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Stochastic-field approach to the quench dynamics of the one-dimensional Bose polaron
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We consider the dynamics of a quantum impurity after a sudden interaction quench into a one-dimensional
degenerate Bose gas. We use the Keldysh path-integral formalism to derive a truncated Wigner-like approach
that takes the back action of the impurity onto the condensate into account already on the mean-field level and
further incorporates thermal and quantum effects up to one-loop accuracy. This framework enables us not only
to calculate the real-space trajectory of the impurity but also the absorption spectrum. We find that quantum
corrections and thermal effects play a crucial role for the impurity momentum at weak to intermediate impurity-
bath couplings. Furthermore, we see the broadening of the absorption spectrum with increasing temperature.
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I. INTRODUCTION

The interaction of a mobile impurity with a surrounding
many-body quantum system is one of the most prominent and
oldest problems in condensed matter physics. The polaron,
initially considered by Landau and Pekar [1,2] to describe
an impurity electron interacting with the lattice vibrations
of a solid is a prototypical scenario to study quasiparticle
formation. In more recent years, neutral atoms immersed in a
surrounding ultracold gas have attracted widespread attention
due to great experimental controllability, which enable the
study of novel exotic regimes of the polaron. For example, the
impurity-bath coupling can be tuned via Feshbach resonances
[3]. Here, the fundamental principles at work are the same as
in the original problem; the impurity forms a polaron through
interacting with the collective excitations of the surrounding
superfluid. While the Fermi polaron has been subject to ex-
tensive experimental study [4–12], the Bose polaron has only
been realized in a few experiment [13–17]. These experiments
hint towards a delicate interplay between equilibrium and
out-of-equilibrium effects.

There has been extensive work addressing the Bose po-
laron in equilibrium [18–25]. In this paper, we focus, in
contrast, on the out-of-equilibrium Bose polaron. More pre-
cisely, we consider quench dynamics, involving the abrupt
immersion of an impurity into a homogeneous Bose gas, at
finite temperature. The quench can be realized through a Fes-
hbach resonant radiofrequency pulse [3] that switches on the
impurity-condensate interaction nearly instantaneously. Such
quench dynamics have been studied either at zero tempera-
tures, or focused on the (extended) Fröhlich models (or very
similar approximations) [26–39]. In much of the equilibrium
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and some of the out-of-equilibrium treatments, the Lee-Low-
Pines transformation [40], which eliminates the impurity from
the problem at the expense of adding an additional quartic ver-
tex, has proven extremely useful. However, when considering
finite temperature, this requires further approximations.

The vast majority of the existing literature has focused
on three-dimensional systems, where the (extended) Fröhlich
model is widely applicable. In 1D, the situation is different.
In [21] it was shown that the applicability of Fröhlich-type
approximations are somewhat limited in 1D and while the
mass balanced case is integrable for the Fermi-gas [41] no
such limit exist in the case of a Bose gas. Instead, it is natural
to incorporate the effects of the impurity on the condensate al-
ready at the mean-field level. This can be done efficiently for a
single impurity at zero temperature using the LLP transforma-
tion, but this method does not extend to several impurities and
is also not straightforward to generalise to finite temperatures.
To circumvent those complications, several approaches do not
eliminate the impurity from the problem and can address finite
temperature [30,42], and for example, treat the impurity in
a manner related to the coherent state representation of the
impurity [43]. It has been shown in [33,44,45] that a prod-
uct wave function within the tree-level approximation, yields
inconsistent results with those obtained in the more accurate
LLP-frame in 1D. Therefore, it is perhaps more appropriate
to treat the impurity in a position-momentum path integral
as it highlights the particle nature of the impurity. Using the
coherent state path integral for the condensate has been shown
to yield good results in 1D not only for the polaron but also
the bipolaron problem [33,46,47]. This is conceptually close
to the approach originally developed by Feynman [42] and ap-
plied to the Bose polaron in [19,24] with the main difference
being that we do not expand the condensate around a ho-
mogeneous density, and our focus lies on out-of-equilibrium
phenomena.

