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Optimally localized single-band Wannier functions for two-dimensional Chern insulators
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The construction of optimally localized Wannier functions (and Wannier functions in general) for a Chern
insulator has been considered to be impossible owing to the fact that the second moment of such functions is
generally infinite. In this article, we propose a solution to this problem in the case of a single band isolated
from the rest of the band structure. We accomplish this by drawing an analogy between the minimization of
the variance and the minimization of the electrostatic energy of a periodic array of point charges in a smooth
neutralizing background. In doing so, we obtain a natural regularization of the diverging variance and this leads
to an analytical solution to the minimization problem. We demonstrate our results numerically for a particular
model system. Furthermore, we show how the optimally localized Wannier functions provide a natural way of
evaluating the electric polarization for a Chern insulator.

DOI: 10.1103/PhysRevResearch.6.023046

I. INTRODUCTION

The quantum mechanics of particles in a periodic potential
forms a cornerstone of condensed matter physics. A standard
approach in solid-state physics is to work with states that are
eigenstates of the underlying Hamiltonian that have crystal
momentum as a good quantum number [1]. However, since
such Bloch states are extended in real space, they can be
ill-suited for understanding local phenomena like covalent
bonding in a crystal. Therefore, the construction of Wannier
functions [2], which are spatially localized states describ-
ing a given band or collection of bands, is often desirable.
Roughly speaking, these Wannier states bridge the gap be-
tween solid-state physics and quantum chemistry, where a
local description is preferred.

Since early days, quantum chemists have used so-called lo-
calised molecular orbitals (LMO’s) to study chemical bonding
in molecular systems [3,4]. Wannier functions have provided
a powerful means to extend this to studying bonding and other
structural properties such as defects in general solid-state
systems [5–8]. Furthermore, these states are connected to the
Berry phase theory of polarization, providing an alternative
and illuminating viewpoint for studying things such as dielec-
tric properties [9]. They are also useful as a set of basis states
in studying quantum ballistic transport via the Landauer for-
malism [10,11]. More recently, Wannier functions have taken
a central role in classifying topological band systems [12,13].

To construct Wannier functions for a single band, one inte-
grates the Bloch functions over the Brillouin zone as [2]

wnR(r) = 1

VBZ

∫
BZ

dk e−ik·Rψnk(r). (1)
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(Details of notation from this section are described more
systematically in the following sections.) Such states are typ-
ically strongly localized in real space and possess desirable
properties: they are orthogonal and the Wannier states for a
given Bloch band are simply translations of each other by
real space lattice vectors. The above definition has an im-
portant ambiguity, namely that the phases of the Bloch states
are not specified. One can make the replacement ψnk(r) →
eiθ (k)ψnk(r), where eiθ (k) has k-space periodicity, and obtain
an equally good definition of the Wannier function. For the
multiband case, there is a larger ambiguity corresponding to a
unitary matrix.

In general, changing the gauge in this fashion can have a
nontrivial effect on the properties of the Wannier functions.
Therefore, it is natural to seek a recipe to the fix the gauge
such that we obtain the most desirable Wannier functions.
One approach, which is well suited for conventional (i.e.,
nontopological) systems is to minimize the spatial variance,
which directly reflects localization, of the Wannier function
with respect to the gauge freedom. This approach, and the
resulting maximally localized Wannier functions (MLWFs)
[14], has achieved wide-scale adoption in the electronic struc-
ture community and has numerous applications.

A major difficulty emerges [14] when attempting to con-
struct Wannier states for topological insulators such as Chern
insulators. Chern insulators are canonical models exhibiting
topological bands [15,16], with the most famous being the
Haldane model [17]. The difficulty arises due to the presence
of a topological obstruction preventing the construction of
Bloch states that smoothly depend on k while having the
correct periodicity. Indeed, if one could find such a smooth
dependence, then a straightforward application of Stokes’
theorem would reveal that the Chern number will always
vanish. We remark that other types of topological obstructions
do not necessarily cause issues. For example, it has been
shown that globally smooth Bloch states can be constructed
in the case of an Z2 obstruction as long as one does not
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demand that the Wannier functions preserve time-reversal
symmetry [18].

To deal with the difficulty in Chern insulators, one ap-
proach is to use different gauges to cover two or more patches
of the Brillouin zone so that the Bloch states have smooth k
dependence in each patch. However, such Bloch states will
not generally be smooth along lines where the patches meet.
Another approach, which will be taken in this paper, is to
allow the Bloch states to have vortices in reciprocal space.
This approach is sensible because we need to use a single
choice of gauge for the Bloch states in (1), and we would
like the Bloch states to be as smooth as possible. Generally,
the sum of the winding numbers of all the vortices in the
Brillouin zone will correspond to the Chern number of the
band under consideration. For example, for a band with Chern
number one, the simplest possibility is to allow for one singly
quantized vortex. Now, the gauge ambiguity allows one a
choice not just of local variations of the phase but also of
the positions of vortices, which can be moved by singular
gauge transformations, which will be discussed in detail later
in this article. Topology dictates the number of defects but not
their location. This phenomenon is similar to the Hairy Ball
theorem from algebraic topology [19].

The aim of this article is to construct optimally localized
Wannier functions for Chern insulating bands. Besides the
ambiguity of the vortex positions we just discussed, it is well
known that it is not possible to construct Wannier functions
for such systems that decay exponentially at large distances
[20,21]. This is because we are effectively evaluating the
Fourier transform of a function with vortex singularities. The
importance of this fact has taken a central role in giving a
defining relation for topological band systems. In particular,
in [12], a system is defined to be topological if there is no
Wannier representation composed of exponentially localized
states respecting symmetries of the underlying lattice. In [13],
it was argued conversely that states without such an atomic
limit are either topological or exhibit so-called fragile topol-
ogy. The theory of Wannier functions, originally a concept in
electronic structure theory, has thus taken a prominent role in
the newer field of topological states of matter. Although we
cannot construct exponentially localized Wannier functions
for a Chern insulator, many of the well-known applications
of Wannier functions (e.g., Wannier interpolation and, as will
be discussed in this article, the computation of polarization)
do not rely on exponential decay. In this article, we construct
optimal algebraically localized Wannier functions, which are
well suited for these applications.

Wannier functions for a Chern insulating band in 2D will
generically decay asymptotically as 1/r2 and this is an issue
because it leads to a logarithmic divergence of the variance
[21]. Additionally, the location of the previously discussed
Brillouin zone vortices, which depend on the gauge chosen,
will influence quantities, which are gauge invariant for the
nontopological case such as the so-called Wannier center,
which is the average position of a Wannier state. As an exam-
ple, one can imagine nucleating a vortex and antivortex pair
infinitesimally close together in the Brillouin zone and then
transporting the vortex around the Brillouin zone torus until
it returns to the antivortex and annihilates. Such a process
can be achieved by a (singular) gauge transformation alone.

This process will continuously shift the Wannier center by one
lattice constant. The importance of a systematic way of fixing
this singular part of the gauge field is therefore clear.

We solve the problem of minimizing the variance over
different vortex positions by identifying a dual picture in
which the vortices can be thought of as periodic arrays of
point charges in a smooth neutralising background charge dis-
tribution. In this setting, minimizing the variance corresponds
to minimizing the electrostatic energy per unit cell. This ap-
proach provides a natural way to regularize the diverging vari-
ance. The source of its divergence is identified with the self-
energy of the point charges, which can be neglected (as in or-
dinary electrostatics) from the total energy. Crucially, this self-
energy does not depend on where the point charges are placed.

