. (7.33)

This equation shows that, with the right prefactor, the time derivative of R contains a term that is
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related to the second Chern number of the system plus an extra term. With this, we then define R′ as

R′ = R+
εijk

2
trx

(
Âi

ˆ̄Fjk +
2i

3
ÂiÂjÂk

)
(7.34)

so that the time derivative of R′ contains just the term that is related to the second Chern number.

From this we choose to define the 3D marker as

M3(x) =
π

2Vc
εijk trx

(
ÂiÛ

†F̂jkÛ + Âi
ˆ̄Fjk +

2i

3
ÂiÂjÂk

)
. (7.35)

With this definition, when M3(x) is analysed within the bulk of the system, we have that

∫ T

0

dt
d

dt
M3(x) =

1

8π2
εijk

∫ T

0

dt

∫
dk Trα

(
F̂tiF̂jk

)
=

1

32π2
εµνσρ

∫ T

0

dt

∫
dk Trα

(
F̂µνF̂σρ

)
= C2

(7.36)

where C2 is the second Chern number and Greek indices are summed over both space and time

components. In arriving at the last equality the cyclic property of the trace, as well as the anti-

symmetry of F̂ij , was used. We are using a convention such that εt kx ky kz = −εkx ky kz t = 1. We have

thus shown that the change in the 3D marker, defined in eq. (7.35), over a full time period gives the

second Chern number of a 3D time-dependent system.

7.3 Relation between the 3D marker and Axion coupling

In the previous section we showed that the change in the 3D marker over a full time period gives

the second Chern number. This then suggests that it is closely connected to the Chern-Simons axion

coupling which is given by

θCS =
1

4π

∫
BZ

dk εijk Tr
(
Ãi∂jÃk −

2i

3
ÃiÃjÃk

)
. (7.37)

When comparing the Chern-Simons axion coupling to the 3D marker it is interesting to point out that

the 3D marker is constructed solely from the projector that projects into the occupied states of the

system. As a result, the 3D marker is gauge invariant due to the projector being gauge invariant.

On the contrary, it has been shown that the Chern-Simons axion coupling, which is the integrated

Chern-Simons three-form, is only gauge invariant modulo 2π [77].

As well as this, to evaluate the axion coupling one has to be able to describe the states |ukn〉 as

a smooth function of k across the entire Brillouin zone. It is generally assumed that as long as all
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the first Chern numbers of the system are zero then there are no topological obstructions and one

can evaluate the axion coupling. For a more in depth discussion of these types of subtleties see [78].

Therefore, to allow us to compare the 3D marker to the Chern-Simons axion coupling, we will assume

for this section that the states |ukn〉 can be described as a smooth function of k across the Brillouin

zone so eq. (7.37) can be evaluated; note, however, that the 3D marker does not require this condition.

When evaluated deep within the bulk, the 3D marker takes the form

M3 =
εijk

16π2

∫
BZ

dk Trα

(
ÂiÛ†F̂jkÛ + Âi ˆ̄F jk +

2i

3
ÂiÂjÂk

)
. (7.38)

To connect this to the axion coupling we will use the relation between Âi and Ãi given in eq. (6.20),

which we restate here for convenience;

Âi =

occ∑
nm

|ukn(0)〉 〈ukm(0)|
(
Ãnmi (t)− Ãnmi (0)

)
. (7.39)

A similar equation can be shown for F̂ij giving

F̂ij =

occ∑
nm

|ukn(t)〉 B̃nm

ij (t) 〈ukm(t)| , (7.40)

where B̃jk = ∂jÃk − ∂kÃj − i[Ãj , Ãk] is the matrix Berry curvature. With these equations it can be

shown that

M3 =
εijk

16π2

∫
BZ

dk Tr

((
Ãi(t)− Ãi(0)

)(
B̃jk(t) + B̃jk(0)

)
+

2i

3

(
Ãi(t)− Ãi(0)

)(
Ãj(t)− Ãj(0)

)(
Ãk(t)− Ãk(0)

)) (7.41)

where the trace is a trace over matrices. Expanding out the second line in the above equation, we get

that

M3 =
εijk

16π2

∫
BZ

dk Tr

((
Ãi(t)− Ãi(0)

)(
B̃jk(t) + B̃jk(0)

)
+

2i

3

(
Ãi(t)Ãj(t)Ãk(t)− Ãi(0)Ãj(0)Ãk(0)

)
+ iÃi(t)

[
Ãj(0), Ãk(0)

]
− iÃi(0)

[
Ãj(t), Ãk(t)

]
.

(7.42)

If we then write out the Berry curvature terms explicitly we find that

M3 =
εijk

8π2

∫
BZ

dkTr

(
Ãi(t)∂jÃk(t)− Ãi(0)∂jÃk(0) + ∂i

(
Ãj(0)Ãk(t)

)
− 2i

3

(
Ãi(t)Ãj(t)Ãk(t)− Ãi(0)Ãj(0)Ãk(0)

)
.

(7.43)
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Because we are analysing the system deep within the bulk we can assume translational invariance and

therefore the total derivative term disappears. If we then compare the above equation to eq. (7.37) it

can be shown that

M3 =
1

2π

(
θCS(t)− θCS(0)

)
. (7.44)

This equation shows that the 3D marker deep within the bulk of the system at time t corresponds

to the change in the integral of the Chern-Simons three form over time. This then explains why

the Chern-Simons axion coupling has a 2π ambiguity but the 3D marker does not. One thing to

note, however, is that the 3D marker is both gauge invariant and also does not require translational

invariance to be evaluated; as such, it could be viewed as a more fundamental quantity. This relation

is very similar to the change in the 1D marker over time being equal to the change in polarisation over

time.

7.4 Numerical investigation of the 3D marker

In the previous section we showed analytically that the 3D marker is related to the change in the

integral of Chern-Simons three form over time and that its change over a full time period gives the

second Chern number of the system. In this section we confirm this relation numerically. Specifically,

we will use the 3D marker to analyse the topological structure of the decoupled Hamiltonian, Ĥ3D,

given in eq. (3.7), showing that it correctly predicts the second Chern number of this system. Note

however that the 3D marker, when evaluated in the bulk of a system, should correctly predict the

topological structure of any type of system as long as it obeys adiabatic time evolution.

It was shown in Figure 3.2 that the bottom band of Ĥ3D is gapped for kzaz = π/3 and φ(t) = π/2

and stated that this gap remains open for all values of kzaz and φ(t). As such, we will analyse the

bottom band of Ĥ3D using the 3D marker. It was also stated that the second Chern number of a

decoupled Hamiltonian is given by the product of first Chern numbers of the reduced Hamiltonians

[27]. To confirm this we recall from eq. (7.4) that the eigenvectors of a decoupled Hamiltonian are

separable and, from eq. (7.6), that the projector for a decoupled Hamiltonian is given by

P̂ =
∑
l,m

alm |φl〉 〈φl| ⊗ |χm〉 〈χm| , (7.45)

where |φl〉 and |χm〉 are the eigenvectors of ĤHH and ĤAA respectively and l and m label the occupied

bands of these Hamiltonians. With this, it can be seen that if only the bottom band is populated then

the summation above disappears and the projector is also separable. If we let P̂ ′ project into the

lowest band of ĤHH and let P̂ ′′ project into the lowest band of ĤAA we get that the projector P̂ ,
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which projects into the lowest band of Ĥ3D, takes the form P̂ = P̂ ′⊗ P̂ ′′. With the separability of the

projector, along with the identity P̂ (∂iP̂ )P̂ = 0, it can be shown that

εijkF̂tiF̂jk = 2F̂ ′kxky ⊗ F̂
′′
tkz . (7.46)

Above, F̂ij , F̂ ′ij and F̂ ′′ij are constructed from P̂ , P̂ ′ and P̂ ′′ respectively. Using this it can then be

seen that the second Chern number of Ĥ3D becomes

C2 =
1

8π2
εijk

∫
dkTr

(
F̂tiF̂jk

)
=

1

4π2

∫
dkTr

(
F̂ ′kxky

)
Tr
(
F̂ ′′tkz

)
= C ′1 C

′′
1 , (7.47)

where C ′1 and C ′′1 are the first Chern numbers of ĤHH and ĤAA respectively. We also used Tr(Â⊗B̂) =

Tr(Â) Tr(B̂) to get the second equality.

It was shown earlier that the first Chern number of the bottom band of ĤAA is 1 and, due to the

relation between ĤHH and ĤAA, the first Chern number of the bottom band of ĤHH is also 1. From

this, the bottom band of Ĥ3D has a second Chern number of 1 and we therefore expectM3 to change

by 1 over a full time period.

Figure 7.1 shows the time evolution of the 3D marker,M3, deep within the bulk for a finite system

with open boundary conditions. From this we see that the 3D marker does indeed change by 1 over

0.0 0.2 0.4 0.6 0.8 1.0
t/T

0.0
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0.4

0.6

0.8
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3
(t
)
−
M

3
(0

)

Figure 7.1: M3(x, t) as a function of time for a unit cell x in the bulk. The local trace was taken over
the central unit cell for a finite system which extended by 10 unit cells in each direction and each unit
cell contained 9 lattice sites. The parameters of the system were set to those in Figure 3.2.
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a full time period which confirms our expectations. One may also notice that Figure 7.1 is similar to

Figure 6.2. This is a result of Ĥ3D being a decoupled Hamiltonian constructed from ĤAA and another

time independent 2D Hamiltonian. As such, all the time dependence of our 3D model comes from

ĤAA which results in the profile of Figure 7.1 being the same as that of Figure 6.2.

Similar to the 1D marker, the agreement between the 3D marker and the second Chern number

fails when the local trace is taken over a unit cell which is close to the boundary of the system. This

results from the fact that near the boundary of the system translational invariance can no longer be

assumed and thus the equivalence between the 3D marker and the second Chern number deteriorates.

To investigate this break down in agreement further we calculate the 3D marker for Ĥ3D (with the

parameters given in Figure 3.2) in the central unit cell of the system for varying system size N3, where

N is the number of unit cells along each axis. Figure 7.2 shows that as N is increased the value ofM3

increases and for N = 9 and N = 10 the 3D marker is 1. It was shown earlier that for ĤAA (with the

same parameters set in Ĥ3D) the 1D marker also converged to 1 at a system size of N = 9. This is

not a coincidence but is due to how Ĥ3D is constructed. Because of the decoupled nature of Ĥ3D, in
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Figure 7.2: The change in M3(x, T ) over a full time period for varying systems sizes, N3, for the
lowest band of Ĥ3D. The parameters of the system were set to the same values as in Figure 3.2. The
local trace was taken over the centre most unit cell of the system and N represents the number of unit
cells along each axis of the system.
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the bulk of the system M3 becomes

M3 =
1

4π2

∫
BZ

dkTr
(
Â′kz

)
Tr
(

ˆ̄F
′′
kxky

)
=
(
M′1(t)−M′1(0)

)
M′′2 . (7.48)

This then makes it clear that, for a decoupled 3D Hamiltonian, the convergence of M3 to an integer

depends on the convergence of M1 and M2 for the reduced Hamiltonians.

It was shown in chapter 6 that when M1 is measured 5 unit cells from the edge of the system

it accurately predicts the topological index of the system. It can also be shown that M2, calculated

over the central unit cell of the system, converges to an integer for ĤHH (with the same parameters

set in Ĥ3D) when the system size is N2 ≥ 92. This in turn suggests that the edge state modes have

a negligible effect on sites 5 unit cells or more from the surface of the system. We analyse this by

plotting the probability density of an edge state mode for ĤHH in Figure 7.3.