In this paper, we develop a conceptually simple and nu-
merically tractable approach to address quench dynamics at
finite temperature in a general manner. Ultimately, this is
achieved by mapping the dynamics to a set of deterministic
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differential equations with stochastic initial conditions. By
averaging over the different trajectories, expectation values
can be calculated within one-loop accuracy. We then use this
methodology to study an impurity’s evolution after a sudden
interaction quench into the bath. We find that the impurity
delocalizes quickly for weak impurity-bath couplings and that
observables like the impurity’s velocity crucially depend on
the incorporation of quantum and thermal effects. In the case
of strong impurity-bath couplings, we observe self-trapping
and quantum corrections and thermal effects to be e consider-
ably less pronounced.

This paper is organized as follows. In Sec. II A we derive
the truncated Wigner approximation from the Keldysh path-
integral representation of the problem at hand. In this section,
we also show how to obtain the absorption in the language of

semiclassical dynamics. We proceed by specifying the initial
Wigner function in Sec. II B and show how to regularize
the divergences that arise in the one-dimensional setting. We
proceed by briefly outlining the numerical considerations in
Sect. II C. To conclude, we discuss the results for an impurity
at rest and finite momentum in Sec. III and outline further
directions in Sec. IV.

II. METHODOLOGY

A. The Keldysh formalism for the Bose polaron

In this section, we want to outline the derivation of the
equations of motion and discuss the truncated Wigner approx-
imation for the polaron problem. We start by considering the
Hamiltonian,

Ĥ = 1

2M
P̂2 +

∫
x

{
φ̂†(x)

[−∂2
x

2m
+ gBB

2
φ̂†(x)φ̂(x) + gIBV (x − X̂ )

]
φ̂(x)

}
, (1)

where m (M) denotes the mass of the bosons (impurity atom), φ̂(x) is the Bose field operator, gBB (gIB) is the boson-boson
(boson-impurity) interaction strength, and X̂ (P̂) denotes the position (momentum) operator of the impurity. Moreover, we left
the interaction potential between the impurities and the condensate general instead of directly assuming s-wave scattering. We
will not employ a delta function here but a smoothed out version of it for numerical reasons, that will be discussed later. In the
following, we are going to apply the Kedlysh formalism to (1). The expectation value of an arbitrary observable (see [48] for a
detailed discussion) �(X̂ , P̂, φ̂†(x), φ̂(x), t ) is given by

〈�(X̂ , P̂, φ̂†(x), φ̂(x)), t )〉 =
∫

X0,P0,φ0(x),φ∗
0 (x)

W (X0, P0, φ0(x), φ∗
0 (x))

∫
D[Xc(τ ), Xq(τ ),

× Pc(τ ), Pq(τ ), φq(x, τ ), φc(x, τ ), φ∗
q (x, τ ), φ∗

c (x, τ )] exp
(
iS[Xc(τ ), Xq(τ ), Pq(τ ), Pc(τ ),

× φq(x, τ ), φc(x, τ ), φ∗
q (x, τ ), φ∗

c (x, τ )]
)
�W (Xc(τ ), Pc(τ ), φ∗

c (x, τ ), φc(x, τ ), t ), (2)

where W is the Wigner function that depends on the initial density matrix and will be specified below.
�W (Xc(τ ), Pc(τ ), φ∗

c (x, τ ), φc(x, τ ), t ) is the Weyl ordered operator of the observable one wants to calculate (again see [48]
for more details). The subscript c denotes the classical field and the subscript q the quantum field, which describes the quantum
fluctuation around the classical saddle point solution. Those two fields arise when mixing forward and backward contour in the
Keldysh formalism. The D denotes the integration over all field configurations in space and time. In contrast to that the first
integral in (2) can be understood as a normal integral in X0 and P0. The one-loop approximation is now to drop all terms of order
two and higher in h̄, which corresponds to an expansion up to second order in the quantum fields. We then find that there are, in
fact, only terms linear in the quantum fields, and the action is given by

S =
∫

τ

{[
− Xq(τ )

d

dτ
Pc(τ ) + Pq(τ )

d

dτ
Xc(τ ) − Pq(τ )Pc(τ )

M

]
−

∫
x

[
(φ∗

c (x, τ )

[
− i∂τ − ∂2

x

2m

+ gBB|φc(x, τ )|2 + gIBV (Xc(τ ) − x)