To test this theoretical development, we next turn to a
concrete example of a Chern insulator lattice model. We con-
struct Wannier functions where the nonsingular portions of the
gauges are optimised (i.e., are in the Coulomb gauge) but with
vortex locations at various places in the Brillouin zone. We
demonstrate that the localization of these Wannier functions
are in quantitative agreement with the theoretical predictions,
with the most localized being the one that minimizes the
electrostatic energy in the dual picture. Finally, as a first ap-
plication of the developed scheme of optimal gauge fixing, we
demonstrate how it can be used to compute the polarization
of a Chern insulator, once again illustrating on a particular
model. Even though we have conducted our numerical tests on
a particular model, we emphasize that the theoretical results
presented in this article are applicable to any Chern insulator.

II. BACKGROUND AND PRELIMINARY CONCEPTS

In this section, we give some background to the de-
velopment of localized Wannier functions and set notation.
Readers familiar with this may wish to only skim this section.
We begin by considering a periodic quantum system with
Hamiltonian H , whose eigenstates are given by Bloch’s the-
orem as ψnk(r) = eik·runk(r) where the unk(r) possesses the
real-space periodicity of the Hamiltonian. As usual, n labels
the band index and k labels reciprocal space wave vectors. We
use the normalization convention 〈ψnk|ψmk′ 〉 = VBZδnmδ(k −
k′) for the Bloch states, where VBZ is the area (or volume in
higher dimensions) of the Brillouin zone.

The corresponding Wannier functions [2] are then defined
by (1) where R denotes a lattice vector. These states are
orthonormal and span the same space as the corresponding
Bloch states with which they are constructed. Furthermore,
the Wannier functions for a given band are all translations of
each other, which can be observed by applying position trans-
lation operators to the Wannier functions in the home unit cell.

A. Maximally localized wannier functions

The primary motivation for Wannier functions comes from
the fact they are generally very localized compared to the
highly delocalized Bloch states. However, Wannier functions
as defined by (1) are not unique. The Bloch states have an
inherent gauge degree of freedom, which usually does not
have any physical significance. Yet, this choice of gauge has
a nontrivial effect on the localization properties of Wannier
functions, giving rise to different shapes and decay properties.
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To choose between these different Wannier functions, one
needs a concrete and systematic way of fixing the gauge of the
Bloch states. The canonical way of achieving this for nontopo-
logical systems is to minimize the total spatial variance of the
set of Wannier functions corresponding to a particular set of
Bloch bands as originally described in [22]. Since the Wannier
functions for a given band are translations of the Wannier
function in the home unit cell, it is sufficient to minimize the
total variance of the Wannier functions in the home unit cell,
which is given by the localization functional

F =
∑

n

(〈wn0|r2|wn0〉 − 〈wn0|r|wn0〉2), (2)

where n ranges over the set of bands of interest.
It is often more useful to express this variance in momen-

tum space. For the rest of this article, we will focus on a single
isolated band and so we drop band indices in what follows.
Following work by Blount [23], we can write F in reciprocal
space as [14,22]

F = 1

VBZ

∫
BZ

dk 〈∇kuk|∇kuk〉 −
(

1

VBZ

∫
BZ

dk A(k)

)2

,

(3)

where A(k) = i〈uk|∇kuk〉 is the Berry connection of the band
under consideration (see Appendix A for a detailed deriva-
tion). Moreover, we note that 〈∇kuk|∇kuk〉 = 〈∂kα

uk|∂kα
uk〉,

where the Einstein summation convention is used and α =
x, y, z.

We now wish to minimize the above functional with re-
spect to smooth gauge degrees of freedom of the Bloch states.
To this end, consider the following family of Bloch states

|uk〉 = eiθ (k)|ũk〉, (4)

where we assume that θ (k) is a smooth and periodic func-
tion and |ũk〉 is a fixed reference state. With respect to
this reference state, the terms in (3) are 〈∇kuk|∇kuk〉 =
〈∇kũk|∇kũk〉 − 2(∇kθ (k))Ã(k) + (∇kθ (k))2 and A(k) =
Ã(k) − ∇kθ (k). Then, taking the functional derivative of F
with respect to θ gives

δF

δθ
= 2∇k · A. (5)

Thus the maximally localized state will satisfy the Coulomb
gauge condition ∇k · A = 0. This quite remarkable and per-
haps underappreciated result was first found by Blount [23].
Using this, MLWFs can be constructed numerically via a
steepest descent algorithm in such a way that one maintains
the unitarity of the gauge transformation. This approach was
formulated in [22] and is applicable to the many-band general-
ization as well and it led to the development of the Wannier90
package for computing MLWFs for real materials [24].

B. MLWFs for 1D systems

Let us first consider the 1D case, for completeness and
also to demonstrate trouble that arises when extending the
treatment to higher dimensions. Here, it turns out that one
can always find exponentially localized Wannier functions
[25]. Furthermore, it turns out that in 1D, the MLWFs defined

previously are simply the eigenstates of the projected position
operator PxP, where P projects onto the band under consid-
eration. This can be seen quite easily by splitting the variance
(2) into a gauge invariant part FI and a gauge dependent part
FG as [14]

FI = 〈w0|xQx|w0〉 (6)

and

FG = 〈w0|xPx|w0〉 − 〈w0|x|w0〉2 (7)

=
∑
R �=0

|〈w0|x|wR〉|2, (8)

where the operator Q = 1 − P projects onto the complement
of the band under consideration.

Thus, if we suppose that the |wR〉s are eigenstates of PxP
with corresponding eigenvalues λR, then we find

〈w0|x|wR〉 = 〈w0|PxP|wR〉 = λ0δ0R (9)

and so we see that FG = 0 for these Wannier functions.
Since FG is clearly positive definite and is the only gauge-
dependent piece, eigenstates of PxP are clearly maximally
localized Wannier states. We note that this argument gener-
alizes straightforwardly to the 1D multiband case.

C. MLWFs for 2D systems

Moving to 2D systems, the situation becomes more com-
plicated. We no longer consider eigenstates of the projected
position operators because PxP and PyP do not commute in
general and are therefore not always simultaneously diago-
nalizable. In fact, the commutator of PxP and PyP is directly
related to the Chern number [26–28]. It was shown in [20] that
a necessary and sufficient condition for the existence of expo-
nentially localized Wannier functions in 2D is the vanishing
of the Chern number of the bands considered. Additionally,
the variance becomes infinite if the system has nonzero Chern
number [21]. As discussed in the Introduction, this is due
to the presence of irremovable vortices in the Bloch states.
Due to these reasons, one may be led to believe that ML-
WFs cannot be constructed in a sensible way for a 2D Chern
insulator [29].

III. THEORY OF OPTIMALLY LOCALIZED
WANNIER FUNCTIONS

In this section, we present the main result of this article. We
provide a solution to the problem of constructing optimally
localized Wannier functions for a 2D Chern insulator in the
case of a single isolated band. We emphasize that the method
described applies even in the case of a complex band structure
as long as the band considered is isolated from the rest of the
bands.

A. Berry connection and Bloch state vortices

A Chern insulator is characterized by having a nonzero
Chern number, which is defined by [30]

C = 1

2π

∫
BZ

dk 	(k) (10)
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where 	(k) is the Berry curvature, which is gauge invariant.
The Chern number is a topological invariant and is always
an integer. In what follows, we restrict ourselves to the case
of C = ±1 to avoid unnecessary complexity. However, it is
straightforward to generalize our work to higher Chern num-
bers and we will remark on this later.