It is clear from fig. 7.3 that the probability density of the edge state mode rapidly decays in size

from the edge of the system. Further analysis shows that this decay is exponential in nature and 5

unit cells in from the edges of the system the probability density of the edge state mode is of order

3 × 10−4. This analysis was done for numerous system sizes and it was found that the probability

density of the edge state mode was negligible 5 unit cells in from the edges of the system. It can be

shown that all the edge state modes of ĤHH have negligible amplitude 5 unit cells from the edge of the

system just like the edge state mode depicted in Figure 7.3. This in turn corroborates the statement

that M2, calculated in the central unit cell of the system, converges for N2 ≥ 92.

x

y

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

|ψ
(x

,y
)|

2

Figure 7.3: Colour plot showing the amplitude squared of an edge state wave vector for ĤHH with
∆′ = −J ′ and β′ = 1/3. The system size was set to N2 = 92 where N represents the number of unit
cells along each axis.
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Using eq. (7.48), along with the fact thatM1 andM2 of the reduced Hamiltonians of Ĥ3D converge

to integers for N = 9 and N2 = 92 respectively, then suggests that M3 calculated in the central unit

cell of the system should converge at N3 = 93, supporting what was found in Figure 7.2.

Before closing this section it is worth while discussing how the calculation of M3 was carried out.

Due to Ĥ3D having the form of a decoupled Hamiltonian its eigenvectors are separable. As such, to

find the eigenvectors of Ĥ3D we found the eigenvectors of its reduced Hamiltonians ĤHH and ĤAA

and then took the tensor product between them. After this, we constructed the projector P̂ at all

time steps and used the same steps outlined for M1 to calculate Û . With P̂ and Û calculated for

every time step, we then calculated M3 using eq. (7.35) along with the subsequent definitions of Âi,

F̂ij and ˆ̄Fij which we restate here for convenience; Âi = Û†P̂ x̂iP̂ Û − ˆ̄Px̂i
ˆ̄P , F̂ij = −i[P̂ x̂iP̂ , P̂ x̂jP̂ ],

and ˆ̄Fij = F̂ij(t = 0).

Within this section we have therefore confirmed numerically that the 3D marker correctly predicts

the second Chern number of Ĥ3D when it is calculated within the bulk of the system. We also showed

that M3 correctly predicts the time-dependent dynamics of the system and indicates that something

is being pumped through the 3D system over a full time period, however, it is still unclear what this

object is.
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8
1D quasicrystal marker

In chapter 6 and chapter 7 we developed topological markers to predict the first and second Chern

numbers of 1D and 3D time-dependent systems with translational invariance. However, non-trivial

topology can also be seen in quasicrystal systems that do not possess translational invariance [14, 50,

15, 51]. In this case the Chern number stated in eq. (2.28) is not well defined due to the Brillouin

zone being ill defined and, as such, one cannot use this form of the Chern number to determine the

topological index of quasicrystals in 1D and 2D systems.

This has previously been circumvented by considering periodic approximations of the systems and

using the flux insertion method. Due to this approximation one has to consider large system sizes

which is not always ideal. With this approximation one can then calculate the Chern number of the

system for gaps that remain open in the thermodynamic limit (see supplementary material for [50]).

The topology of 1D quasicrystal systems has also been investigated by considering the Aubry-André

model with the parameter b set to the inverse of the golden ratio, τ . It was shown that this system

was topologically equivalent to the Fibonacci chain which is a known quasicrystal system [50]. The

Aubry-André model is unique in that its topological index obeys a Diophantine equation due to its

relationship with the Harper-Hofstadter model. This Diophantine equation is obeyed to a high degree

of accuracy even if b is set to an irrational value. Unfortunately, this method requires one to know

the value of b and for systems where the value of b is not obvious it is hard to apply the Diophantine
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equation.

For 2D quasicrystal systems it has been shown that the Chern marker is an effective way of de-

termining the topological indices of the system. This is due to the fact that it does not depend upon

translational invariance for its evaluation. The Chern marker has been used to investigate different 2D

quasicrystal tilings such as; Penrose tiling, Ammann-Beenker tiling, Dürer’s tiling and the generalised

Rauzy tiling [36, 79, 48, 49]. The local nature of the Chern marker also allows one to investigate how

disorder affects the topology of these systems. It is important to point out that this method does not

require any approximation of the quasicrystal system.

From this it is clear that current methods used to determine the topology of 1D time-dependent

quasicrystal systems are not ideal as they require one to either approximate the system as periodic or

consider specific Hamiltonians that possess the same topology as the desired quasicrystal Hamiltonian.

It would therefore be useful if a 1D local topological marker could be constructed which could be used

to determine the topological index of 1D time-dependent quasicrystal systems. This would then also

allow the investigation of how disorder affects these systems.

In this chapter we adapt the 1D marker defined previously in chapter 6 such that it can be used to

determine the topological index of both periodic and aperiodic 1D time-dependent systems and label

it the 1D quasicrystal (QC) marker. We confirm it correctly predicts the topological index numerically

by applying the 1D QC marker to the Aubry-André model with b = 1/3 and b = 1/τ , where τ is

the golden ratio, and comparing this to the topology found using the Diophantine equation. We then

apply the 1D QC marker to the Rice-Mele quasicrystal model with the silver mean sequence applied;

which is a known quasicrystal sequence. The Diophantine equation cannot be used for this model and

therefore we check the predicted topology by analysing both the shift in the Wannier centres over a full

time period along with the flow of particles across a divide placed in the bulk of the system. With this

we confirm that the 1D QC marker correctly predicts the topological index of a 1D time-dependent

system. We then use this marker to analyse how local disorder affects the Rice-Mele quasicrystal

model with the silver mean sequence applied and also discuss the requirements a Hamiltonian needs

such that the 1D QC marker correctly predicts the topological index of the system. Next, we use

the 1D QC marker to investigate the topological index of the Rice-Mele quasicrystal model with the

Thue-Morse sequence and Period-doubing sequence applied. These sequences are aperiodic sequences

that do not possess quasiperiodic nature. Finally, we show that the evolution over time of 1D QC

marker quantitatively matches the evolution of the global polarisation of the system and can therefore

be used to investigate the change in the polarisation of quasicrystal systems.
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8.1 1D quasicrystal marker

In chapter 6 we introduced the 1D marker for systems with translational invariance and showed that

its change over a full time period gives the topological index of the system. In this section we will alter

the definition of the 1D marker such that it can be used to determine the topological index of both

periodic and aperiodic systems.

We first restate the 1D marker given in eq. (6.24);

M1(x, t) =
1

Vc
trx
(
Û†P̂ x̂P̂ Û

)
. (8.1)

We will adapt the 1D marker above to deal with aperiodic systems by first adapting its operators and

then adapting its trace and prefactor. We start by analysing the projection operator, P̂ . In eq. (4.2)

the projection operator was defined with a sum over occupied bands along with an integral over the

Brillouin zone. This definition is ill defined for the aperiodic case and as such we choose to define it

in the more general way given by

P̂ =

EFE∑
E=0

|ψE(t)〉 〈ψE(t)| (8.2)

where |ψE(t)〉 are the instantaneous eigenvectors of the Hamiltonian at time t. This definition is well

defined for both periodic and aperiodic systems.

With this we now address the adiabatic evolution operator, Û . This operator is defined solely by

the projection operator and its derivative. As such, as long as the projection operator and its derivative

are well defined, which they are when using eq. (8.2), then the adiabatic evolution operator Û is also

well defined.

Next we address the position operator, x̂. We previously defined the position operator as

x̂ =
∑
x

x |x〉 〈x| ⊗ 1 (8.3)

where 1 had a dimension equal to the number of degrees of freedom within the unit cell. Here the

degrees of freedom within the unit cell included both the lattice degrees of freedom along with the

internal degrees of freedom of a particle like spin etc. Because the unit cell is ill defined for aperiodic

systems we redefine the position operator by choosing 1 to have a dimension equal to the number of

internal degrees of freedom of the particle only. Doing this the position operator labels the position of

the particle within the system rather than labelling the unit cell the particle is in. Throughout this

chapter we consider lattice models where x = an where a is the lattice spacing and n is an integer

labelling the lattice site. We also only consider spinless systems and as such 1 has a dimension of 1
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and therefore can be dropped.

With this all the operators in the 1D marker are now well defined for both periodic and aperiodic

systems. We now move on to address the trace and its prefactor. The trace trx, defined in eq. (4.5),

was defined as a trace over all the internal degrees of freedom of a unit cell represented by the states

|α〉. For translationally invariant systems the unit cell is natural length scale to trace over as all the

bulk information of the system is contained within one unit cell. A similar natural length scale does

not exist for aperiodic systems. Despite this there is some structure that exists in aperiodic systems

due to rules that generate the aperiodic structure of the system. This may then suggest that one does

not have to consider the whole of the system but just a large portion of the system. We therefore

define a local trace over some region R in the following way

trR(Ô) =
∑
n∈R

〈n| Ô |n〉 (8.4)

where n labels the lattice sites of the system. We choose the region R to lie within the bulk of the

system to ensure that we are calculating the bulk behaviour of the system. This definition then allows

us to consider varying sizes of region R for a fixed system size and analyse what proportion of the

system needs to be considered such that topological effects start to become visible.

The last object to consider in the 1D marker is the prefactor 1/Vc. This prefactor normalised the

1D marker by the size of the unit cell and if M1 was taken over numerous unit cells it had to be

averaged by the number of unit cells also. This then suggests that we should normalise the trace over

region R by the length of region R. For our systems we normalise the lattice spacing, a, to 1 and

therefore the length of region R is given by NR which gives the total number of lattice sites within

the region R.

With this we now define the 1D quasicrystal marker as

MQC(x, t) =
1

NR
trR

(
Û†P̂ x̂P̂ Û

)
(8.5)

where the operators are given by their adjusted forms. Note above that we do not script M for

the quasicrystal case as it is not translationally invariant. The next step is to apply the generalised

MQC(x, t) to both a periodic system as well as an aperiodic system and check if it gives the correct

topology of these systems. We carry out this analysis in the next section and use the Aubry-André

model to generate the periodic and aperiodic systems.
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8.2 1D QC marker and the Aubry-André model

In the previous section we defined the 1D QC marker, MQC(x, t). We now use it to determine the

topological index of the Aubry-André model for both the periodic case, obtained by setting b to a

rational fraction, and the quasicrystal case, obtained by setting b to an irrational value. We show that

in both cases the change in the 1D QC marker gives the topological index of the system when the

region R is set to a large portion of the system. We confirm the topological index of the system for

the quasicrystal case by using the Diophantine equation.

The Aubry-André model was introduced in section 3.1 and is ideal model to investigate the 1D QC

marker as it can model both crystalline and quasicrystalline structures and its topological structure

is well known in both cases. We start by analysing the crystalline structure case first and measure its

topological index using the 1D marker. From fig. 3.1 it can be seen that two topological energy gaps

exist when b = 1/3 and ∆/J = −2; one at a Fermi-energy of εF /J = −1.3 and one at εF /J = 1.3. It

was shown in chapter 6 that the bottom band of the AA model has a topological index of 1. Therefore,

we expect that when the Fermi-energy is set to εF /J = −1.3 the change in MQC(x, t) over a full time

period will be 1 if it correctly represents the topological index of the system.

Figure 8.1a shows evolution of the 1D QC marker for the AA model with the parameters b = 1/3

and ∆/J = −2. From this figure it can be seen that the change in MQC over a full time period, T ,

gives 1 which we know is the topological index of the system. Here the region R was set to span 3
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Figure 8.1: Figures analysing the change in the 1D QC marker for the AA model with ∆/J = −2,
b = 1/3 and a Fermi-energy of −1.3. (a) The change in the 1D QC marker evaluated in the centre of
the system with NR = 3. (b) The change in the 1D QC marker for varying values of NR calculated in
the bulk of the system. Here we set the size of the system to be 360 lattice sites in length. The lines
−1 + 1

NR
and −1− 1

NR
are also plotted to emphasise the envelope of the change in the 1D QC marker

as it tends to the topological index of the system.
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lattice sites within the bulk of the system due to the fact that the system has a well defined unit cell

of size 3 lattice sites. As such, fig. 8.1a confirms that the change in MQC can correctly predict the

topological index of a periodic system when the region R is set to the size of the unit cell.