]
φq(x, τ ) + c.c.) + gIB

d

dx
V (x − Xc(τ ))Xq(τ )|φc(x, τ )|2

]}
. (3)

It is now easy to see that all the quantum fields can be easily integrated out and yield functional delta distributions enforcing the
classical equations of motion

d

dτ
Xc(τ ) = Pc(τ )

M
(4)

d

dτ
Pc(τ ) = gIB

∫
x

d

dx
V (x − Xc(τ ))|φc(x, τ )|2 (5)

i∂τφc(x, τ ) =
(

−∂2
x

2m
+ gBB|φc(x, τ )|2 + gIBV (Xc(τ ) − x)

)
φc(x, τ ). (6)
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The only challenge remaining at this point is to integrate over
the initial conditions weighted by the Wigner function. In
practice this is done by sampling initial conditions according
to the Wigner function, solving the classical equations of
motion and then averaging the desired observable over the
calculated trajectories. In this framework it is now straightfor-
ward to calculate the impurity dynamics. Before proceeding
we would like to make some remarks about the classical
equations of motion and make contact with the equilibrium
case to show that even without taking the first-order correction
into account those equations give satisfactory results in the
limiting case of heavy impurities. For the equilibrium case we
assume the impurity to travel at constant velocity d

dτ
Xc(τ ) =

v, implying d
dτ

Pc(τ ) = 0, which in turn tells us that |φc(x, τ )|2
is symmetric around the impurity position. Together with the
equilibrium assumption this directly leads to the conclusion
that the bosonic field takes the following form φc(x, τ ) =
φc(x − vτ ) = φc(x − Xc(τ )). In the equilibrium setting we
consequently find i∂τφc(x, τ ) = −iv∂xφc(x − Xc(τ )). Putting
it all together and defining x̃ = x − Xc(τ ) we find the equilib-
rium equation(−∂x̃2

2m
+ gBB|φc(x̃)|2 + iv∂x̃ + gIBV (x̃)

)
φc(x̃) = 0. (7)

We can now compare this equation with the one obtained by
performing a Lee-Low-Pines transformation and find that it
has in fact the same form as the one found in [33,44,47,49],

where it has been shown that quantities obtained like the
effective polaron mass or the polaron energy are in excel-
lent agreement with results obtained by quasiexact quantum
Monte Carlo methods. The only difference is that instead of
the reduced mass the boson mass appears in front of ∂2

x , which
can be traced back to the fact that in this derivation the effect
of normal ordering is lost. However, this effect is unimpor-
tant for heavy impurities. To summarize, we showed that the
equation obtained by employing a coherent state ansatz for the
bosonic field paired with a position momentum representation
for the impurity reduce to the correct mean-field equations in
the equilibrium case if the impurity mass is large.

Another quantity of great interest is the impurity Green’s
function [18,27,31] from which the absorption spectrum can
be calculated by taking the Fourier transformation. The impu-
rity Green’s function is defined by

G(t ) = Tr{exp(iĤ0t )ρ̂ exp(−iĤt )}, (8)

where Ĥ0 stands for (1) with V (x − X̂ ) = 0 and ρ̂ is the
initial density matrix. We now observe that this has the same
structure as the trace that is considered to derive the Keldysh
path integral, with the only difference, that the forward and
backward contour differ by an extra interaction term. We
can therefore perform the same steps as when deriving (2).
The only difference in S is the resulting impurity boson
interaction

Sint =
∫

τ,x

[
(φ∗

c (x, τ )

[
1

2
gIBV (n)(x̃)

]
φq(x, τ ) + c.c.) + Xq(τ )

gIB

2
V 1(x̃)|φc(x, τ )|2Xq(τ ) + gIBV (x̃)

(
|φc(x, τ )|2

+ |φq(x, τ )|2
4

)
+ gIB

8
|φc(x, τ )|2V (2)(x̃)Xq(τ )2

]
, (9)