One usually defines the Berry curvature via 	 = ∇k × A
but care must be taken when A is not smooth. A standard
approach in computing the Chern number is to use different
gauges for different patches of the Brillouin zone to ensure
A is smooth within each region. Then one simply integrates
the curl of the smooth connections over each region to eval-
uate C. On the other hand, in the standard construction of
Wannier functions (1) we require using a single gauge to cover
the entire Brillouin zone. If one insists on such a gauge, a
straightforward application of Stokes’ theorem gives∫

BZ
dk ∇k × A = 0 (11)

due to the Brillouin zone periodicity of A.
There is no contradiction of the above with the possibility

of nonzero Chern numbers if we allow for a vortex in the
Bloch states. If there is a vortex at kv , then the Berry con-
nection will also be singular at that point leading to a delta
function in its curl. So, we have

∇k × A = 	(k) − 2πCδP(k − kv ), (12)

where δP(k) = ∑
G δ(k + G) is the periodic delta function

with summation over reciprocal lattice vectors. Note that the
curl of a 2D vector field is shorthand for the scalar quantity
∂Ay/∂kx − ∂Ax/∂ky. Now, (11) is satisfied because of the
cancellation between the delta function and the net Berry
curvature. (See Appendix E for a related discussion in the
context of polarization, which will be studied later in this
article.)

It is crucial to note that for a Chern insulator, having
a vortex is inevitable in this construction. Furthermore, the
position of the vortex is a gauge dependent property because
it can be moved by a singular gauge transformation, i.e., a
gauge transformation by a phase with a vortex in it. If the
gauge transformation has a vortex of winding number −C
at the initial position and a vortex of winding number C at
some other position, then it moves the position of the vortex.
Therefore, the vortex position presents us with an extra de-
gree of freedom to minimize over in addition to the smooth
gauge degree of freedom. The latter leads to the Coulomb
gauge condition ∇k · A = 0, which determines the gauge
once the position of the vortex is given. Note that for a non-
topological system, the Chern number is zero and so there are
no vortices to begin with. There, singular gauge transforma-
tions should be completely avoided as they would introduce
vortices that worsen the decay of the Wannier functions. Thus,
one only considers the Coulomb gauge condition in such
cases.

B. Electrostatics analogy

We next proceed to develop the correspondence of the
minimization problem with two-dimensional electrostatics.
We begin with the variance functional for a single band in

the momentum space representation, as given by (3). Note
that this can be broken down into gauge invariant and gauge
dependent parts. In Sec. II B, we wrote these down in real
space form. In momentum space, the gauge dependent part,
which is all we need to minimize, takes the form

F̃ = 1

VBZ

∫
BZ

dk A2 −
(

1

VBZ

∫
BZ

dk A
)2

. (13)

The second term above is gauge invariant under smooth (and
periodic) gauge transformations, but we cannot ignore it for
the present scenario because it is not invariant under singular
gauge transformations.

While the minimization of (13) over smooth gauge trans-
formations yields the Couloumb gauge condition as usual, this
process cannot move the vortex. Therefore, we must solve the
Coulomb gauge condition at each vortex position kv and then
use the localization functional to identify the optimal vortex
position. In other words, we must solve for A satisfying the
equations

∇k · A = 0,

∇k × A = 	(k) − 2πCδP(k − kv ).
(14)

These equations uniquely determine A up to a constant.
Furthermore, the integral of A over the Brillouin zone with
specified kv is a gauge invariant quantity, which fixes this
constant.

In order to solve (14), we introduce a vector field E such
that

E = ẑ × (c − A), (15)

where c = 1
VBZ

∫
BZ dk A and ẑ is a unit vector perpendicular

to the 2D plane on which A lies. Then, in this dual picture, E
satisfies the electrostatic equations

∇k · E = 2πρ(k; kv ),

∇k × E = 0,
(16)

with periodic boundary conditions, where ρ(k; kv ) =
	(k)/2π − CδP(k − kv ) is the corresponding charge distri-
bution. In the above, E is interpreted as the electric field of
a charge distribution composed of a periodic array of point
charges, one per reciprocal space unit cell, together with a
smooth background 	. Note that the net charge per unit cell is
zero, which means that this periodic problem is solvable. We
emphasize that the Berry connection A should not be confused
with an electromagnetic vector potential in the dual picture.
Further note that (15) implies that the average electric field is
zero from which it follows that it can be expressed in terms
of a periodic potential. Figure 1 provides an example of a
Berry connection for a set of Bloch states with a vortex and
the corresponding zero-average electric field.

Using (15) to express the localization functional in terms
of E, we arrive at the simple relation

F̃ = 1

VBZ

∫
BZ

dk E2. (17)

The electrostatic analogy therefore goes even further. In
the dual picture, the localization functional becomes the
electrostatic energy per unit volume of an infinite periodic
charge-neutral system. Minimizing over the singular gauge
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FIG. 1. An example of a Berry connection for a set of Bloch states with a vortex (left) and the corresponding zero-average electric field
(right). The colors represent the magnitudes of the vectors. Note that there is just one vortex and this is located at (π, π ) (the Berry connection
magnitude vanishes at other points where its direction has a defect).

transformations corresponds to finding the positions of the
point charges, which minimize this electrostatic energy.

C. Analytical solution

We now proceed to find analytical expressions for quanti-
ties entering the localization functional. We split the charge
distribution into two parts as ρ(k; kv ) = ρv (k; kv ) + ρs(k)
where

ρv (k; kv ) = ρ0 − CδP(k − kv ) (18)

corresponds to a periodic lattice of point charges in a uniform
neutralizing background given by ρ0 = C/VBZ and

ρs(k) = 	(k)

2π
− ρ0 (19)

corresponds to a smooth periodic charge distribution in the
same uniform neutralizing background.

We will solve (16) for these two charge distributions sep-
arately and thus obtain a solution to the entire problem by
linearity. For the charge distribution ρv (k; kv ), one typically
uses the Ewald summation technique to find the electric field
[31–33]. In the present problem, we are in 2D so we can
instead leverage results from complex analysis. For each wave
vector k, we introduce a corresponding complex represen-
tation given by z = kx + iky. Furthermore, we represent the
electric field Ev (k; kv ) for this problem in complex form as
Ev (z; zv ) = Ex − iEy, where zv is the complex representation
of the vortex position kv . Then, following ideas from work by
Tkachenko on superfluid vortex lattices [34], we find that the
solution to the electric field is given by

Ev (z; zv ) = −C[ζ (z − zv ) + α(z − zv )] + ρ0π (z∗ − z∗
v ),

(20)

where α is a constant chosen to make Ev periodic (see
Appendix C for more details) and ζ (z) is the Weierstrass zeta

function given by

ζ (z) = 1

z
+

∑
G�=0

(
1

z − G
+ 1

G
+ z

G2

)
. (21)

Here, G = Gx + iGy is the complex representation of recipro-
cal lattice vector G.

For this electric field, the corresponding electrostatic po-
tential is given by

φv (z; zv ) = 1
2C log |σ (z − zv )|2 + C

(
1
4α(z − zv )2 + c.c.

)
− 1

2ρ0π |z − zv|2, (22)

where σ (z) is the Weierstrass sigma function, which is related
to ζ (z) via

ζ (z) = d

dz
log σ (z). (23)

We note that this electrostatic potential is both real and peri-
odic (see Appendix C).

The solution is much simpler for the smooth charge distri-
bution ρs(k). We can write the Fourier series representation

ρs(k) = 1

2π

∑
R �=0

	Re−ik·R, (24)

where the 	Rs are the Fourier components of the Berry
curvature. Note that there is no R = 0 term in the above
equation due to charge neutrality of ρs(r). By taking a Fourier
transform of Poisson’s equation, we therefore obtain the
solutions

Es(k) =
∑
R �=0

iR
R2

	Re−ik·R (25)

and

φs(k) =
∑
R �=0

	R

R2
e−ik·R (26)
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for the electric field and electrostatic potential respectively.
The solution to the full problem (16) is obtained by

summing together the two solutions Ev and Es we found
above. Note that the total potential φ = φv + φs is periodic in
reciprocal space so the electric field obtained indeed has zero
average.