Figure 8.1b shows the change in MQC(x, t) over a full time period for the AA model with varying

sizes of the region R. The parameters are the same as in fig. 8.1a. The first thing to notice from this

figure is that when NR is set to a multiple of 3 the change in the 1D QC marker accurately predicts

the topological index of the system. This is not surprising as in this case it is equivalent to the change

in M1 averaged over an integer number of unit cells. The more interesting thing to notice about this

figure, however, is that with increasing NR the change in MQC(x, t) over a full time period tends to

the topological index of the system when NR is not equal to a multiple of 3. In this case MQC tends

to the topological index with an envelope of 1 + 1/NR. From this it is then interesting to ask if this

behaviour persists for more complex topological systems. To answer this question we consider the AA

model with b = 37/50 and use MQC to investigate one of its topological gaps.

Figure 8.2a shows the Energy spectrum for the AA model with b = 37/50 and ∆/J = −2. From

this it can be seen that a gap exists at an Energy of E/J = −1.5 with edge state modes crossing

this gap. To determine the topology of this system we will use the Diophantine equation stated in

eq. (2.41). Due to the complex structure of the AA model with b = 37/50 it is hard to determine the

value of r for the gap at E/J = −1.5. As such, we rearrange the Diophantine equation by dividing

through by q and notice that r/q gives the density, or the filling factor, of the system. With this the
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Figure 8.2: Figures analysing the change in the 1D QC marker for the AAM with ∆/J = −2 and
b = 37/50. (a) The energy spectrum of the Aubry-André model. (b) The change in the 1D QC marker
for varying values of NR calculated in the bulk of the system with a Fermi-energy of εF /J = −1.5.
Here we set the size of the system to be 361 lattice sites in length. The lines −1+ 1

NR
and −1− 1

NR
are

also plotted to emphasise the envelope of the change in the 1D QC marker as it tends to the topological
index of the system.
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Diophantine equation becomes

ρ = Cr b + tr (8.6)

where b = p/q and ρ is the density of the system [80, 81, 82]. Using this altered version of the

Diophantine equation it can be shown that the topological index of the system is −1 when the Fermi-

energy is set to εF /J = −1.5.

Figure 8.2b shows the change in the 1D QC marker for the AA model with b = 37/50 for varying

values of NR. We see from this figure that despite changing the value of b the change in the 1D QC

marker still tends to the topological index of the system for increasing values of NR, which in this case

is -1. As well as this, the 1D QC marker also tends to the topological index with the same envelope

shape seen in the previous case. This then suggests that this tendency to the topological index of the

system, along with its envelope shape, is independent of the value of b. It is then interesting to ask

whether this tendency to the topological index of the system persists for irrational values of b seen as

one can approximate an irrational value of b with a rational fraction that has large values for both the

numerator and the denominator.

We now analyse the Aubry-André model with quasicrystalline structure using the 1D marker. It

was stated previously that the AA model has the same topological structure as the Fibonacci chain,

which is a known quasicrystal Hamiltonian, when b = 1/τ where τ = (1 +
√

5)/2 is the golden ratio

[50]. As such, we set b to the golden ratio in the AA model and use the 1D QC marker to analyse the

topological structure of this quasicrystal Hamiltonian.
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Figure 8.3: Figures analysing the AAM with ∆/J = −2 and b = 1/τ where τ is the golden ratio. (a)
The energy spectrum of the Aubry-André model. (b) The change in the 1D QC marker for the AA
model for varying values of NR with a Fermi-energy of εF /J = −1. Here we set the size of the system
to be 361 lattice sites in length. The curves −1 + 1

NR
and −1− 1

NR
are also plotted to emphasise the

envelope of the change in the 1D QC marker as it tends to the topological index of the system.
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Figure 8.3a shows the Energy spectrum of the AA model with b = 1/τ . This shows that a large

gap is present around the energy E/J = −1, a smaller gap exists around the energy E/J = −2.12 and

another smaller gap exists around the energy E/J = −2.43. It can be shown using the Diophantine

given in eq. (8.6) that the topological index of the gap around E/J = −1 is −1, the topological index

of the gap around E/J = −2.12 is 2, and the topological index of the gap around E/J = −2.43 is −3.

Figure 8.3b displays the change in the 1D marker over a time period for the AA model with

εF /J = −1 and varying NR. It shows that the change in MQC(x, t) tends to −1 for increasing values

of NR which is the topological index of the system. This then shows that the change in the 1D QC

marker over a full time period can be used to accurately determine the topology of the AA model

with quasicrystalline structure when the region R encompasses a large portion of the system. We also

see that once again the change in MQC(x, t) tends to the topological index with an envelope. This

envelope can still be approximated by −1 + 1/NR, however, for the quasicrystal case its fit is not as

accurate as the periodic case.

Up to now we have only analysed gaps with a topological index of magnitude 1. It is therefore

important to check that the 1D QC marker correctly predicts the topological index of gaps with a

magnitude higher than that of 1. It is also interesting to ask if the shape of the envelope changes for

higher topological indices. In fig. 8.4a and fig. 8.4b we analyse the topological gaps at E/J = −2.12

and E/J = −2.43 respectively using the 1D QC marker. For each case we measure the change in

MQC(x, t) over a full time period for increasing NR values. From these we confirm that the change in
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Figure 8.4: Figures analysing the change in the 1D QC marker for the AAM with ∆/J = −2 and
b = 1/τ where τ is the golden ratio. The size of the system was set to 361 lattice sites in length.
Different curves are plotted to analyse the envelope of the change in MQC(x, t). (a) The change in the
1D QC marker for varying values of NR calculated in the bulk of the system with a Fermi-energy of
εF /J = −2.12. (b) The change in the 1D QC marker for varying values of NR calculated in the bulk
of the system with a Fermi-energy of εF /J = −2.43.
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MQC(x, t) tends to the topological index of the system in each case. We also plot varying curves to

analyse the envelope of each case. In each case it is clear that the curve given by Cr + 1/NR, with

Cr representing the topological index of the system, does not give the best fit for the envelope. This

then shows that the shape of the envelope is affected by the value of Cr. Analysing fig. 8.4a it can be

seen that 2 + 4
NR

and 2 + 6
NR

both fit the envelope well and analysing fig. 8.4b shows that −3 + 9
NR

fits the envelope best. We previously showed that −1 + 1
NR

best approximated the envelope for the

topological gap at E/J = −1. Considering all these findings the envelope of the change in MQC for

the AA model with b = 1/τ can be approximated by Cr +
C2
r

NR
and an approximate upper bound on

the error of the change in MQC(x, t) is given by
C2
r

NR
for this model.

In this section we used the 1D QC marker to analyse the topology of the Aubry-André model for

both the periodic and the quasiperiodic case given by b = 1/3 and b = 1/τ respectively. We found

that when the region R covers a reasonably large area of the bulk the change in MQC(x, t) over a full

time period correctly predicts the topological index of the system in both cases. We also found that

for increasingly larger regions of R the change in MQC(x, t) tended to the topological index with an

envelope best approximated by Cr +C2
r/NR for this model. This then suggests an approximate upper

bound on the error of the change in MQC(x, t) over a full time period of C2
r/NR. In the next section

we use MQC to investigate the topological indices of the Rice-Mele quasicrystal model with the silver

mean sequence applied.

8.3 1D QC marker and the Rice-Mele quasicrystal model

In the previous section we confirmed that the 1D QC marker correctly predicts the topological structure

of the AA model which has known topological indices. In this section we apply the 1D QC marker

to the Rice-Mele quasicrystal model with the silver mean sequence applied which has an unknown

topological structure. To our knowledge there exists no adaptation to the Diophantine equation such

that it can be applied to this model. Therefore, we will confirm the topological indices of the model

by analysing both the shift in the Wannier centres over a full time period and the current through a

boundary placed in the bulk of the system.

In section 3.4 we introduced the form of the Rice-Mele quasicrystal (RM QC) model stating that

it only differed from the original Rice-Mele model by the values that fn took. This Hamiltonian

allows one to investigate any aperiodic ordering, quasiperiodic or not, and analyse how each aperiodic

ordering affects the topological structure of the system. Previous studies of inhomogeneity within the

original Rice-Mele model have been carried out before, however, these studies tended to concentrate

on disorder induced inhomogeneity rather than structural inhomogeneity which we consider here [42].

The Rice-Mele quasicrystal Hamiltonian was first investigated with the Fibonacci sequence applied
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[51]. We therefore choose to investigate another quasiperiodic sequence known as the silver mean

sequence which we will introduce in a little while.

First we restate the RM QC Hamiltonian here for convenience.

ĤRMQ =
∑
n

J |n〉 〈n+ 1|+ (−1)fnδ(t) |n〉 〈n+ 1|+ h.c.+
∑
n

(−1)fnγ(t) |n〉 〈n| ,

δ(t) = δ0 cos(2πt/T ) γ(t) = γ0 sin(2πt/T ). (8.7)

To regain the original Rice-Mele model one sets fn = n above which causes the sign of the modulating

potentials, δ(t) and γ(t), to alternate for each lattice site. Equally, one could set it to a sequence of

alternating 1’s and 0’s to produce the same effect.

Before starting, it is important that we define what an aperiodic sequence is along with what a

quasiperiodic sequence is and how the two differ. This will also allow us to distinguish quasicrystals

from aperiodic crystals seen as the former’s structure is determined by a quasiperiodic sequence and

the latter’s an aperiodic sequence. It is easiest to first define an aperiodic sequence as a sequence that

is not periodic and is not constructed from different periodic sections joined together. It is clear then

that this encompasses a large array of different sequences. A quasiperiodic sequence is a special type of

aperiodic sequence which has an almost periodic nature. A more rigorous definition is that the Fourier

transform of a quasicrystal system will exhibit a finite number of Bragg peaks with a well defined

spacing [46, 47]. It can be shown that the Fourier transform of the silver mean sequence displays a

finite number of Bragg peaks with a well defined spacing and, as such, is a quasiperiodic sequence.

The Fourier transforms of the Thue-Morse sequence and the Period-doubling sequence, however, do

not display this behaviour and are therefore aperiodic sequences that do not possess a quasiperiodic

nature. For a more in-depth look at aperiodic sequences see [47]. With this we now move on to describe

how the silver mean sequence is generated.

There are a few ways of generating aperiodic sequences, one of which is the substitution method.

With this method one states a set of substitution rules, the number of which depends on how many

different building blocks are present within the sequence, along with an initial value of the sequence.

After this the substitution rules are applied repeatedly until one gets a sequence with the desired

length. The substitution rules for the silver mean sequence are g(A) = AAB and g(B) = A and the

initial value of the sequence is A. Using these substitution rules we find that the first four generations
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of the silver mean sequence are given by

S0 = A

S1 = AAB

S2 = AABAABA

S3 = AABAABAAABAABAAAB

(8.8)

with the subscript on S representing the generation number of the sequence. This sequence is quasiperi-

odic in nature and the ratio of A’s to B’s in this sequence tends to the value of the silver mean ratio,

ν = 1 +
√

2, when the length of the sequence becomes infinitely long [47]. We cannot apply this

sequence to our Hamiltonian when it is in this form. Therefore, we use the following rule

fn =

1 if the nth letter of Si is A

0 if the nth letter of Si is B

(8.9)

to convert our aperiodic sequence into a sequence of 0’s and 1’s that can be used in the RM QC

Hamiltonian. The above rule can be used to convert any aperiodic sequence made up of two building

blocks so that it can be applied to the Rice-Mele quasicrystal Hamiltonian.

Now that we have defined the silver mean sequence and formulated a way of applying it to our

Hamiltonian we now analyse the energy spectrum of the RM QC Hamiltonian with the silver mean

sequence applied.
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Figure 8.5: Figures analysing the energy spectrum of the Rice-Mele quasicrystal model with the silver
mean sequence applied. The parameters of the system were set to δ0/J = 0.9 and γ0/J = 0.8. A line
at the energy E/J = −1.45 was included to highlight the gap that exists at this energy value. (a)
shows the full energy spectrum and (b) shows the energy spectrum around the gap at E/J = −1.45.
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Figure 8.5 shows the energy spectrum of the RM QC Hamiltonian with the silver mean sequence

applied and the parameters set to δ0/J = 0.9 and γ0/J = 0.8. From this it can be seen that a gap

exists at E/J = −1.45 with two eigenenergies traversing the gap over a full time period. It can be

shown that the eigenvectors of these eigenenergies are exponentially localised at the edges of the system

suggesting that this gap has a topological nature.