where we have introduced the notation dn

dxn V (x − Xc(τ )) =
V (n)(x̃) The resulting magnitude of the interaction is changed
by a factor of 1/2 and a new purely classical term arises.
Lastly, we note that there is also a quadratic term in φq(x, τ )
and Xq(τ ) now. If we want to keep the accuracy up to one-
loop order this term has to be considered, which somewhat
complicates matters. An ad hoc approximation is to drop this
term altogether and therefore staying in a strictly semiclassical
regime. To see when this approximation is justified one can
simply compare the arsing terms and their order of magni-
tude. We note, that the |φq(x, τ )|2 term directly competes
with the |φc(x, τ )|2 term. As long as one is within the ap-
plicability region of a general c-field treatment, |φq(x, τ )|2
will be small compared with |φc(x, τ )|2, whenever the con-
densate deformation is not large, which corresponds to small
and intermediate η. For the corrections in the impurity de-
grees of freedom one has to compare gIB

2 V 1(x̃)|φc(x, τ )|2 with
V (2)(x̃)Xq(τ )2|φc(x, τ )|2. We note that through partial integra-
tion the derivative terms can be brought onto bosonic field
variables. One then realizes, that the second derivative of the
fields is going to be small compared to the first derivative
for weak coupling. Additionally, for large impurity masses
M the magnitude of Xq will stay small. Those two consid-

erations show that one would expect the absorption spectrum
yield reliable results for weak to intermediate impurity-boson
coupling and potentially a wider range of couplings if the
impurity is sufficiently heavy. We refer to Sec. II D for more
details on the validity the approach presented here.

We also note that this approximation is only made when
calculating the absorption spectrum and the impurity Green’s
function and all dynamical results do not rely on this approx-
imation. Henceforth, the additional stochastic term will be
dropped. This leaves us with the expression

G(t ) =
〈

exp

(
i
∫

τ,x
gIBV (Xc(τ ) − x)|φc(x, τ )|2

)〉
W

, (10)

where we denote the average with respect to the initial Wigner
function as 〈...〉W . We are now in the position to calculate the
real-space trajectories of the impurities for finite temperature
as well as the absorption spectrum.

B. The quench protocol and the initial Wigner function

In the following, we want to specify the quench protocol
and the initial Wigner function. We start by briefly outlining
the initial state and then specify the Wigner function for a 1D
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quasicondensate. Here, we will also discuss all the regulariza-
tion necessary to arrive at a divergence-free quasicondensate
description. The quench protocol is the following: we start
with a free impurity and an interacting superfluid at tempera-
ture T . At t = 0, the interaction between the superfluid and the
impurity is turned on instantly. Experimentally this is realized
through a Feshbach resonance [3]. We assume that the initial
density matrix can be written as a direct product of the state
of the impurity (which is assumed to be pure) and the thermal
density matrix of the superfluid

ρ̂ = ρ̂φ ⊗ |ψ〉〈ψ |. (11)

As a consequence, the Wigner function also factorizes, and we
can sample the initial conditions independently. For the con-
densate, we employ a quasicondensate description; in 1D, this
is best done by employing a density and phase representation.
We note that this has been used before in [50], in the trapped
gas case. Since we want to focus on a homogeneous gas in
continuum here, we need to regularize the noncondensed part.
In this representation, the condensate field operator can be
written as

φ̂(x, 0) =
√

n0 + δρ̂(x) exp (iθ̂ (x)). (12)

The density operator and the phase operator can be expressed
within the Bogoliubov approximation [51] as

θ̂ (x) = −i

2
√

ρ0

∑
k

[(uk + vk )eikxâk − H.c.] (13)

δρ̂(x) = √
n0

∑
k

[(uk − vk )eikxâk + H.c.], (14)

where uk and vk are the usual Bogoliubov modes. For this
treatment to be valid one has to be in the vicinity of a weakly
interacting Bose gas, which can be characterized by the Tonks
parameter γ = 1/(2n2

0ξ
2) [52,53], which should be less than

unity where ξ = 1√
2gBBn0

is the healing length. We refer to
the Sec. II D for a detailed discussion of the validity of the
presented approach. In the path integral this corresponds to
a shift of variables meaning that instead of integrating over
φ

(∗)
0 (x), we integrate over a(∗)

k , corresponding to the operators
â†

k . In the standard way, we can now write down the thermal
Wigner function (within the coherent state representation) for
the ak [48]:

W (a∗
k , ak ) = 2

π
tanh

(
ωk

2T

)
exp

{
− 2|ak|2 tanh

(
ωk

2T

)}
,

(15)

with the Bogoliubov dispersion ωk . From this, it can be seen
immediately, that the average condensate particle number is
given by N0/L = ρ0. In order to account for the quantum and
thermal depletion, we fix the total particle number N and then
choose N0 according to N0 = N − Nd (this is done for every
realization), where after proper regularization (see [54,55]),

Nd =
∑

k

[
ek − ωk

2ωk
+ μ

2ek + 2μ
+ ek

ωk

(
a∗

k ak − 1

2

)]
, (16)

with the single-particle dispersion ek = k2/(2m). Here, a first-
order T-matrix approximation was employed, and in line with
the Bogoliubov theory up to one loop, μ is the chemical

potential within the Bogoliubov approximation and hence is
not temperature-dependent. The 1/2 is needed to cancel the
extra factor that stems from the symmetric ordering. After
averaging, this reproduces the expected result for a thermal
quasicondensate in 1D. It should be noted that μ has to be
chosen consistently with the total particle number, which can
be done by fixing one reference point, where the total par-
ticle number is known. Henceforth we assume a mean-field
density at T = 0. This then fixes μ in the Bogoliubov approx-
imation through μ = gBBn0(T = 0). We can now use (16)
to determine the total particle number, which remains fixed
throughout the calculation. We can now sample individual
realizations of the condensate, whose description is free of
IR and UV divergences. Upon closer inspection, one might
realize that even though the mean of the phase and density
corrections are zero, the variance scales up to linearly with
the system size L. A direct result of this is that the compu-
tational time needed to achieve convergence also scales with
the system size. This computational challenge can be tackled
by increasing the system size gradually until the results are
independent of the system size and then validating certain
data points with larger system size. Furthermore, this restricts
the discretization of space, as outlined in [56], which will
be discussed in the next section. Because the effect of the
impurity is local, we find relatively low dependence on the
system size already for small systems. Lastly, we assume that
the impurities are not entangled (namely can be represented
by a product wave function) and are localized in space around
x0 or equivalently in momentum space localized around q at
t = 0. It is therefore natural to choose a wave packet as their
initial wave function,

〈x|ψ〉 = 1

π1/4√a0
exp

( − (x − x0)2/
(
4a2

0

))
. (17)

Here a0 is an external parameter that determines how localized
the initial state is. The Wigner function in this setting is well
known to be [48]

W (X0, P0) = 2 exp
( − 2a2

0(P0 − q)2 − (X0 − x0)2/
(
2a2

0

))
.

(18)

C. Numerical considerations

In this section, we will show that three quantities can de-
scribe the whole parameter space, and we will briefly outline
the discretization of space and all the subtleties involved. We
now define the following scaled parameters

τ̃ = τ/τs, x̃ = x/xs, φ̃(x̃) = √
xsφ(x),

P̃ = Pxs, X̃ = X/xs, (19)

where we choose τs = ξ̃ /c, xs = √
2ξ = ξ̃ , and where the

speed of sound is given by c =
√

gBBn0

m . Dropping the twiddle

we then find the Hamiltonian

Ĥ = αP̂2 +
∫

x

{
φ̂†(x)

[−∂2
x

2
+

√
γ

2
φ̂†(x)φ̂(x)

+ η
√

γV (x − X̂ )

]
φ̂(x)

}
, (20)
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where η remains unchanged and α = m
M . From here the fol-

lowing equations of motion can be obtained

d

dτ
Xc(τ ) = αPc(τ ) (21)

d

dτ
Pc(τ ) = η

√
γ

∫
x

d

dx
V (x − Xc(τ ))|φc(x, τ )|2 (22)

i∂τφc(x, τ ) =
(−∂2

x

2
+ √

γ |φc(x, τ )|2

+ η
√

γV (Xc(τ ) − x)
)

φc(x, τ ). (23)

In order to tame the extensive variance and ensure numerical
stability, we have to choose the discretization l = L/Ngrid as
outlined in [56], namely l has to be large enough to satisfy
ρ0l � 1, while at the same time ensuring that the energy
cut-off introduced by l does not alter the physics. This trans-
lates to l < ξ, λ, where ξ is the healing length that sets a
natural length scale for our problem and λ is the thermal
de Broglie wavelength. Lastly, we note that we make the
following choice for the interaction potential:

V (x) = 1√
2π l2

e−x2/(2l ), (24)

which converges to the delta distribution as l → 0, but has
the advantage of being smoother than δx/l , where δx is the
Kronecker delta.