D. Minimizing F̃

We now proceed to describe the minimization of the local-
ization functional. Using the solution found in Sec. III C, we
can solve the problem of minimizing the localization func-
tional F̃ . In the electrostatics picture, we have

F̃ = 1

VBZ

∫
BZ

dk ‖Ev + Es‖2

= 1

VBZ

(∫
BZ

dk E2
v − 2

∫
BZ

dk Ev · ∇kφs +
∫

BZ
dk E2

s

)

= const − 4πC

VBZ
φs(kv ), (27)

where the constant term does not depend on the vortex posi-
tion. The nonconstant term follows from integrating by parts
the term involving the interaction between the point particle
and the smooth charge distribution.

Note that this immediately gives us a sensible way to regu-
larize the blowing up of the variance mentioned previously. In
the electrostatics picture, this infinity simply corresponds to
the self energy of the point charges, which is contained in the
term involving E2

v . This does not depend on where the charges
are placed and so it can be neglected in the usual fashion.
In the variance picture, this term corresponds to a logarith-
mic divergence, which is independent of the vortex position.
Therefore, we can regularize the localization functional by
introducing a long distance cutoff and thus effectively min-
imize the finite short-range contribution to the localization
functional over the vortex position. This will be discussed
further in the next section. Moreover, (27) tells us that to find
optimal Wannier functions for C = +1(−1) in our setting, the
vortex needs to be placed at the maximum (minimum) of the
electrostatic potential φs for the smooth charge distribution in
a uniform neutralizing background.

As stated in the beginning of this section, the generalization
to higher Chern numbers is relatively straightforward. For a
Chern number |C| = 1, there is only one vortex per unit cell.
The vortex-vortex interaction contribution to the electrostatic
energy will not depend on the vortex position because chang-
ing the vortex position corresponds to uniformly translating
the vortex lattice. Thus we have lumped the vortex-vortex
interaction into the constant term in (27). This, however,
does not remain true for |C| � 2 where there will be two or
more vortices in the Brillouin zone. Here, one must explicitly
consider the vortex-vortex interaction terms involving (22) in
the minimization, which makes the problem richer. For this
case, there will generally be two competing terms in (27): one
describing vortex-vortex interaction and the other describing
the vortices interacting with the smooth potential.

FIG. 2. Diagram of the real-space lattice connected to the
Hamiltonian given by (29). Sites on sublattices A and B are colored
red and blue respectively. The arrows indicate the hopping terms.

IV. NUMERICAL RESULTS

In this section, we present numerical results to test the de-
velopments of the previous section. We use a minimal Chern
insulator model that is related to the Qi-Wu-Zhang model [35]
via a spin rotation. The lattice Hamiltonian considered is

H = −
∑
i, j

a†
i+1, jbi, j + H.c.

− 1

2

∑
i, j

(a†
i, jbi, j+1 + a†

i, jbi, j−1) + H.c.

− i

2

∑
i, j

(a†
i, j+1ai, j + b†

i, jbi, j+1) + H.c.

− u
∑
i, j

a†
i, jbi, j + H.c. (28)

This is a Hamiltonian on a lattice with sublattices A and B
where the creation operators a†

i, j and b†
i, j create a particle at

the A and B sites of the (i, j) unit cell respectively. We set the
lattice constants to one so that the distance between the A and
B sites in a given unit cell is 1/2. The Hamiltonian involves
nearest-neighbor hoppings in the x and y directions and also
cross hoppings between A and B sites of different unit cells, as
shown in Fig. 2. One of the hoppings is imaginary in order to
break time-reversal symmetry (similar to the Haldane model’s
complex next-nearest-neighbor hoppings).

Since this Hamiltonian is periodic in real space, one can
Fourier transform to obtain the following Bloch Hamiltonian

H (k) = − [1 + u + cos(ky)] cos

(
kx

2

)
σx

− [1 − u − cos(ky)] sin

(
kx

2

)
σy − sin(ky)σz, (29)
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where σx,y,z are the Pauli matrices. Note that we have chosen
to Fourier transform the Hamiltonian in such a way that it
is not periodic in reciprocal space. This has been done to
incorporate the different positions of the A and B sublattice
sites within the unit cell into the real-space position operator.
This choice of position operator is much more intuitive for our
discussion since the Wannier representation is an inherently
real-space quantity. The Hamiltonian (29) has lowest-band
Chern number C = 1 for 0 < u < 2, C = −1 for −2 < u < 0
and C = 0 for |u| > 2. For the numerical work in this section,
we set u = 1 so that the Chern number is always +1. Through-
out we will consider Wannier functions of the lower band.

In order to compute optimal Wannier functions for this
model, we begin by discretizing the Brillouin zone into N
equally spaced points in each direction. Moreover, we need
to make an initial choice of gauge for the Bloch states. Let us
begin by fixing the first entry of the eigenvector of H (k) to
always be real. It can then be seen that this fixes the vortex in
the position (kx, ky) = (π, 3π/2).

We now require a general singular gauge transformation
capable of shifting this vortex to an arbitrary location in the
Brillouin zone. Such a gauge transformation is not unique but
we can fix it by also demanding that it leaves the value of
∇k · A unchanged. This is a useful choice because it allows
us to carry out minimizations over smooth and singular gauge
transformations in any order. It follows directly from the so-
lution to the electrostatic problem in the previous section (see
also Appendix D) that the singular gauge transformation shift-
ing a vortex from position a to b (where both are written in
complex representation), is given by eiθs (z;a,b), where

θs(z; a, b) = −C Im

(
log

(
σ (z − a)

σ (z − b)

)
+ α(b − a)z

+ π

VBZ
(b∗ − a∗)z

)
. (30)

Here, z = kx + iky is once again the complex representation
of the reciprocal space vector k and α is the same constant
as in (20). This gauge transformation satisfies ∇2θs = 0 by
construction (thus preserving ∇k · A) and eiθs (z;a,b) is Brillouin
zone periodic. Figure 3(a) shows a vector plot of the singular
gauge transformation for N = 29 and a = π + 3π i/2 and b =
π + π i/2. The arrows represent the direction of the phase eiθs

on the unit circle. We observe that this gauge transformation
creates an antivortex at a and a vortex at b, thereby completely
shifting the vortex from a to b without leaving any trace
behind.

To confirm the above, Fig. 3(b) shows the magnitude of
the Berry connection in the Brillouin zone after the vortex has
been shifted using the gauge transformation in (a). Here, N =
87 is used. Note that a vortex in the ground-state wavefunction
at some point kv in the Brillouin zone leads to the behavior
|A(k)| ∼ 1/|k − kv| close to the vortex and we can therefore
conclude from (b) that our gauge transformation has shifted
the vortex correctly.