Figure 8.6 shows the change in the 1D marker evaluated in the energy gap located at E/J = −1.45

for varying NR. We see that the change in MQC tends to the value 1 suggesting that this gap has a

topological index of 1. We also see that the change in MQC has an envelope best approximated by

1 + 2/NR suggesting that the approximate upper bound on the error of the change in MQC for this

gap is given by 2/NR. While this is still of order O(1/NR) it does not support our previous findings

that the upper bound on the change in MQC(x, t) can be approximated by Cr +C2
r/NR. As such, we

can say in general that the upper bound of the change in MQC(x, t) over time is of order O(1/NR)

but a more accurate approximation of the upper bound is model dependent.

We will now check the exact topological index of this gap to confirm that the change in MQC(x, t)

over time can predict the topological index of the Rice-Mele quasicrystal Hamiltonian. We first do

this by analysing the flow of particles across a partition in the centre of the system. After this we will

analyse the shift in the Wannier centres over a full time period so that we are sure of the topological
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Figure 8.6: The change in the 1D QC marker for varying values of NR for the Rice-Mele quasicrystal
model with the silver mean sequence applied. The parameters of the system were set to the ones stated
in fig. 8.5 and the Fermi-energy was set to εF /J = −1.45. Different curves are plotted to analyse the
envelope of the change in MQC(x, t).
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index of the system.

It was stated earlier that all 1D time dependent topological systems pump an integer amount of

charge through the bulk of the system over a full time period. This quantized value is equal to the

topological index of the system. Therefore, one can measure the topological index of a system by

analysing the change in the particle number in one side of the system. For simplicity we will place our

divide at the centre of the system. The particle number on the left hand side of the system is then

given by

NLHS =
∑

n∈LHS
〈n| P̂ |n〉 (8.10)

where n labels the lattice sites of the system. The particle number for the right hand side of the system

can be calculated in a similar way.

Figure 8.7 shows the change in the particle number on the left hand side of the system as well as

the particle number for the right hand side of the system over a full time period. The most obvious

part of this figure is the discontinuous jumps that are present for both NLHS and NRHS . Comparing

this figure with fig. 8.5 it can be seen that these discontinuous jumps occur when the edge state modes

intersect with the Fermi-energy. The jumps are present due to the fact that the edge state modes are
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Figure 8.7: Change in the particle number on the left hand and right hand side of the system for the
RM QC model with the silver mean sequence applied. Both the Fermi-energy and the parameters of
the system were set to the same values as in fig. 8.6. The blue line represents the particle number for
the left hand side of the system and the orange line represents the particle number for the right hand
side of the system.
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excluded from NLHS (and similarly NRHS) when their energy is above the Fermi-energy. This then

leads to an integer jump in the particle number. Because we are interested in the behaviour in the bulk

of the system and this is clearly an edge state effect we can ignore the discontinuities. Doing this it is

easy to see that the particle number on the RHS of the system increases by 1 over a full time period

and the particle number on the LHS decreases by 1. This then shows that 1 particle passes through

the divide placed in the centre of the system over a full time period. Here we put the divide in the

centre of the system, however, it can be shown that this pumping behaviour is independent of where

the divide is placed as long as it is placed within the bulk of the system. With this we have shown

that over a full time period a single amount of charge is pumped through the bulk of the system. This

then shows that the topological index of the system is 1 which agrees with what we previously found

using MQC(x, t).

Next we confirm the topological index further by considering the shift in Wannier centres in the

bulk of the system over a full time period. It has been shown that Wannier centres can be defined

for both periodic and aperiodic systems by calculating the eigenvalues of P̂ x̂P̂ where the projector is

defined by eq. (8.2) [83, 84, 85]. For periodic systems one can determine the topological index of a

band by projecting into this band and then looking at the change in a single Wannier centre in the bulk

of the system. For aperiodic systems this technique cannot be used. This is due to the fact that the

aperiodic nature of the system allows the Wannier centres to move by different amounts throughout

the system and therefore a single Wannier centre is not restricted to move by an integer amount over a

full time period. However, there is another way in which one can use the Wannier centres to determine

the topological index of an aperiodic system. This is done by analysing how many Wannier centres

cross a horizontal line over a full time period. Here the horizontal line corresponds to a specific point in

the system. It could be asked whether one can get different answers depending on where the horizontal

line is placed. To show that this is not possible we look at a property needed for 1D time-dependent

Hamiltonians to display topological pumping. For a time-dependent Hamiltonian to display topological

pumping it has to be periodic in time such that Ĥ(0) = Ĥ(T ). This then restricts each Wannier centre

in the bulk to have a final position equal to the initial position of the next Wannier centre. As a result,

as long as the horizontal line is placed within the bulk of the system the number of Wannier centres

crossing it will always be the same.

Figure 8.8 depicts the time evolution of a set of Wannier centres located in the bulk of the system

for the RM QC model with the silver mean sequence applied and the same parameters as in fig. 8.6.

A horizontal line is plotted in the figure and it can be seen that one Wannier centre passes up through

it. This then shows that one Wannier centre passes through the position x = 288 suggesting that

the topological index of the system is 1. This agrees with both the result found using the particle

number method and the change in MQC(x, t). It should be noted that if the Wannier centre passes
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Figure 8.8: The time dependence of a set of Wannier centres in the bulk of the system for the RM QC
model over a full time period. Both the Fermi-energy and the parameters of the system were set to
the same values as in fig. 8.6.A horizontal line is plotted at 288.

down through the horizontal line this indicates a negative topological index.

There is also another way in which the bulk Wannier centres of the system can be used to determine

the topological index of the system. Earlier we stated that Wannier centres can move by different

amounts for an aperiodic system, but we know that if the system is topological in nature it should still

display quantized pumping over a full time period. This then suggests that while individual Wannier

centres can move by different amounts the collective behaviour of bulk Wannier centres should display

a quantized amount of movement. We define Mwan as

Mwan(t) =
1

WR+1(0)−W0(0)

R∑
r=0

Wr(t) (8.11)

where Wr represents the Wannier centres in the aperiodic system and the summation is over the

Wannier centres located in the region R at time t = 0. The above equation compares the average shift

in all the Wannier centres in region R to average the distance between the Wannier centres at time

t = 0. The change in this over a full time period will then give the topological index of the system.

Here the idea is that the topological index is equal to the number of particles pumped through the

system and the change in Mwan(t) over a full time period tells us how many particles are pumped

across the region R over a full time period. We show the evolution of Mwan(t) over a full time period
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Figure 8.9: Change in Mwan(t) for the RM QC model over a full time period. Both the Fermi-energy
and the parameters of the system were set to the same values as in fig. 8.6. The region R spanned
from x = 145.5 to x = 429.5 with the size of the system set to 577 lattice sites.

in fig. 8.9. From this figure it can be seen that the change in Mwan(t) over a full time period is 1 and

therefore gives the topological index of the system.

It is then interesting to compare the accuracy of the change in MQC and Mwan over a time period

relative to the topological index of the system. Figure 8.10 plots the error for both the change in

MQC(x, t) and Mwan(t) over a full time period compared to the true topological index of the system.

From this it can be seen that on average the change in Mwan(t) has a higher error compared to the

change in MQC(x, t). The figure also shows the curve 1/NR which highlights that the error for the

change in both MQC(x, t) and Mwan(t) has a 1/NR behaviour.

With this we have shown that the change in MQC(x, t) over a full time period correctly predicts

the topological index of two different aperiodic systems. We have also introduced a few other ways of

finding the topological index of an aperiodic system. It is therefore worth discussing the advantages

of the 1D QC marker. One advantage of the 1D QC marker is that it naturally produces an single

value which determines the topological index of the system. This is a useful property when analysing

phase transitions within a topological system. This property is not naturally present for the change

in particle number method or the analysis of individual Wannier centres in the bulk due to the fact

that discontinuities can arise in these methods. We also showed that while this property is present for

Mwan(t), the change in MQC(x, t) provides a more accurate calculation of the topological index of the
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to the true topological index of the system for varying region sizes given by NR. Both the Fermi-energy
and the parameters of the system were set to the same values as in fig. 8.6. The curve 1/NR is also
plotted.

system.

Another advantage of MQC(x, t) is its local nature which allows one to calculate the topological

index of a specific region in the system. This can then be used to determine how local disorder affects

the topological index for different areas of the system. To demonstrate this property we consider the

RM QC model studied in this section with a length of 1000 lattice sites. We add local disorder to the

system by setting the value of fn to 1 for the 440th to the 449th lattice sites of the system breaking

the aperiodic sequence in this region. Next, we then divide the system into 10 regions, each 100 lattice

sites in length, and measure the topological index of each region using the change in MQC(x, t) over a

full time period. It was shown in fig. 8.6 that the upper bound for the error on the change in MQC(x, t)

is best described by 2/NR. Using this, the upper bound on the error for the change in MQC for a

region of size NR = 100 is ±0.02. Therefore, if the region is topological in nature we expect the change

in MQC(x, t) to be 1± 0.02.

Figure 8.11 shows the change in MQC over a full time period measured for each region. An error

bar of ±0.02 is also included for each point. It is clear from this figure that the defect lies within the

4th region of the system seen as the change in MQC for this region is not equal to an integer to within

the error. It can also be seen that the change in MQC for the other regions of the system gives an

integer value to within the tolerance of MQC , neglecting the edge regions which do not give integer
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Figure 8.11: Change in MQC(x, t) over a full time period for the RM QC model with a local defect
placed inn the system. The system has a length of 1000 lattice sites and was split into 10 regions
of 100 lattice sites. The change in MQC was then measured for each region. Both the Fermi-energy
and the parameters of the system were set to the same values as in fig. 8.6. Error bars of ±0.02 are
included with the error tolerance calculated using 2/NR.

values due to edge state effects. This then suggests that topological pumping will still be present

within the regions of the system far from the defect.

In this section we have shown that the change in MQC(x, t) correctly determines the topological

index of the Rice-Mele quasicrystal model. This, coupled with what was shown in section 8.2, shows

that the change in MQC(x, t) over a full time period is a robust way of measuring the topological

index of an aperiodic system. We also introduced other ways of determining the topological index

of aperiodic systems, but then highlighted the advantages the 1D QC marker has over these other

methods. Finally, we used MQC to investigate how local disorder affects the topological structure in

different regions of the system and found that the topological indices of regions away from the local

disorder are unaffected suggesting that topological pumping is still present within these regions. It is

then interesting to ask whether this means that topological pumping across the system could persist

with the defect acting as a potential energy barrier that has to be surmounted. This question is not

considered within this thesis, but could be a future avenue of investigation.
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8.4 Requirements of the 1D QC marker

So far we have used the 1D QC marker on the Aubry-André model and the Rice-Mele quasicrystal

model with an applied quasiperiodic sequence and found that the change in MQC(x, t) over a full time

period correctly predicts the topological index of a system when calculated over a large area. It is

then pertinent to ask when the 1D QC marker does not correctly predict the topological index of a

system even if it is measured over a large portion of the system. To answer this we point out that to

analyse the topological structure of the Fibonacci chain we analysed the topological structure of the

AA model with b = 1/τ rather than the Fibonacci chain itself. This is because the Fibonacci chain

possesses discontinuous jumps in its energy spectrum which cause problems for the 1D QC marker.

To demonstrate these discontinuous jumps we define the Fibonacci chain Hamiltonian below and show

its energy spectrum.

We start by first writing down the Fibonacci chain Hamiltonian given by

ĤFC =
∑
n

[(
tb + V Fn (ta − tb)

)
|n+ 1〉 〈n|+

(
εb + V Fn (εa − εb)

)
|n〉 〈n|

]
. (8.12)

Here V Fn represents the elements of the Fibonacci sequence when converted to the binary form using

eq. (8.9). When V Fn = 1 then the hopping parameter for that site takes the value of ta and its onsite

potential takes the value of εa; when V Fn = 0 the hopping parameter is given by tb and the onsite

potential is given by εb.