D. Validity of formalism

In this subsection we will address the regime of validity
of the formalism used in this paper. We start by giving some
general arguments for the validity of the approach followed by
a term-by-term discussion of the higher-order corrections and
their order of magnitude. While for the absorption spectrum
we have to restrict our considerations to weak or moderate
boson-impurity couplings, we would like to stress that for
all dynamical properties calculated (excluding the absorption
spectrum) the result is strictly nonperturbative in gBB and
gIB. Hence we can safely say that the method presented is
valid for γ � 1, which is equivalent to the range for the
Gross-Pitaevskii equation, which corresponds to the tree level
approximation of (1). The same reasoning applies to gIB,
leading to the conclusion that our results, at least for short
times are valid across the whole range from weak to strong
impurity-boson couplings. For longer times one has to con-
sider the deformation of the condensate. Another interesting
point to consider is that as soon as α is small (meaning the
impurity is heavy) the accuracy of the presented approach
will improve further, since the impurity will behave more
classically. In fact α can be seen as a strict control parameter
for the corrections arising due to higher-order terms in Xq(τ ).
Combining those considerations with the known fact that in
general the truncated Wigner approximation is exact for short
time scales [48], we can conclude that for short to intermediate
time scales our results are trustworthy for all values of boson-
boson and boson-impurity coupling. For weak coupling it is
ab initio reasonable to assume that the presented results hold
for longer time scales, since higher order quantum corrections
should accumulate slowly if at all. However, no such universal

statement can be made for strong couplings. There are two
contributions of order h̄2 or higher, which were neglected in
our approach and would have to be added to (9) if one wanted
to solve the problem exactly, the first one coming from the
boson-boson interaction and the second one being due to the
impurity-boson interaction. The first one takes the form

√
γ
(|φq(x, τ )|2φq(x, τ )φ∗

c (x, τ ) + c.c.
)
. (25)

We note that this term is closely related to the standard
Bogoliubov approximation, with the main difference being
that the classical field here is taken to be the deformed field.
We note that in no point of our simulations the expectation
value of 〈|φ∗

c (x, τ )|2〉 falls below the value of 3ξ̃ , meaning that
the it is safe, in the spirit of the well-established Bogoliubov
approximation, to neglect higher-order terms in the quantum
fields, which only scale linearly in φc and are of O(φcφ

3
q ),

which is certainly small compared to O(|φc(x, τ )|3φq), as
long as the density of the condensate stays larger than the
healing length. We note that in the case of very low-density
gases and strong boson-impurity coupling the above argument
comes under question and it is a priori not clear whether
the outlined method is reliable in this regime. This regime
was not investigated in the present paper. This argument is
further underlined by the remarkable accuracy of pure c-field
methods (which do not take first-order quantum corrections
into account) for the equilibrium polaron, see [35,44,46,49],
where the c-field approximation was shown to also hold for
low-density gases and strong coupling, and the fact that the
boson-boson interaction to all orders in gBB and to first or-
der in h̄ are already taken into account in our calculations.
A somewhat more complicated expression is obtained when
considering the impurity-boson interaction term. Here, one
finds that already in (9) all orders of Xq(τ ) are present and
the higher order terms take the following form

η
√

γ

(
− |φq(x, τ )|2

4

∞∑
n=0

V (2n+1)(x̃)
X (2n+1)

q

4n(2n + 1)!

− |φc(x, τ )|2
∞∑

n=1

V (2n+1)(x̃)
X 2n+1

q

4n(2n + 1)!

+ (φ∗
c (x, τ )φq(x, τ ) + c.c.)

∞∑
n=1

V (2n)(x̃)
X 2n

q

4n−1(2n)!

)
.