Next, we compute the optimal Wannier functions for our
lattice model using the analytical result from the previous
section. Namely, noting that we have C = +1, we first move
the vortex to the maximum of the smooth potential φs(k) and
then minimize the variance functional with respect to smooth

FIG. 3. Numerical results for the lattice model. N = 87 is used
everywhere except for the vector plot. (a) Vector plot of the singular
gauge transformation for N = 29, which moves the vortex from
(π, 3π/2) to (π, π/2). The arrows are the vectors formed by the real
and imaginary parts of this gauge transformation. (b) Magnitude of
the Berry connection after applying the singular gauge transforma-
tion from (a). (c) Zoomed-in plot of the optimal Wannier function in
the home unit cell. This has a modified variance (see text) of 0.8461.
(d) Zoomed-in plot of the Wannier function obtained by optimising
over smooth gauges but placing the vortex at the suboptimal posi-
tion (π/4, π/4). This has a modified variance (see text) of 0.9758.
(e) Plot of minus the modified smooth potential φ̃s(k) =
(4π/VBZ)φs(k). (f) Plot of the modified variance (see text) of the
optimal Wannier function obtained by placing the vortex in different
points across the Brillouin zone. The number of different vortex
positions used is 441.

gauge transformations. The latter is done via a steepest de-
scent algorithm. In our single band case, this amounts to
solving the differential equation

dU (k, τ )

dτ
= −i[∇k · A(k, τ )]U (k, τ ) (31)

where U (k, τ ) = eiθ (k,τ ) is the smooth unitary gauge transfor-
mation acting on the Bloch states and τ is a suitably scaled
relaxation time variable. Note that we always time-evolve U
in such a way that unitarity is preserved at each step. It is
crucial to note that the steepest descent process cannot alter
the vortex position by definition. Figure 3(c) shows the density
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of the resulting optimal Wannier function in real space. In
contrast, Fig. 3(d) shows the Wannier function for a gauge
satisfying ∇ · A = 0 but with the vortex at (π/4, π/4), which
is suboptimal. It is clear that this Wannier function overlaps
nontrivially with a neighboring unit cell and so the importance
of choosing the right vortex position is evident.

We now move on to consider the variance of the opti-
mally localized Wannier functions we have found. For an
unbiased check of the analytical arguments, we will endeavor
to compute the variance working entirely within real space.
This involves finding a real-space method of regularizing the
divergence of the variance. As we have seen, in k space the
divergence is regularized simply by dropping the vortex self-
interaction term. In real space, we expect that the variance
should be regularized by long-distance modifications. The
variance in real space can be written in the form

F =
∫

dr
∫

dr′|w(r)|2|w(r′)|2V (r − r′), (32)

where w(r) is the Wannier function and V (r) = r2/2. (The
idea of expressing localization functionals in this form is
not new—two such examples are the Edmiston-Ruedenberg
criterion [3] and the von Niessen criterion [36]). The regular-
ization procedure then is to alter the “potential” V (r) at large
distances to achieve a convergent result. We work with the
potential given by

Ṽ (r) = R
√

R2 + r2 − R2, (33)

where R is a cutoff parameter. We observe that Ṽ (r) ∼ r2/2
for r � R while Ṽ (r) ∼ Rr for r � R. Thus, this choice of
potential has the desired properties, given the 1/r2 decay
of the Wannier functions. For our calculations, we require a
value of R that is large enough to capture the finite part of the
variance. This can be done by choosing R such that R2 is large
compared to the ratio of the band curvature and the band gap,
at k = 0. Thus, we now have a sensible choice of cut-off for
the localization functional, which can be applied to arbitrary
system sizes (which are larger than the cut-off). We will refer
to this version of the localization functional as the modified
variance.

With this, we can verify that the optimal Wannier func-
tions are indeed found by placing the vortex in the maximum
of the potential and that the dependence of the localization
functional on the vortex position is of the form given by (27).
We carry out the steepest descent procedure while placing
the vortex in different positions across the Brillouin zone.
For each vortex position, we evaluate the modified variance
of the resulting Wannier function using a cutoff radius of
R = 30. The result is shown in Fig. 3(f). We compare this
with Fig. 3(e), which is a plot of the negative of the modified
smooth potential φ̃s [see (27)], which is defined to be

φ̃s = 4π

VBZ
φs. (34)

We see that these two plots differ only by an additive constant
as predicted by (27), thus validating our analytical result.

V. APPLICATION: POLARIZATION

Having developed and tested optimally localized Wannier
functions for Chern insulators, we now move on to describe
an application. In particular, we will show how they can be
used to compute the polarization of a Chern insulator in an
unambiguous and physically relevant way.

For topologically trivial systems, Wannier functions pro-
vide an elegant means of computing the electric polarization,
following the modern theory of polarization [9,37]. The fun-
damental idea is that an absolute polarization cannot be
defined uniquely for an extended system, but the change in
polarization of a system subject to some deformation is well
defined and experimentally measurable. It can also be shown
that this change in polarization is given by the change in the
position of the Wannier center in real space, providing a very
intuitive picture [14].

Polarization for a Chern insulator, on the other hand, has
been a topic under some amount of debate, with recent works
studying this extensively (see, for example, [38–40]). Indeed,
the polarization is conventionally determined by integrating
the Berry connection over the Brillouin zone. However, as we
have discussed, this quantity is not invariant with respect to
singular gauge transformations. Therefore, a consistent mech-
anism of fixing the singular gauge is crucial. We will show
that the construction we have for optimally localized Wannier
functions provides a very natural way of fixing the gauge and
thereby obtain an expression for the polarization in terms of
the Wannier center shift plus a correction. Our results are fully
consistent with those of [41] where a k-space expression for
the polarization of a Chern insulator is developed.

Polarization is encapsulated by the fundamental
relation [9]

�Pn =
∫ 1

0
dλ Jn(λ), (35)

which describes the change in polarization as the integral of
the current during the deformation process. Here, �Pn is the
change in polarization of the nth band and λ parametrizes
the adiabatic deformation of the Hamiltonian (λ = 0 is usually
the centrosymmetric case). Furthermore,

Jn(λ) = − ie

(2π )2

∫
BZ

dk 〈∂λunk|∇kunk〉 + c.c. (36)

is the cell-averaged adiabatic current where −e is the charge
quantum, and we note that the Bloch states are now functions
of λ. This adiabatic current is a measurable and therefore a
gauge invariant quantity, thus providing the correct starting
point for considering polarization in a Chern insulator.

We now recall the Berry connection Ank = i〈unk|∇kunk〉
and introduce Anλ = i〈unk|∂λunk〉. In terms of these, we may
write the adiabatic current as

Jn(λ) = − e

(2π )2

∫
BZ

dk(∂λAnk − ∇kAnλ

+ i〈unk|(∇k∂λ − ∂λ∇k )|unk〉). (37)

The important term here is the final one. Mixed partial deriva-
tives commute when acting on a smooth function but for
a Chern insulator, they would not commute at vortices and
so we cannot ignore this term. Therefore, for a band with
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C = ±1, we find that (see Appendix E)

�Pn = − e

Vc
�rn + eC

2π
ẑ × �kvn, (38)

where �rn is the change in the Wannier center, �kvn is the
change in the vortex position of the Bloch states due to the
adiabatic deformation, and Vc is the area of the unit cell.
This relation (38) is another main result of the article. For
conventional (nontopological) systems, the correct expression
for the polarization is given by the first term of (38) only.
However, this term is not invariant with respect to singular
gauge transformations and the additional term in (38) serves to
cancel off this gauge dependence, making the full expression
of the polarization gauge invariant as it must be.

We now wish to use the developed formalism to compute
the polarization of our model system. In order to induce a
change in polarization, we add a staggered on-site potential,
which breaks centrosymmetry and so we consider the modi-
fied Hamiltonian

H̃ = H + δ
∑
i, j

(a†
i, jai, j − b†

i, jbi, j ), (39)

where δ is the on-site potential. We set u = 0.5 so that the
hopping amplitudes alternate in strength in the x direction.
Starting at the centrosymmetric case δ = 0, we compute the
change in polarization as the staggering is adiabatically in-
creased up to δ = 0.75. We note that we cannot cross δ =√

3/2 ≈ 0.866 since the gap would close, breaking adiabatic-
ity. Throughout we fix the average particle number to be one
particle per every two lattice sites. By considering the sym-
metry of Fig. 2, we see that turning on δ would only induce
a polarization in the x direction. We use optimally localized
Wannier functions in each case to compute the polarization
via (38), where we use an 80 × 80 grid of points in reciprocal
space. The results, which can be computed fairly efficiently,
are shown by the blue curve in Fig. 4.