As mentioned earlier the values of V Fn can be determined in a few different ways. Here we use a

different method from the substitution rules as it allows us to see the discontinuous nature in time of

the Hamiltonian. Another method for generation the Fibonacci sequence is using the equation

V Fn = 2
(
b(n+ 2)/τc − b(n+ 1)/τc

)
− 1 (8.13)

where τ = (1 +
√

5)/2 is the golden ratio and bxc is the floor function. The above equation gives the

Fibonacci sequence in terms of 1’s and −1’s, but one can easily change the sequence to be in terms of

1’s and 0’s by adding 1 to the sequence and then dividing by 2. It is known that eq. (8.13) is equal to

[50]

χn = sign
[

cos(2πb(n+ 1) + πb+ φ)− cos(πb)
]

(8.14)

when φ = 0. Above sign[x] is −1 if x > 0 and 1 if x < 0 and b = 1/τ . Again this can easily be changed

to a sequence of 0’s and 1’s using the method previously mentioned. The value φ is a constant phase

and varying φ generates a family of Fibonacci chains. From this we can define the time-dependent

Fibonacci chain Hamiltonian by setting φ = 2πt/T , where T is the time period of the system. Doing
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Figure 8.12: The energy spectrum of the diagonal Fibonacci chain with tb = ta and εa = −εb = 2ta.

this the time-dependent Fibonacci chain Hamiltonian is defined in the following way

ĤFC(t) =
∑
n

[(
tb + χn(t) (ta − tb)

)
|n+ 1〉 〈n|+

(
εb + χn(t) (εa − εb)

)
|n〉 〈n|

]
. (8.15)

With the time-dependent Fibonacci chain Hamiltonian defined we can now show its discontinuous

nature in time. The energy spectrum of the diagonal Fibonacci chain is shown in fig. 8.12. From

this figure the abrupt changes in the energies of the edge state modes are apparent, but these abrupt

changes are also present in the bulk modes which are harder to see. It is not surprising that these

abrupt changes arise in all the modes because we are taking the sign of a function that is dependent

on time. As such, at some point in time the energy of a given mode will abruptly change causing

discontinuous jumps in the energy of that mode.

Due to these discontinuous changes the adiabatic approximation breaks down for this model and

thus the 1D QC marker cannot correctly calculate the topological index of this model. Therefore, to

investigate the topology of this model one has to investigate the topology of the Aubry-André model

with b = 1/τ where τ is the golden ratio.

From this we conclude that for the generalised 1D marker to correctly indicate the topological index

of the system the Hamiltonian needs to be continuous in time such that the adiabatic approximation

can be applied. With this the adiabatic evolution operator can then be used to correctly evolve the

projection operators in time. Seen as the projection operator and the position operator can be well

defined for any Hamiltonian the adiabatic requirement is only needed to ensure the adiabatic evolution

operators correctly evolve the system in time. Therefore, if the true time-dependent evolution operator

is known the 1D marker can be used to calculate the topological structure by replacing the adiabatic
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evolution operator with the true time-dependent evolution operator.

8.5 Thue-Morse and Period-doubling sequence

Previously, we considered the Rice-Mele quasicrystal model with the silver mean sequence applied.

Previous work has been done investigating the topological structure of quasicrystals, mainly Fibonacci

quasicrystal chain, however, it is suspected that other non-periodic sequences can also possess topo-

logical properties. The topological properties of these aperiodic, but non-quasicrystal, sequences have

previously been hard to study due to the fact that no topological mapping has been found between

systems with these sequences and the Aubry-André model [81]. On the other hand, these sequences

can be directly applied to the Rice-Mele quasicrystal model which then allows the topological effects

of these aperiodic sequences to be investigated in terms of this model. As such, in this section we will

apply both the Thue-Morse and the Period-doubling aperiodic sequences to the RM QC model and

investigate how these aperiodic sequences affect the topological structure of this system. We will use

the change in MQC(x, t) to determine the topological indices of the system.

We first analyse the topological structure of the RM QC with the Thue-Morse sequence applied.

This sequence is generated using the following substitution rules g(A) = AB and g(B) = BA with the

initial value of the sequence set to A. We show a few generations of the sequence below;

T1 = AB

T2 = ABBA

T3 = ABBABAAB

T4 = ABBABAABBAABABBA

(8.16)

The Thue-Morse sequence is an aperiodic sequence but is not quasiperiodic in nature. One way of

seeing this is by analysing the ratio of A’s to B’s in the sequence. For the Thue-Morse sequence this

ratio is 1 for any sequence length greater than 1 and not an irrational value like it was for the silver

mean sequence. With the sequence defined we can now use eq. (8.9) to apply this sequence to the RM

QC.

Figure 8.13 shows the energy spectrum for the RM QC model with the Thue-Morse sequence

applied. The parameters of the system were set to δ0/J = 0.9 and γ0/J = 0.8. From the energy

spectrum it can be seen that 2 gaps exist around E/J = −1.2 and E/J = 1.2. It can also be shown

that the energy modes that traverse these gaps are localised on the edge of the system suggesting

that the gaps are topological in nature. For our analysis we will concentrate on the gap that exists at

E/J = −1.2 and calculate the topological index of this gap using MQC(x, t).
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Figure 8.13: Energy spectrum of the Rice-Mele quasicrystal model with the Thue-Morse sequence
applied. The parameters of the system were set to δ0 = 0.9/J and γ0/J = 0.8. A line at E/J = −1.2
is also plotted to highlight the gap present at this energy.

Figure 8.14 shows the topological analysis for the RM QC model with the Thue-Morse sequence

applied. Figure 8.14a shows how MQC(x, t) evolves over time and that over a full time period it changes

by 1 showing that this gap has a topological index of 1. Figure 8.14b displays the change in MQC(x, t)

over a full time period for varying values of NR. Again we see that the change in MQC tends to the

topological index of the system for increasing NR. We also see the envelope of the tendency is of order

O(1/NR). It is interesting to point out that for the RM QC model with the Thue-Morse sequence

applied the envelope is best described by Cr + 1/NR and not Cr + 2/NR which best described the RM

QC model with the silver mean sequence applied. This then shows that the approximate upper bound

for the change in MQC is dependent also on the applied sequence of the model as well as the model

itself.

It can also be seen that there are narrow gaps at E/J = −1.95 and E/J = 1.95. It can be

confirmed using MQC(x, t) that these gaps are also topological in nature. Calculating the topological

structure for the energy spectrum shown in fig. 8.13 we find that the topological indices for the gaps at

E/J = −1.95, −1.2, 1.2, 1.95 are 1, 1, 1, 1 respectively. These values can be confirmed by using the

Wannier centres method or the change in particle number method introduced in the previous section.

With this we have shown that the RM QC model with the Thue-Morse sequence applied possesses

topological gaps and displays topological pumping. This then shows that topological behaviour can
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Figure 8.14: Figures analysing the change in the 1D QC marker for the RM QC model with the Thue-
Morse sequence applied and δ0/J = 0.9 and γ0/J = 0.8. The Fermi-energy was set to εF /J = −1.2
and the size of the system was set to 512 lattice sites in length. (a) The change in the 1D QC marker
for NR = 256. The change of MQC(x, t) over a full time period is 1.004 (b) The change in the 1D QC
marker for varying values of NR. Different decay profiles are plotted to analyse the envelope of the
change in MQC(x, t).

be induced by aperiodic sequences that are not quasiperiodic in nature.

Next we will apply the Period-doubling sequence to the RM QC model and show it can also

produce gaps with no trivial topology. We first introduce the Period-doubling sequence which is

generated by setting the initial value to A and then using the following substitution rules; g(A) = AB

and g(B) = AA. Below we show the first few generations of this sequence

T1 = AB

T2 = ABAA

T3 = ABAAABAB

T4 = ABAAABABABAAABAA

(8.17)

Like the Thue-Morse sequence, this sequence is aperiodic but is not quasiperiodic in nature. This is

demonstrated by the fact that for this sequence the ratio of A’s to B’s tends to the value of 2 and

not a irrational number which is the case for quasiperiodic sequence. Once again we use eq. (8.9) to

convert the sequence to a binary sequence so that it can be applied to the RM QC model.

Doing this the energy spectrum of the RM QC model with the Period-doubling sequence can be

found. Figure 8.15 shows the energy spectrum of this model with the parameters δ0/J = 0.75 and

γ0/J = 0.25. From this figure it can be seen that a gap is present at E/J = 0 with two energy modes

traversing this gap. It can be shown that these modes are exponentially localised at the edges of the
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Figure 8.15: Energy spectrum of the Rice-Mele quasicrystal model with the Period-doubling sequence
applied. The parameters of the system were set to δ0 = 0.75/J and γ0/J = 0.25. A line at E/J = 0
is also plotted to highlight the gap present at this energy.

system suggesting that this gap is topological in nature and we confirm this using the 1D QC marker.

Figure 8.16 analyses the change in MQC(x, t) for the RM QC model with the Period-doubling

sequence applied. The parameters of the system were set to the same as in fig. 8.15 and the Fermi-

energy was set to εF /J = 0. Figure 8.16a shows how the change in the 1D QC marker evolves over a

full time period and shows that its total change is equal to 1. Here we set the region R to cover half

the system. This then shows that the topological index of the gap shown in fig. 8.15 is 1 and that this

model can display topological pumping. Figure 8.16b shows the change in the 1D QC marker over a

full time period for varying NR for the same system. In this figure it is shown that the change in MQC

tends to the value of 1 for increasing NR which agrees with the finding that the topological index of

the system is 1. From this figure it can also be seen that the envelope of the change in MQC for this

model is best described by Cr + 2/NR which is different from the envelope behaviour seen when the

Thue-Morse sequence was applied.

We have therefore shown in this section that the Rice-Mele quasicrystal model can possess gaps

with non-trivial topological indices when both the Thue-Morse and Period-doubling sequences are

applied. This shows that topological behaviour can be induced by aperiodic sequences that are not

quasiperiodic in nature.
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Figure 8.16: Figures analysing the change in the 1D QC marker for the RM QC model with the
Period-doubling sequence applied and δ0/J = 0.75 and γ0/J = 0.25. The Fermi-energy was set to
εF /J = 0 and the size of the system was set to 512 lattice sites in length. (a) The change in the 1D
QC marker for NR = 256. The change of MQC(x, t) over a full time period is 1.004 (b) The change
in the 1D QC marker for varying values of NR. Different decay profiles are plotted to analyse the
envelope of the change in MQC(x, t).

8.6 Polarisation and the 1D QC marker

In previous sections we have shown that the change in the 1D QC marker over a full time period

correctly indicates the topological index of the system with both periodic and aperiodic structure. It

is also well known from the modern theory of polarisation that the change in the global polarisation of

the system over a full time period is linked to the topological structure of the system for transitionally

invariant systems [23]. It is therefore interesting to ask how the change in the 1D QC marker is related

to the global polarisation of systems with aperiodic order seen as the global polarisation is an important

property of the system. Throughout this section we show that the evolution of MQC(x, t) over a time

interval quantitatively matches the evolution of the polarisation over the same time interval to a high

degree and the two become equivalent in the thermodynamic limit when the region R →∞.

It is known that for 1D systems with open boundary conditions the global polarisation of the system

is represented by the dipole moment per unit length [22];

Pel (t) =
1

N
Tr(P̂ x̂) =

1

N

∫
dx x ρ(x) (8.18)

where N is the length of the system, Tr(Ô) is the trace over the whole system and ρ(x) is the density.

As such, we will compare the evolution of MQC(x, t) to the evolution of Pel(t) to investigate their

relation to one another.
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Figure 8.17: The time evolution of the global polarisation, Pel, over a full time period for the RM QC
model with the silver mean sequence applied. The parameters of the system are the same as in fig. 8.6
and the system size was set to N = 1393.