To check the validity of the expression for the polarization,
we now turn to numerically computing the dipole moment
of our model for large finite-system sizes, mostly following
the method described in [41]. We take the system to have
open boundary conditions in the x direction (which is the
direction of the induced polarization) and periodic boundary
conditions in the y direction. For a system with M unit cells
along the x direction, the dipole moment per unit length is
given by

P̃x = − e

MVc

∫ 2π

0
dk

∑
n∈occupied

states

〈ψnk|x|ψnk〉, (40)

where Vc is the area (volume in higher dimensions) of the real
space unit cell, n is the band index and k is the wave number.
Note that k is now a scalar because we only have periodicity
in the y direction, and the number of bands involved scales
with M.

There is then a question of how to fill the edge states
when computing the dipole moment as δ is varied. Here
we appeal to a sensible physical scenario. We start with the
zero-temperature ground state when δ = 0. We take the rate
of variation to be slow with respect to the bulk energy gap,

×

FIG. 4. Plots of change in polarization (blue) for the lattice
model with respect to the centrosymmetric case and change in dipole
moment (red dots) across an infinite strip of the lattice model. Both
quantities are given in units of −e/a where a is the lattice constant. A
reciprocal space grid with N = 80 was used to compute the polariza-
tion. To compute the dipole moment, Richardson extrapolation was
applied with two strip widths M = 20 and M = 30 and two recipro-
cal space discretizations with 500 and 1000 k points respectively.

but fast with respect to edge-to-edge tunneling, which expo-
nentially decays as a function of system length. This means
that, during the course of the evolution, the population of edge
states may differ from those of instantaneous ground states.
Specifically, the final state will acquire a different chemical
potential on each side through the quasi-adiabatic evolution.
This is how occupied states in (40) are determined.

The change in dipole moment with respect to δ = 0, cal-
culated as prescribed above, is shown by red dots in Fig. 4.
We compute the dipole moment for two widths M = 20 and
M = 30, and two k-space discretizations with 500 and 1000
k points. We then apply Richardson extrapolation in both M
and number of k-points to eliminate the leading order errors
in both quantities. This gives us an excellent approximation
for the dipole moment in the thermodynamic limit M → ∞,
so that it may be compared with the polarization. Indeed, we
observe very good agreement as seen in the plot, where the
largest relative error is only 0.17% and occurs for δ = 0.75,
which is in the vicinity of where the gap closes.

VI. SUMMARY AND OUTLOOK

In this article, we have proposed a means of computing op-
timally localized Wannier functions for a single band in Chern
insulators. We showed that the problem of minimizing the
variance functional for such systems has a dual interpretation
involving minimizing the electrostatic energy of a periodic
array of point charges in a smooth neutralising background.
In this dual picture, the electrostatic energy naturally involved
an infinite self-energy term. We observed that if this term
were neglected in the usual fashion, then we obtained a finite
expression, which depended nontrivially on the positions of
the vortices. Minimizing this finite part corresponds to mini-
mizing the short-range spread of the Wannier function around
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its center so that the overlap with neighboring atomic sites is
minimized. This makes our optimal Wannier functions use-
ful in practical calculations. We used Chern numbers of ±1,
where there is always only one vortex, for clarity and showed
that the vortex position minimizing the electrostatic energy
was an extremum of the electrostatic potential corresponding
to the (neutralized) smooth background. We then remarked
that everything works similarly for higher Chern numbers in
the case of a single band—the electrostatic energy simply
involves extra terms due to pairwise vortex interactions (since
there can be more than one vortex) and it must be minimized
over all over vortex arrangements.

As an immediate application of our paper, we presented
a Wannier function approach to computing polarization in a
Chern insulator. In doing so, we showed that the fact that the
Wannier center is no longer gauge invariant in the usual sense
is not problematic given that we start with a physical gauge
invariant quantity (namely the adiabatic current). Moreover,
we verified our result by comparing it with the dipole moment
per unit length, which is also a physical quantity.

Our paper leaves many avenues open for future research.
Foremost among them is the generalization to multiband set-
tings. There, one must minimize the localization functional
over all gauge transformations within that subspace of bands.
This includes singular non-Abelian gauge transformations,
which dictate the distribution of the vortices across the mul-
tiple bands. Furthermore, multiband problems often involve
band crossings, which give rise to further discontinuities. In
the nontopological case, such discontinuities can be removed
using smooth non-Abelian gauge transformations [14]. We
speculate that it may be possible to do the same for band
crossings when the total Chern number is nonzero. If this is
possible, then we can pick a gauge in which one of the new
bands (no longer eigenstates of the Hamiltonian) has all the
vortices while the rest of the new bands are smooth. In that
case, all but one of the Wannier functions would be exponen-
tially localized and so it may be possible that such a scenario
leads to the optimal choice. An additional generalization is
the case of a smaller subspace of states disentangled from a
larger set of entangled bands (for example, by restricting to
states within a specific energy window). This is discussed for
conventional systems in [14].

Another issue to consider is that of Wannier functions
displaying spatial symmetries of the underlying Hamiltonian.
This is a topic that has been studied in depth in many different
settings since the early days [42–45]. In particular, there have
been examples such as the s-like Wannier function of Cu
[46], where the optimal Wannier function does not exhibit the
right symmetries of the system. As a result, methods have
been introduced to obtain maximally localized symmetric
Wannier functions for nontopological systems by extending
the methods of Marzari and Vanderbilt [47]. It remains to be
studied whether the optimally localized Wannier functions we
propose preserve key symmetries or whether our methods can
similarly be extended to obtain symmetric Wannier functions
by trading off some amount of localization. Indeed, to study
this fully, one must first extend our paper to multiple bands.
Moreover, the fact the Wannier center in our case can be
shifted arbitrarily via singular gauge transformations may be
crucial to this discussion.

Other potential applications of our paper remain to be
investigated. For example, our optimal Wannier functions may
be used to construct minimal tight-binding models for Chern
insulating bands in a similar fashion to techniques applied in
topologically trivial settings. Finally, how the Wannier con-
struction described in this article applies to so-called fragile
topological phases [13] warrants further consideration.
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APPENDIX A: DERIVATION OF THE LOCALIZATION
FUNCTIONAL IN RECIPROCAL SPACE

In this Appendix, we present a derivation of the localiza-
tion functional in reciprocal space given by (3) in the main
text. We begin with the matrix elements of the position opera-
tor in the Bloch basis, which are given by [23]

〈ψnk|r|ψmk′ 〉 = iVBZ(δnm∇k + 〈unk|∇kumk〉)δ(k − k′). (A1)

Using the above, we can immediately find

〈wn0|r|wn0〉 = 1

V 2
BZ

∫
BZ

dk
∫

BZ
dk′ 〈ψnk|r|ψnk′ 〉

= 1

VBZ

∫
BZ

dk Ank. (A2)

Moreover, we note that

〈ψnk|r2|ψnk′ 〉 = 〈ψnk|r · Pr|ψnk′ 〉 + 〈ψnk|r · Qr|ψnk′ 〉, (A3)

where P = 1
VBZ

∫
BZ dk |ψnk〉〈ψnk| projects onto the band

under consideration and Q = 1 − P projects onto the com-
plement of this band.

We can compute each term on the RHS of (A3) separately
using (A1). This gives

〈ψnk|r · Pr|ψnk′ 〉 = 1

VBZ

∫
BZ

dk′′ 〈ψnk|r|ψnk′′ 〉 · 〈ψnk′′ |r|ψnk′ 〉

= VBZ

∫
BZ

dk′′ (i∇k + Ank )δ(k − k′′)

· (i∇k′′ + Ank′′ )δ(k′′ − k′)

= VBZ(i∇k + Ank )2δ(k − k′) (A4)

and

〈ψnk|r · Qr|ψnk′ 〉

= 1

VBZ

∑
l �=n

∫
BZ

dk′′ 〈ψnk|r|ψlk′′ 〉 · 〈ψlk′′ |r|ψnk′ 〉

= VBZ

∑
l �=n

〈∇kunk|ulk〉 · 〈ulk|∇kunk〉δ(k − k′), (A5)
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where we used the fact that 〈unk|∇kulk〉 = −〈∇kunk|ulk〉.
Summing together (A4) and (A5) and noting that∑

l |ulk〉〈ulk| = 1, we obtain

〈ψnk|r2|ψnk′ 〉 =VBZ(−∇2
k + 2iAnk · ∇k + i∇k · Ank

+ 〈∇kunk|∇kunk〉)δ(k − k′), (A6)

from which it follows that

〈wn0|r2|wn0〉 = 1

VBZ

∫
BZ

dk 〈∇kunk|∇kunk〉. (A7)

APPENDIX B: SUMMARY OF SPECIAL FUNCTIONS USED

In this Appendix to be self-contained, we provide a short
summary of the Weierstrass functions, which are special func-
tions central to our solution of the electrostatics problem.
Tailoring to the problem of interest, we cast everything in
reciprocal space. The classic text Ref. [48] is recommended
for additional details.

Elliptic functions are doubly periodic functions in the com-
plex plane and their only singularities are a finite number of
poles per unit cell. In order to connect this directly to our
problem, let us cast the 2D reciprocal space in complex form,
as discussed in the main text. That is, we define z = kx + iky

to be the complex number representing the reciprocal wave
vector k = (kx, ky). Then, we can identify Brillouin zone peri-
odicity with double periodicity in the complex representation.

With this setup, the Weierstrass ℘ function in complex
reciprocal space is defined as

℘(z) = 1

z2
+

∑
G�=0

(
1

(z − G)2
− 1

G2

)
, (B1)

where G = Gx + iGy is the complex representation of recip-
rocal lattice vector G. It can be seen that this function is even
and it has poles at reciprocal lattice vectors. Moreover, let the
complex primitive reciprocal lattice vectors be denoted 2ω1

and 2ω2. Then, it can be shown that ℘(z) is doubly periodic
with half-periods ω1 and ω2. (Here, we choose ω1 and ω2 such
that ω2/ω1 has positive imaginary part.) In other words, we
have

℘(z + 2ω1) = ℘(z + 2ω2) = ℘(z). (B2)

Therefore, ℘(z) is an elliptic function and it has the required
Brillouin zone periodicity.

This function, however, is not immediately helpful in solv-
ing the electrostatics problem from the main text (16) as we
require simple, not double poles. Instead, we use the Weier-
strass zeta function, which is defined by

dζ

dz
= −℘(z) (B3)

together with the condition

lim
z→0

(
ζ (z) − 1

z

)
= 0. (B4)

By term-by-term integration, it can be shown that the ζ func-
tion has the series representation

ζ (z) = 1

z
+

∑
G�=0

(
1

z − G
+ 1

G
+ z

G2

)
, (B5)

which exhibits the desired simple poles.

In contrast to the ℘ function, the ζ function is not elliptic
because it is only quasiperiodic in the Brillouin zone. To see
this, one can first integrate (B3) to find

ζ (z + 2ωi ) = ζ (z) + 2ηi, (B6)

where the last term is a constant of integration. Next, note
that ζ (z) is an odd function as can be observed from its
series expansion. Substituting z = −ωi into (B6) now allows
us to determine the integration constants ηi = ζ (ωi), which
are generally nonzero.

We now state an important relation between the ωi’s and
the ηi’s, namely

η1ω2 − η2ω1 = iπ

2
. (B7)

This can be derived by taking a contour integral of ζ (z) around
the boundary of a unit cell. Using the residue theorem together
with the fact the integrals along opposite edges are related
via periodicity, we can obtain (B7). (This result relies on our
assumption that ω2/ω1 has positive imaginary part since this
determines the handedness of the integration contour).

The final special function we require, for the purpose of
constructing the electromagnetic potential, is the Weierstrass
sigma function, which is best defined via its relationship to the
ζ function as

d

dz
[log σ (z)] = ζ (z), (B8)

together with the extra condition

lim
z→0

σ (z)

z
= 1. (B9)

Using similar techniques as for the ζ function, we can show
that the σ function is also not doubly periodic but instead
satisfies the quasiperiodic relations

σ (z + 2ω1) = −e2η1(z+ω1 )σ (z),

σ (z + 2ω2) = −e2η2(z+ω2 )σ (z).
(B10)

APPENDIX C: DETAILED SOLUTION OF
ELECTROSTATICS PROBLEM

In this Appendix, we provide more details for the solution
of the electrostatic equations for a lattice of point charges in
a uniform neutralizing background. We recall that the electro-
static equations to be solved are given by

∇k · E = 2π [ρ0 − CδP(k − kv )],

∇k × E = 0,
(C1)

where kv is the position of the vortex in the Brillouin zone.
The electric field for a single point charge in an infinite

2D plane is given according to Coulomb’s law as E(k; kv ) =
(k − kv )/|k − kv|2. In the complex representation, this elec-
tric field is given by E (z) = Ex − iEy = 1/(z − zv ) where z =
kx + iky and zv is the point charge position as usual. Moving
to the periodic case, we can try to extend the point charge
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solution in the most obvious way as

Ẽ (z; zv ) =
∑

G

1

z − zv − G
, (C2)

where G represents reciprocal lattice vectors. This sum, how-
ever, does not converge, which is problematic.

The solution is to use the Weierstrass ζ function introduced
in the previous section. Informally, we can understand the
ζ function as a regularization of (C2)—that is, it introduces
additional terms, which make the new sum convergent outside
of the poles. Despite fixing the divergence, and having poles
in the correct locations, the ζ function is not doubly periodic.
This can be dealt with by adding terms linear in kx and ky.
In particular, a direct calculation using relations from the
previous Appendix shows that the expression

E (z; zv ) = −C[ζ (z − zv ) + α(z − zv )] + πρ0(z∗ − z∗
v ),

(C3)

where

α = η1ω
∗
2 − η2ω

∗
1

ω∗
1ω2 − ω∗

2ω1
= 2i(η2ω

∗
1 − η1ω

∗
2 )

VBZ
, (C4)

has full Brillouin-zone periodicity. A similar expression was
obtained in early work on vortex lattices in superfluid helium
[34]. The quantity α depends solely on the lattice geometry
and for a square lattice it can be found that α = 0. This can be
observed by noting that ω2 = iω1 and using (B5) to show that
η2 = ζ (ω2) = −iζ (ω1) = −iη1.

We now show that the electric field found indeed satisfies
the required Eq. (C1). Using the identity d/dz∗((z − zv )−1) =
πδ(k − kv ), and noting the ζ function has simple poles, one
finds

(∇k · E) − i(∇k × E) = 2
dE

dz∗ = 2π [ρ0 − CδP(k − kv )].

(C5)

Noting that E is real, the Eqs. (C1) are satisfied.
Finally, as stated in the main text, the electrostatic potential

for this problem is given by

φv (z; zv ) = 1
2C log |σ (z − zv )|2 + C

(
1
4 α(z − zv )2 + c.c.)

− 1
2ρ0π |z − zv|2. (C6)

This satisfies E(k) = −∇kφv since −2(dφv/dz) = E (z). This
is also periodic as claimed, which can be seen by using the
quasi-periodic conditions (B10) for the σ function.