We start by plotting the evolution of Pel(t) for the RM QC model with the silver mean sequence

applied. This evolution can be seen in fig. 8.17 where the parameters of the system were set to those

given in fig. 8.6. From this figure one can see the characteristic discontinuity in the polarisation which

has a magnitude of one. For the open boundary case this discontinuity is caused by the edge state

mode located on the right of the system crossing the Fermi-energy and no longer being included in

the calculation of Pel. These types of discontinuities would not appear for the periodic boundary case,

but in this case eq. (6.23) does not give the global polarisation due to x̂ being multivalued for the

periodic boundary case. The magnitude of the discontinuity is one due to the fact that the right edge

state mode is exponentially localised at the position x = N and therefore contributes a value of one to

Pel. As a result, when the right edge state mode has an energy greater than the Fermi-energy it is not

included in the calculation of Pel causing Pel to decrease by one. This confirms that the discontinuity

in Pel is a purely edge state effect and because MQC(x, t) only considers bulk behaviour we will ignore

the discontinuity when comparing the two; also note that this discontinuity will disappear in the

thermodynamic limit when NR → ∞. We also point out that there is no discontinuity when the left

edge state mode crosses the Fermi-energy. This is because the left edge state mode is exponentially

localised at x = 1 and there for its contribution to Pel is 1/N which is negligible for large N .

Figure 8.18 shows the evolution of M1Q(x, t) over a full time period for the RM QC model with the
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Figure 8.18: The time evolution of M1Q(x, t) over a full time period for the RM QC model with
the silver mean sequence applied. The parameters of the system along with the Fermi-energy and
the number of lattice sites are the same as in fig. 8.17 and the region R encompassed the sites from
N = 348 to N = 1044. There is no discontinuity here because we are only considering a region in the
bulk of the system.

silver mean sequence applied. The region R extended from x = 348 to x = 1044 and the parameters

were set to those in fig. 8.17. Comparing fig. 8.17 and fig. 8.18 one can immediately see that the

general shape of each curve is very similar when the discontinuity is neglected.

Figure 8.19 compares the time evolution of the polarisation to the time evolution of the 1D QC

marker over a full time period for the RM QC model with the silver mean sequence applied. This

figure shows that the time evolution of Pel(t) and MQC(x, t) quantitatively match to a high degree of

accuracy when the discontinuity from Pel(t) is ignored. Therefore, one can use MQC(x, t) to determine

the polarisation of the system at any time t. It can also be shown that the slight discrepancy between

these two values decreases when the region R is increased whilst keeping the edge state regions A ,

which cover the rest of the system not contained within R, the same size. From this it can then be seen

that in the thermodynamic limit, when NR →∞ and region A is fixed, the evolution of MQC(x, t) is

equal to the global polarisation of the system.

We have thus shown that M1Q(x, t) can be used to determine the global polarisation of the system

at any time t when NR is set to a large value. We also showed that in the thermodynamic limit

M1Q(x, t) tends to the global polarisation. Whilst we have been primarily interested in topological

systems where the polarisation changes by quantized values throughout this thesis, it is important to
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Figure 8.19: The difference between the time evolution of M1Q(x, t) and the time evolution of Pel(t)
over a full time period for the RM QC model with the silver mean sequence applied. The parameters
of the system along with the Fermi-energy and the number of lattice sites are the same as in fig. 8.17
and the region R encompassed the sites from N = 348 to N = 1044.

note that MQC(x, t) can also be used to determine the bulk polarisation of non-topological systems,

both periodic and aperiodic, where the polarisation of the system is important.

8.7 Conclusion

To conclude this chapter we will discuss its relevant findings. Within this chapter we defined the 1D

quasicrystal marker such that it could be applied to both periodic and aperiodic crystal structures.

We then applied it to Aubry-André model for both rational and irrational values of the parameter b.

In both cases it was found that the change in MQC(x, t) tended to the topological index of the system

with increasing NR and therefore, when NR is reasonably large, the change in MQC(x, t) over a full

time period correctly predicts the topological index of the system. We also found that the envelope of

the change in MQC(x, t) over a full time period could be approximated by Cr +C2
r/NR for the Aubry-

André model which gives an approximate upper bound on the error of the change in MQC(x, t) to be

C2
r/NR for this model. This can then be used to estimate the size of region R needed to determine

the topological index of the Aubry-André model to a certain degree of accuracy.

We next applied MQC to the Rice-Mele quasicrystal model with the silver mean sequence applied

and found that the change in MQC again tended to the topological index of the system for increasing

NR. For this model the envelope of the change in MQC was best described by 1 + 2/NR when the

system had a topological index of one. This does not agree with the Cr +C2
r/NR found for the Aubry-

André model. As such, the approximate upper bound for the change in MQC over a full time period
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can best be described by α/NR where alpha is of order unity of low values of the topological index

and the exact form of α is model dependent. In this section we also introduced three other ways of

determining the topological index of the system. We then pointed out that while these other methods

have their place in the determination of topological indices they are either less accurate than the 1D

QC marker, require visual analysis of a graph, or possess unwanted discontinuities. Another advantage

of MQC(x, t) is that it has a natural generalisation to higher dimensional systems. The 3D marker

defined in section 7.2 can be adapted in a similar way to the 1D marker to generate a 3D quasicrystal

marker which could be used to determine the second Chern number of a system. Higher dimensional

generalisations of methods using the Wannier centres is not trivial seen as Wannier functions can only

be exponentially localised in one dimension. Higher dimensional generalisations of the particle number

method are also nontrivial seen as it is not clear what is being pumped in the 3D case. We also showed

that MQC(x, t) can be used to determine the topological index of specific regions in the system thus

allowing it to be used to investigate how the topological properties of a system change if local disorder

is present.

After this, we discussed the requirements a system has to have for the 1D QC marker to be able to

correctly predict the topological index of the system. Here we demonstrated that as long as the system

is continuous in time, such that the adiabatic approximation can be applied to the Hamiltonian, the

adiabatic evolution operator can be used to correctly evolve the system in time and therefore the 1D

QC marker can be used to correctly predict the topological structure of the system. This is not the

case for quasicrystal systems like the Fibonacci chain where the Hamiltonian instantaneously changes

at some point across the time period. It was also pointed out that if the true time evolution operator

is known then this can be used in place of the adiabatic evolution operator and one does not have to

worry about adiabaticity.

Next, we used MQC to investigate the topological structure of the Rice-Mele model when the

Thue-Morse and the Period-doubling sequences were applied. These sequences are aperiodic but not

quasiperiodic in nature [81, 47]. We showed that these aperiodic sequences can produce topological

structures when applied the RM QC model. We also observed that the characteristic envelope of the

change in MQC for increasing NR was also present for these aperiodic sequence.

Finally, we demonstrated that MQC(x, t) is equal to global the polarisation of a system whether it

be periodic, aperiodic or even topological in nature.

It is important to highlight that while throughout this work we have used the quasicrystal marker

for systems with open boundary conditions it can also be used on systems with periodic boundary

conditions as long as it is evaluated away from the region where the position operator, x̂, is discontin-

uous. The point at which the position operator is discontinuous can be viewed as a “branch cut” to

be placed at a convenient point.
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9
Noble mean sequences and the

Aubry-André model

It was previously shown by Y. Kraus and O. Zilberberg that the Aubry-André model with b = 1/τ ,

where τ = (1 +
√

5)/2 is the golden ratio, has the same topological structure as the Fibonacci qua-

sicrystal chain [50]. However, this paper showed on a more fundamental level that any sequence that

can be generated by eq. (8.13), and subsequently eq. (8.14), has the same topological structure as the

Aubry-André model with the same value of τ . In this chapter we will show that one can investigate

the silver mean chain or the bronze mean chain or in fact any noble mean chain by investigating the

Aubry-André model with a specific value of b. We will present an equation allowing one to determine

the value of b for any noble mean chain later.

The Fibonacci chain Hamiltonian was stated earlier in eq. (8.12) but we will restate it here for

convenience

ĤFC =
∑
n

[(
tb + V Fn (ta − tb)

)
|n+ 1〉 〈n|+

(
εb + V Fn (εa − εb)

)
|n〉 〈n|

]
. (9.1)

Above V Fn represents the nth value of the Fibonacci sequence when it has been converted to its binary
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form using eq. (8.9). We also recall that the nth value of the Fibonacci sequence can be generated by

V Fn = 2
(
b(n+ 2)/τc − b(n+ 1)/τc

)
− 1 (9.2)

when the value of τ is equal to the golden ratio. The values produced by the above equation are either

1 or −1 but can be converted to binary values by adding 1 and then dividing by 2. Note that when

comparing it to the Fibonacci sequence generated by the substitution rules g(A) = AB and g(B) = B

and the initial condition S0 = A, n = 0 gives the first value of this sequence and n = 1 gives the

second value and so on. It was shown in [50] that the topological structure of this Hamiltonian with

τ set to the golden ratio is equivalent to topological structure of the Aubry-André model with the

parameter b set to one over the golden ratio. It was also shown that any sequence generated by V Fn

can be described by the Aubry-André model with the corresponding value of b. This then means that

the topological structure of the Fibonacci like Hamiltonians can be investigated with relative ease by

considering the corresponding topological structure of the AA model. It is then interesting to ask what

other known sequences can be generated by eq. (9.2).

It can be shown that the golden ratio is related to the Fibonacci chain in the following way [82]

lim
n→∞

Fn
Fn−1

= lim
n→∞

NA(Sn)

NB(Sn)
= τ (9.3)

where Fn is the length of the Fibonacci sequence Sn which is generated using the substitution rules

g(A) = AB and g(B) = B and the initial condition S0 = A. NA(Sn) represents the number of A’s

in the sequence and NB(Sn) represents the number of B’s in the sequence. This then shows that the

value of b is equal to the ratio NB(Sn)/NA(Sn) for the Fibonacci chain.

From this one could ask whether the silver mean sequence can be generated by eq. (9.2) when τ is

set to the silver mean ratio 1 +
√

2, seen as NA(Sn)/NB(Sn) for the silver mean sequence tends to the

silver mean ratio in the limit n goes to infinity. This is not implausible because the substitution rules

for the silver mean sequence and the Fibonacci sequence are similar and both are actually part of a

larger family of sequences known as the noble mean sequences. We will now show directly, however,

that this is not the case. The third generation of the silver mean sequence in its binary form is given

by

S3 = 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0 (9.4)

and the binary sequence of the same length generated by eq. (9.2) using τ = 1 +
√

2 is given by

VF = 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0. (9.5)
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From this it is evident that eq. (9.2) does not generate the silver mean sequence when τ is set to the

silver mean ratio. We then ask whether there is a special property the golden ratio possesses that may

highlight why eq. (9.2) works for the Fibonacci sequence but not the the silver mean sequence.

The golden ratio has an interesting property that τ = 1 + 1/τ . We show this relation is true below;

1 +
2

1 +
√

5
=

3 +
√

5

1 +
√

5

=
(3 +

√
5)(1−

√
5)

−4

=
5 + 2

√
5− 3

4

=
1 +
√

5

2
.

(9.6)

With the above identity we then ask whether replacing 1/τ with 1/(1+1/τ) in eq. (9.2) would allow us

to generate both the Fibonacci sequence and the silver mean sequence. To test this theory we define

a new sequence generator V NMn as

V NMn = 2

(⌊
(n+ 2)

( 1

1 + 1/τ

)⌋
−
⌊

(n+ 1)
( 1

1 + 1/τ

)⌋)
− 1 (9.7)

where τ is given by eq. (9.3). We then set τ to the silver mean ratio, τ = 1 +
√

2, in eq. (9.7) and find

that it generates the following sequence

VS = 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0. (9.8)

Comparing this to eq. (9.4) we see that V NMn does indeed generate the silver mean sequence when τ

is defined by eq. (9.3). With this we have shown that eq. (9.7) can be used to generate both the silver

mean sequence and the Fibonacci sequence when the value of τ is determined by eq. (9.3). Because

of this we now define a new Hamiltonian, which we call the noble mean Hamiltonian, in the following

way

ĤNM =
∑
n

[(
tb + V NMn (ta − tb)

)
|n+ 1〉 〈n|+

(
εb + V NMn (εa − εb)

)
|n〉 〈n|

]
(9.9)

where V NMn is defined in eq. (9.7). This Hamiltonian is equivalent to the Fibonacci chain Hamiltonian

when τ is set to the golden ratio. When τ = 1 +
√

2 this Hamiltonian defines the silver mean chain

Hamiltonian. From the findings in [50], this then means that one can analyse the topological structure

of the silver mean chain Hamiltonian by analysing the Aubry-André model with b = 1/(1+1/τ) where

τ = 1 +
√

2.