APPENDIX D: DERIVATION OF SINGULAR
GAUGE TRANSFORMATION

In this Appendix, we derive Eq. (30) from the main text,
which is the formula for the singular gauge transforma-
tion, which shifts the vortex position from one point in the
Brillouin zone to another while preserving the Coulomb gauge
condition.

We begin with the fact that under a gauge transformation of
the form |unk〉 → eiθ (k)|unk〉, the Berry connection transforms
as A → A − ∇kθ . If we move the vortex from position a to

b, then the Berry connection initially and finally must satisfy

∇k × A = 	(k) − 2πCδP(k − a),

∇k × Ã = 	(k) − 2πCδP(k − b),
(D1)

respectively. If we demand the additional condition that this
gauge transformation keeps ∇k · A unchanged (so that we
can shift the vortex after minimizing over continuous gauge
transformations in one position without having to carry out
steepest descent again), then it follows from the above that
v = ∇kθ must satisfy

∇k × v = 2πC[δP(k − b) − δP(k − a)],

∇k · v = 0.
(D2)

If we now define v = ẑ × Eθ + const., then (D2) also turns
into an electrostatics problem, which can be solved by using
the Weierstrass ζ function. Based on our solution to the elec-
trostatics problem in the main text and Appendix C, we can
write down the solution for the complex electric field Eθ as

Eθ (z; a, b) = C[ζ (z − b) − ζ (z − a) + S], (D3)

where S is a constant. Based on this, the solution for v in
complex form may be written as

v(z; a, b) = iC[ζ (z − a) − ζ (z − b) + S̃], (D4)

where v = vx − ivy and S̃ is a different constant.
Our aim is to obtain an expression for θ from (D4). To

achieve this, we note that (D2) are fluid equations for a pe-
riodic incompressible potential flow around a vortex and an
antivortex. The complex velocity is a meromorphic function
of z. So using methods familiar from fluid dynamics in 2D,
we proceed by introducing a complex potential f = θ + iψ
where θ is the velocity potential, corresponding precisely to
our gauge function, and ψ is the stream function. This com-
plex potential is defined to satisfy

v = df

dz
. (D5)

It then follows from (D4) and (B8) that

f (z; a, b) = iC

(
log

(
σ (z − a)

σ (z − b)

)
+ S̃z

)
. (D6)

Note that we have thrown out the constant of integration in
(D6) because this would simply correspond to a global phase,
which we can ignore.

Now, our singular gauge θ (z; a, b) is given by the real part
of (D6) and we require that eiθ is periodic in the Brillouin
zone. We now use this condition to obtain the constant S̃. It
follows from (B10) that

θ (z + 2ωi; a, b) = θ (z; a, b) + iC(ηi(b − a) − η∗
i (b∗ − a∗)

+ S̃ωi − S̃∗ω∗
i ) + 2niπ (D7)

for i = 1, 2, where the ni’s are integers. Note that the 2niπ

term arises due to the nature of the complex logarithm. Thus,
for periodicity of eiθ , it is sufficient that

ηi(b − a) − η∗
i (b∗ − a∗) + S̃ωi − S̃∗ω∗

i = 0 (D8)
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for i = 1, 2. Using (B7) and the fact that ω∗
1ω2 − ω∗

2ω1 =
iVBZ/2, we solve Eq. (D8) to obtain

S̃ = π

VBZ
(b∗ − a∗) + α(b − a), (D9)

where α is the same constant as in (C4). Hence we finally
obtain

θ (z; a, b) = −C Im

(
log

(
σ (z − a)

σ (z − b)

)
+ α(b − a)z

+ π

VBZ
(b∗ − a∗)z

)
, (D10)

as required. We emphasize that while θ (z; a, b) may change by
integer multiples of 2π when translated by reciprocal lattice
vectors, eiθ (z;a,b) is Brillouin-zone periodic.

APPENDIX E: POLARIZATION

In this Appendix, we provide a detailed derivation of
Eq. (38) for the change in polarization in a Chern insulator
with C = ±1. We recall once again that the change in polar-
ization is defined by [9]

�Pn =
∫ 1

0
dλ Jn(λ), (E1)

where

Jn(λ) = − ie

(2π )2

∫
BZ

dk 〈∂λunk|∇kunk〉 + c.c. (E2)

is the cell-averaged adiabatic current. Note that all the quanti-
ties in this expression are functions of λ.

This can be written in terms of the Berry connection Ank =
i〈unk|∇kunk〉 and the new quantity Anλ = i〈unk|∂λunk〉 as

Jn(λ) = − e

(2π )2

∫
BZ

dk(∂λAnk − ∇kAnλ

+ i〈unk|(∇k∂λ − ∂λ∇k )|unk〉). (E3)

It is easy to see that the first term in the current gives the
change in Wannier center when integrated over λ, while in-
tegrating the second term gives zero due to periodicity of
the Berry connection. Let us now focus on the last term
in the current. This clearly vanishes except at the vortex itself.
Therefore, let us consider a small disk Dε of radius ε around
the vortex. In such a region, we may write

|unk〉 = eiθ (k−kvn (λ))|ũnk〉, (E4)

where |ũnk〉 is smooth and kvn(λ) is the vortex position. Thus,
in our small region, we have extracted the vortex out of the
Bloch state and into a phase factor. (It is not possible to factor
out a phase from |ũnk〉 over the whole Brillouin zone without
creating a new vortex somewhere else, as vortices cannot be
eliminated from a band with a Chern number, but we will use
this expression only within Dε .)

In Dε , it is true that

∇k × Ank = ∇k × Ãnk − ∇k × ∇kθ. (E5)

So, we have

0 =
∫

BZ
dk ∇k × Ank

=
∫

BZ\Dε

dk ∇k × Ank +
∫

Dε

dk ∇k × Ãnk

−
∫

Dε

dk ∇k × ∇kθ

=
∫

BZ
dk 	(k) −

∫
Dε

dk ∇k × ∇kθ, (E6)

where the first equality follows from Stokes’ theorem and the
periodicity of Ank, and the third equality follows since ∇k ×
Ank is equal to the gauge invariant Berry curvature 	n(k) in
regions of k space free of vortices. Similar arguments were
used implicitly in Sec. III A of the main text. Hence, we
obtain that ∫

Dε

dk ∇k × ∇kθ = C, (E7)

∀ε > 0, and thus taking the limit as ε → 0, we deduce that

∇k × ∇kθ = 2πCδP[k − kvn(λ)]. (E8)

Returning back to (E3), we can use the chain rule to obtain

∂λθ [k − kvn(λ)] = ∇kθ [k − kvn(λ)] · (−∂λkvn), (E9)

∂λ∇kθ [k − kvn(λ)] = (−∂λkvn) · ∇k{∇kθ [k − kvn(λ)]}
(E10)

and therefore,

〈unk|(∂x∂λ − ∂λ∂x )|unk〉
= i(∂x∂λ − ∂λ∂x )θ (k − kvn(λ))

= i∂x

(
−∇kθ · ∂kvn

∂λ

)
+ i

∂kvn

∂λ
· ∇k(∂xθ )

= −i
∂yvn

∂λ
(∂x∂y − ∂y∂x )θ (k − kvn(λ))

= −2π iCδP(k − kvn(λ))
∂yvn

∂λ
, (E11)

where ∂x, ∂y are taken with respect to kx and ky respectively,
and yvn is the y component of kvn. In the first step, we
have used the fact that the derivatives commute except when
applied to the phase. Note that we used (E8) for the third
equality. A similar expression can be found for the other
component. Then substituting the expression found for the
adiabatic current density back into (E1) we obtain the desired
result for the polarization (38).
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