To visualise the topological equivalence between the Aubry-Andre model and the silver mean chain
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Figure 9.1: Figures highlighting the topological equivalence of the Aubry-André model and the silver
mean chain. (a) The energy spectrum for the Aubry-André model with b = 1/(1+1/τ), where τ is equal
to 1+

√
2, and ∆/J = −2. (b) The energy spectrum for the silver mean chain with tb/ta = 1, εa/ta = 2

and εb/ta = −2.

we plot the energy spectrum of both models in fig. 9.1. Figure 9.1a shows the energy spectrum for the

Aubry-André model with b = 1/(1 + 1/τ) with τ = 1 +
√

2 which is the silver mean ratio. Figure 9.1b

shows the energy spectrum of the silver mean chain with the parameters tb/ta = 1, εa/ta = 2 and

εb/ta = −2. To generate this figure we used the fact that V NMn is equivalent to

χn = sign
[

cos(2πb(n+ 1) + πb+ φ)− cos(πb)
]

(9.10)

when b = 1/(1 + 1/τ) and φ = 0. Using this and setting φ = 2πt/T then allows us to plot the energy

spectrum against time as we do in the AA energy spectrum. From these figures one can see that

the structure of each energy diagram is similar and they both possess the same amount of reasonably

sized gaps. As well as this, it can be noticed that the number of edge modes crossing each of these

reasonably sized gaps are equivalent. For example in fig. 9.1a we see that there is one edge mode

crossing in the gap around E/J = −1.5; it can be seen that the number of edge mode crossings in the

gap at E/εa = −1 in fig. 9.1b is also one. It can be shown definitively that these gaps are topologically

equivalent by considering the following Hamiltonian which is a continuous deformation between the

Aubry-André model and the silver mean sequence shown in fig. 9.1;

HS(t, β) =
∑
n

(
t |n+ 1〉 〈n|+ λ

tanh
(
β[cos(2πbn+ φ)− cos(πb)]

)
tanh(β)

|n〉 〈n|
)
. (9.11)

Above b = 1/(1 + 1/τ) with τ = 1 +
√

2 and β is the deformation parameter. In the limit β → 0

HS becomes the Aubry-André model plus some constant energy shift and in the limit β → ∞ HS
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becomes the silver mean chain [50]. It can be shown that the gap at E/J = −1.5 in the AA model

never closes as the parameter β is continuously increased to ∞ and deforms into the gap seen at at

E/ta = −1 in the silver mean chain. Because this gap never closes as β is varied the topological index

cannot change and therefore these two gaps are topologically equivalent. With this we have confirmed

that the topological index of an energy gap in the silver mean chain Hamiltonian can be determined

by the topological index of a gap in the Aubry-André model Hamiltonian as long as this gap does not

close when varying the the parameter β in eq. (9.11).

While we showed above that the topological structure of the AA model can be used to determine

the topological structure of the silver mean chain we can actually generalise this further and show that

the AA model can be used to determine the topological structure of any noble mean chain. To show

this we first define the noble mean sequences via the generating rules

g(A) = ApB

g(B) = A
(9.12)

with the initial value of the sequence set to A. The value p is an integer that determines which noble

mean sequence is being considered; p = 1 gives the Fibonacci sequence, p = 2 gives the silver mean

sequence, p = 3 gives the bronze mean sequence and so on. It is known that the ratio of NA/NB for

the noble mean sequences is given by [47]

lim
n→∞

NA(Sn)

NB(Sn)
=

1

2

(
p+

√
p2 + 4

)
. (9.13)

With this one can then use V NMn to generate any noble mean sequence. To demonstrate this we

consider the bronze mean sequence and compare it to the sequence generated by V NMn with τ set by

eq. (9.13) and p = 3. The third generation of the bronze mean sequence is given by

B2 = 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0.

(9.14)

Using eq. (9.13) we see that τ = (3 +
√

13)/2 which is known as the bronze mean ratio. Using this in

eq. (9.7) we generate the following sequence

VB = 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0

(9.15)

where we set the length of the sequence to match B2. It can be seen that these two sequences are

equivalent. This then demonstrates that any noble mean sequence can be generated by eq. (9.7) when

the value of τ is determined by eq. (9.13). With this we also confirm that the topological structure
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of any noble mean chain, defined by ĤNM given in eq. (9.9), can be determined by the topological

structure of the Aubry-André model with

b =
1

1 + 2

p+
√
p2+4

. (9.16)
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10
Conclusion and Discussion

Within this final chapter we summarise the major findings presented within this thesis and explore

possible new avenues of research that they could generate.

In chapter 4 the usefulness of the Chern marker for 2D systems was demonstrated by using it

to display the topological structure of the Hofstadter butterfly for the Harper-Hofstadter model. In

this chapter we also defined a 4D version of this topological marker which will allow the topological

structure of a 4D system to be investigated more thoroughly. One potential hurdle in the topological

investigation of 4D systems is the size of the Hamiltonians needed such that the 4D topological marker

gives an accurate prediction of the topological index of the system. It was shown in chapter 8 that the

2D Chern marker has to be measured 5 unit cells away from the edge of the system in each direction.

As such, the system needed to have 81 unit cells or more for the Chern marker to give an accurate

representation of the systems topological structure. Assuming this rule also applies to 4D models one

would have to consider a system with 6561 unit cells each with more than one lattice site within it.

Form this one can see that very large matrices have to be diagonalized, as well as multiplied numerous

times, to calculate the 4D topological marker. Whilst this hurdle may seem slightly daunting it may

not be as large as initially thought due to recent advancements in parallel computing and the use of

graphics cards for matrix multiplication.

Chapter 5 compared the Bott index to the Chern number and showed that these two objects are

equivalent in both the discrete and the continuous regime. The local Bott index was also compared to

the Chern marker and was found to be equivalent when system of reasonable size were considered.
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Chapter 6 introduced the 1D marker for one dimensional time-dependent systems which is one of

the main findings within this thesis. The accuracy of this marker was confirmed numerically and it was

shown that the time evolution of the marker was equivalent to that of the Wannier centre evolution

showing also that the 1D marker gives the change in the polarisation of the system. Because the

1D marker does not require translational invariance it was then used to investigate a system with

random disorder applied throughout; the analysis was averaged over 100 random disorder matrices.

It was found that the topological structure of the system changed only when some of the disorder

matrices started to close the band gap, allowing the topological structure to change for that specific

disorder matrix. This agrees with previous studies of how disorder affects the topological structure

of a system [42]. The affect of a point defect on the topological structure was also investigated; this

investigation is only possible with local topological markers. In this case it was found that the point

defect only affected the topological structure close to the defect and far from the defect the topological

structure remained unaffected. This finding is interesting as it suggests that topological pumping may

still exist when point defects are present. This is because far from the defect the topological index

is non-zero suggesting that topological pumping persists to the left and right of the defect but not

at the defect. Because of this pumping it may be that a potential difference is created across the

defect and increases until it is great enough that the current can surmount the energy step created by

the defect and thus topological pumping through the system is restored. It would be interesting to

analyse this experimentally either with photonic systems or cold atomic gas systems. The investigation

of point defects within topological systems is important not only to the understanding of topological

materials but also to their application to engineering systems. This is due to the fact that point defects

can easily arise when creating these systems and therefore understanding how they affect the desired

properties of topological materials is crucial. Here we investigated a single point defect, however, it

would also be interesting to see how the topological structure of the system, along with the current

through the system, is affected by two point defects and the separation between them. As well as this,

the 1D marker could be used to better understand how disorder eventually destroys the topological

structure of the system and whether certain configurations of disorder can destroy the topological

structure with less point defects. The topological phase transitions of the generalised Aubry-André

model were also investigated within this chapter with the parameter b set to 1/3. We showed that

when the fixed hopping strength, J , is set to one the topological structure of the system is generally

stable when the parameters of the system are varied. However, when J = 0 so that the hopping

term is determined solely by the modulating hopping strength the system displays a wide array of

topological phase transitions as the parameters of the system are varied. It was seen that when only

the bottom band of the system is populated phase transitions between different non-trivial topological

regimes were observed, but when the bottom two bands of the system were populated phase transitions
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between topological and non-topological regimes also existed. For the specific case of T2/T1 = 2 it was

seen that when the ratio of the hopping modulation and the onsite modulation was varied the system

underwent a phase transition between the topological index being zero and the topological index being

−2. This phase transition is potentially very useful as it could form the basis for a topological pumping

switch. More interestingly, when T2/T1 was set to 6 the system possessed three topological phases;

one with a positive topological index of 4, one with a topological index of 0, and one with a negative

topological index of −2. This regime provides even more control of the pumping through the system

allowing both forwards and backwards pumping along with no pumping at all. It is important to point

out, however, that the positive topological phase has a narrow band gap and is therefore susceptible

to disorder. It is clear that both these cases could prove very useful when using topological materials

to control pumping behaviour. Here we only investigated the generalised Aubry-André model with

b = 1/3; it would therefore be interesting to analyse the phase diagrams of the generalised Aubry-

André model with other values of b, say 1/5 or 1/7, and see if further interesting phase transitions

are present. Another interesting point is that when the system under went a phase transition and the

bands touched, therefore making the system a semi-metal, the change in the 1D marker was no longer

quantized to an integer value but was still nonzero. This suggests that some of the current through

the system in this case would be caused by the topological structure of the system with the other part

of the current being due to the excitations around this band touching. While it is most likely that the

current due to the topological structure of the system will be much less than that due to excitations it

is still interesting to ask what the ratio between the different contributions would be. This could be one

possible future direction of study. It was stated earlier that the generalised Aubry-André model was

first proposed in [86]. In the supplementary material of this paper an experimental setup was suggested

using photonic wave guides where the hopping strength of the system was determined by the spacing

between the wave guides. As such, a experimental setup using photonic wave guides could be used to

analyse the phase transitions seen in the generalised Aubry-André model when J = 0. As well as this,

by stacking wave guides with different parameters on top of each other one could potentially generate

a topological photonic switch that could control the flow of photons through a system.

In chapter 7 we defined the 3D marker which is another major finding of this thesis. It was shown

analytically that the change in the 3D marker over a full time period gave the second Chern number

of the system which is the topological index associated with 3D time-dependent and 4D systems.

It was also shown analytically that the 3D marker is equivalent to the change in the Chern-Simons

axion coupling which has been linked to the magnetoelectric polarisation of a system [26, 25]. It

was then confirmed numerically that the 3D marker gives the second Chern number of a system by

considering a 3D time-dependent Hamiltonian with known second Chern number. Whilst carrying out

this numerical investigation it was apparent that a major obstacle to investigating 3D time-dependent
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topological systems is the size of the matrices one has to manipulate. For example, here we did not

investigate how a point defect would affect the topological structure of the system. This is because

to do this it would be best to consider a 30 unit cell by 30 unit cell by 30 unit cell system with 9

lattice points per unit cell. Therefore we would be dealing with matrices of size 243000× 243000 not

to mention we would have to do this for each time step. Therefore, it is evident that computational

restrictions prevent the full use of the 3D marker for the moment but one hopes that these problems

will be surmountable in the near future allowing us to unlock the full potential of the 3D marker. These

computational advances could also allow the investigation of 3D quasicrystals and the 3D marker could

be used to investigate these systems once the same adaptations that were made to the 1D marker in

chapter 9 were applied to the 3D marker. One avenue of further investigation that could be carried

out without this advancement, however, is the use of the 3D marker on a topological Hamiltonian that

is not formed from a tensor product. As well as this, despite showing that the Chern-Simons axion

coupling is the thing that is progressively changing over time it was still not confirmed what this object

relates to when there is no electric or magnetic field applied to the system. It is therefore evident that

this area needs further investigation to determine what property of the system is changing over time

and what object, if any, is being pumped through the system.

Within chapter 8 we adapted the 1D marker introduced in chapter 6 so that it could be applied

to systems with aperiodic structure as well as to systems with periodic structure. This result is

the final major finding of this thesis. We then used the Aubry-Andre model to confirm that this

object can correctly determine the topological structure of both periodic and aperiodic 1D time-

dependent systems. It was found that the 1D quasicrystal marker does indeed correctly determine

the topological structure of these systems, however, for quasicrystal systems the topological marker

needs to be evaluated over a larger area of the system, compared to the periodic case, to determine

the topological structure accurately. As well as this, it was found that the 1D quasicrystal marker

tended to the topological index of the system when the region considered was increased. The upper

bound on the error of the 1D quasicrystal marker displayed a decay profile which was approximately

the same for both the periodic case and the quasicrystal case. It was also seen that this decay profile

changed for different topological values. After this, the 1D quasicrystal marker was used to investigate

the topological structure of the Rice-Mele quasicrystal model with the silver mean sequence applied

and it was found that this system is topological in nature. As well as this, the same decay profile for

the approximate upper bound of the 1D quasicrystal marker seen for the Aubry-André model was also

seen for this model suggesting that the decay profile is present for all models. The topological structure

of the system was then confirmed by analysing the current through the system as well as analysing

the evolution of the Wannier centres of the system. This then showed that the 1D quasicrystal marker

can be used to determine the topological index of quasicrystal systems that could not previously be
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investigated using traditional methods. It was also demonstrated that the 1D quasicrystal marker can

be used to investigate the topological structure of a local region within the system and determine the

effects a local defect has on its topological structure, although the size of the regions considered have to

be considerably larger than in the periodic case. Despite the fact that the size of the regions needs to

be large, the 1D quasicrystal marker could still prove very useful when investigating how disorder and

local defects affect the topological pumping through quasicrystal systems. It would be interesting to

investigate the disorder in quasicrystal systems further and compare the effects to those seen in periodic

systems to see if any differences arise. The requirements a system needs for the 1D quasicrystal marker

to accurately predict the topological structure of the system were then discussed. It was highlighted

that if the adiabatic evolution operator is used then the system has to be continuous in time such

that the adiabatic approximation holds, but if the true time-dependent operator is known one can use

this in the 1D quasicrystal marker and not worry about the conditions of the adiabatic approximation.

Following this, the topological structure of the Rice-Mele model with the Thue-Morse sequence and the

Period-doubling sequence applied was investigated. These sequences are aperiodic sequences but are

not quasiperiodic in nature. It was confirmed that these system can possess a topological nature and

therefore can exhibit quantized pumping. It was also seen that the approximate upper bound on the

error of the 1D quasicrystal marker exhibited a decay profile similar to that seen in previous models,

however, its dependence on the value of the topological index was slightly different to that seen in

the previous models. Comparing the approximate upper bound on the errors from the models studied

we concluded that Cr/NR can be used to give a rough estimate of the error of the 1D quasicrystal

marker for a given system size. It would be interesting to investigate the error of the 1D marker

analytically to try to determine how the upper bound on the error varies for different models and what

properties of the Hamiltonian determine this variation. Lastly, the evolution of the polarisation for

a quasicrystal system was calculated and compared to the evolution of the 1D quasicrystal marker.

It was found that the evolution of the 1D quasicrystal marker matched that of the polarisation when

the discontinuous jump in the polarisation was neglected. This then confirmed that the relationship

between the 1D marker and the polarisation of the system is present in quasicrystal systems also.

This shows that the 1D marker and the 1D quasicrystal marker are useful not just for topological

system but also for systems in general where it is important to know the polarisation of the system.

A natural next step from this is to compare the polarisation of other non-topological systems with

the results measure using the 1D marker for that system. A this stage it is important to point out

that a time-dependent version of the Bott index exists for 1D systems and has been used to determine

both the polarisation and the topological index of a quasicrystal system [51]. Its form differs from

that of the 1D quasicrystal in a few ways, one of which is that it does not use the adiabatic evolution

operator to evolve the states and only uses the projectors at different snapshots in time. Therefore,
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one future direction of study could compare the time-dependent Bott index with the local marker both

analytically and numerically. It would also be useful to investigate the difference in the time taken to

calculate these objects. Another natural next step using the 1D marker would be to try and answer

the question ‘how big does a quasicrystal system have to be to show topological behaviour?’. This is an

interesting question seen as it was shown that the 1D quasicrystal marker is not quantized for systems

of size 30 lattice sites or less. This would also naturally raise the question of how long a quasi crystal

system has to be. Let us for example consider the silver mean sequence. It is obvious that the first

generation of this sequence, which has a length of 3, is not long enough to be a quasicrystal seen as no

repeating structure can be seen, nor is the second generation long enough, but can the third generation

be classed as a quasicrystal seen as repeating structure can be seen in these generations? One other

area of future study could see the 1D marker used to analyse the change in the polarisation of metallic

aperiodic systems. It is known that the majority of the current that arises in normal metallic system is

due to excited states, but a small contribution can also come from the change in the polarisation of the

system; however small it may be. Something similar has previously been investigated for 2D metallic

systems using the Chern marker [41]. It would also be interesting to see how this contribution to the

current differs for quasicrystal systems compared to the periodic case. finally, it is worth pointing out

that we only considered the Rice-Mele quasicrystal model with modulating potentials that have the

same time period. From the analysis done on the generalised Aubry-André model in chapter 6 it is

clear that letting the time periods of each modulating potential differ would change the structure of

the system. This could potentially give rise to exotic phase transitions within 1D quasicrystal systems.

Finally, within chapter 9 it was shown that the Aubry-André model can possess the same topological

structure as other quasiperiodic noble mean chains apart from the Fibonacci chain. This is achieved

by setting the parameter b to a specific value which is determined by eq. (9.16). This will allow future

studies into different quasicrystal systems and increase the over all understanding of the interplay

between topological structure and quasicrystal structure. One aspect that could be investigated further

using the noble mean sequences is the question ‘what is the lowest ratio of A’s to B’s a system needs

to show topological properties?’. The noble mean sequences are ideally suited to study this seen as

one just needs to increase the value of p in eq. (9.12) for a set system size and use the 1D quasicrystal

marker to measure the topology of the system. This has potential benefits when trying to engineer

a topological system seen as the A’s within the system represent one type of particle and the B’s

represent another. Therefore, if the topological system has to be engineered in some way, say for

instance using a doping technique, the higher the ratio of A’s to B’s within the system the less doping

is required.

It is evident that the field of topological physics is still rapidly growing and we hope that the results

found in this thesis contribute to this growth as well as inspire future areas of investigation.
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A
Relation between Âi and F̂ij

Within this appendix we prove the identity

Û†F̂ijÛ = ˆ̄P
(
∂iÂj − ∂jÂi − i[Âi, Âj ]

)
ˆ̄P + ˆ̄F ij (A.1)

which was stated in eq. (7.29) and P̂, Û and Âi are defined as in Section 6.2.

To show this we analyse the left hand side of the above equation and expand it so that we gain the

right hand side of the equation. In eq. (7.13) we defined F̂ij as

F̂ij = i P̂
[
∂iP̂, ∂jP̂

]
P̂ (A.2)

where the square brackets denote the commutator and P̂ is the translationally invariant part of the

projector P̂ . The derivatives are defined as ∂i = ∂ki . If we use the relation P̂ = Û ˆ̄PÛ†, given in

eq. (6.7), we get that

Û†F̂ijÛ = i
(

ˆ̄PÛ†(∂iP̂)(∂jP̂)Û ˆ̄P − ˆ̄PÛ†(∂jP̂)(∂iP̂)Û ˆ̄P
)

(A.3)

144



One can also derive the following identities

Û†(∂iP̂) = (∂i
ˆ̄P)Û† + ˆ̄P(∂iÛ†)− (∂iÛ†)P̂ (A.4)

(∂iP̂)Û = (∂iÛ) ˆ̄P + Û(∂i
ˆ̄P)− P̂(∂iÛ). (A.5)

If we use the above identities to evaluate the first term in eq. (A.3) we get that

ˆ̄PÛ†(∂iP̂)(∂jP̂)Û ˆ̄P = ˆ̄P(∂iÛ†)(∂jÛ) ˆ̄P + ˆ̄P(∂iÛ†)Û(∂j
ˆ̄P) ˆ̄P + ˆ̄P(∂i

ˆ̄P)Û†(∂jÛ) ˆ̄P

− ˆ̄P(∂iÛ†)P̂(∂jÛ) ˆ̄P + ˆ̄P(∂i
ˆ̄P)(∂j

ˆ̄P) ˆ̄P.
(A.6)

The second term in equation eq. (A.3) is identical to the first but with the labels on the derivative

switched. As such, the above equation can be used to expand eq. (A.3).

We now condense these terms such that we get the right hand side of eq. (A.1). To do this we first

show that

ˆ̄P∂iÂj ˆ̄P = i ˆ̄P∂i
(

ˆ̄PÛ†
(
∂jÛ

) ˆ̄P
)

ˆ̄P = i

(
ˆ̄P(∂i

ˆ̄P)Û†
(
∂jÛ

) ˆ̄P + ˆ̄P(∂iÛ†)
(
∂jÛ

) ˆ̄P − ˆ̄P
(
∂jÛ†

)
Û(∂i

ˆ̄P) ˆ̄P

+ ˆ̄PÛ†
(
∂i∂jÛ

) ˆ̄P
)
,

(A.7)

where in the first equality we used the definition of Âi given in eq. (6.19) and in the second equality

we have used Û†
(
∂jÛ

)
= −

(
∂jÛ†

)
Û . Comparing the first three terms of the above equation with the

first three terms in eq. (A.6) we see that they are the same. If we use eq. (A.7) along with eq. (A.6)

to analyse eq. (A.3) we find that

Û†F̂ijÛ = ˆ̄P
(
∂iÂj − ∂jÂi

)
ˆ̄P − i ˆ̄P(∂iÛ†)P̂(∂jÛ) ˆ̄P + i ˆ̄P(∂jÛ†)P̂(∂iÛ) ˆ̄P + i ˆ̄P

[
∂i

ˆ̄P, ∂j ˆ̄P
] ˆ̄P. (A.8)

Next we analyse ÂiÂj and find that

ÂiÂj = − ˆ̄PÛ†
(
∂iÛ

) ˆ̄PÛ†
(
∂jÛ

) ˆ̄P = ˆ̄P
(
∂iÛ†

)
P̂
(
∂jÛ

) ˆ̄P (A.9)

where in the last equality we used Û†
(
∂jÛ

)
= −

(
∂jÛ†

)
Û as well as P̂ = Û ˆ̄PÛ†. Using this in eq. (A.8)

we see that

Û†F̂ijÛ = ˆ̄P
(
∂iÂj − ∂jÂi − i

[
Âi, Âj

]) ˆ̄P + i ˆ̄P
[
∂i

ˆ̄P, ∂j ˆ̄P
] ˆ̄P. (A.10)

For the final part of the proof we use the definition ˆ̄Fij = i ˆ̄P
[
∂i

ˆ̄P, ∂j ˆ̄P
]

ˆ̄P and get

Û†F̂ijÛ = ˆ̄P
(
∂iÂj − ∂jÂi − i[Âi, Âj ]

)
ˆ̄P + ˆ̄F ij . (A.11)
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We have thus proven the identity stated in eq. (7.29) in the main text.
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[40] L. Ulčakar, J. Mravlje, and T. Rejec, “Kibble-zurek behavior in disordered chern insulators,”

Phys. Rev. Lett., vol. 125, p. 216601, Nov 2020.

[41] A. Marrazzo and R. Resta, “Locality of the anomalous hall conductivity,” Phys. Rev. B, vol. 95,

no. 12, p. 121114(R), 2017.

[42] A. Hayward, E. Bertok, U. Schneider, and F. Heidrich-Meisner, “Effect of disorder on topological

charge pumping in the rice-mele model,” Phys. Rev. A, vol. 103, no. 4, p. 043310, 2021.

[43] D. Varjas, M. Fruchart, A. R. Akhmerov, and P. M. Perez-Piskunow, “Computation of topological

phase diagram of disordered pb 1- x sn x te using the kernel polynomial method,” Phys. Rev.

Research, vol. 2, no. 1, p. 013229, 2020.
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