(26)

Again for approximating the impact of those terms it is con-
venient to bring the derivative terms to the bosonic field
operators. It then becomes clear that all corrections can be
understood as a gradient expansion in the bosonic field op-
erators, whose impact is certainly small for short time scales
and also for longer time scales as long as the coupling stays
moderate. Besides the gradient terms we also note that each
correction is accompanied by an increasing power of Xq(τ )
terms, which are also small at short times and whose impact
can be controlled by α.

To summarize, while the validity of this approach for very
large couplings and long time scales can not be judged a
priori, we note that for short time scales the results here hold
regardless of impurity-boson coupling strength and also note
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that α serves as a control parameter for the approximation in
the impurity degrees of freedom.

III. RESULTS

A. Post-quench density profile

In this subsection, we focus on the density of the conden-
sate for repulsive and attractive impurity-bath couplings at
different times after the quench and supplement those findings
with the variance of the position σ 2

X = 〈(X̂ − 〈X̂ 〉)2〉 and the
variance of the velocity σ 2

V = 〈(P̂/M − 〈P̂/M〉)2〉. We find a
dynamically distinct behavior for weak and strong couplings
on the repulsive and the attractive side.

In Fig. 1, the condensate density at different times and
the evolution of the variance of the position and the variance
of the velocity for repulsive interactions are shown. Before
discussing the results in more detail we notice that even for
η = 50 the minimum of the condensate density is still larger
than 3ξ̃ , indicating that the approximations made later for
the absorption spectrum are justified. We note that for weak
coupling, the impurity delocalizes faster than a free impurity
would. For stronger couplings, the impurity stays localized
much longer in time, indicating self-trapping. The velocity
variance saturates after a finite time, and the time scale is
inversely proportional to the impurity boson coupling. We
note that this can be explained by realising that two competing
effects are determining the dynamics. Namely, the impurity
tends to distribute the repulsion equally throughout the con-
densate, causing the impurity to delocalise and the opposing
effect of self-trapping, where the impurity deforms the con-
densate and then self-traps in the deformation. It is intuitively
clear that self-trapping will not occur for weak couplings,
which explains the different behaviours seen in Fig. 1. It
can also be seen that the variance of the impurity velocity
can exceed the speed of sound, which is associated with the
emission of nonzero energy excitation, indicating an energy
transfer from the impurity to the bath, which has also been
observed in [57]. The temperature influences the value with
which the position variance and velocity variance saturate; it
does not significantly influence the timescale. For strong cou-
pling, the temperature dependence becomes relatively weak,
which can be explained by noting that the impurity-boson
scattering length determines the relevant energy scale, which
is much larger than the thermal length in this case.

In Fig 2 the same situation for attractive couplings is
shown. Here the difference between strongly attractive and
moderate attractive couplings becomes obvious. We observe
that in the case of moderately attractive couplings, the im-
purity not only diffuses but also forms a purely attractive
polaron. In contrast, for strongly attractive couplings, an at-
tractive polaron with repulsive interactions is observed, and
the time scales of the polaron formation are prolonged. This
difference is a dynamical effect and can be understood by not-
ing that when the interaction is turned on, particles from the
condensate start to accumulate around the impurity, which in
turn depletes the condensate around the impurity. The super-
fluid is interacting itself, and therefore the depletion is filled
by the particles around it, with the time scale being set by
the boson-boson interaction. Meanwhile, the impurity-boson

(a)

(b)

(c)

FIG. 1. The superfluid density, the position variance, and the
variance of the velocity for different repulsive interactions and tem-
peratures. In all plots the parameters are α = 0.2, γ = 0.04, n0 = 5ξ̃ ,
and a0 = 3/ξ̃ . As expected, we can clearly see that the impurity
deforms the condensate over time. It also becomes apparent that
the impurity delocalizes over time and that this effect is slowed
down with increasing η, which can be understood by a self-trapping
argument given in the main text.

interaction strength determines the number of particles that
can accumulate around the impurity before the boson-boson
action prevents further accumulation. At the same time the
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(a)

(b)

FIG. 2. The superfluid density and position variance and velocity
variance for different attractive interactions and temperatures. In all
plots the parameters are as follows α = 0.2, γ = 0.04, n0 = 5ξ̃ , and
a0 = 3/ξ̃ . We can see that the impurity attracts surrounding particles,
which in turn depletes the condensate. As can be seen in (b), this
appears as a repulsively interacting polaron.

impurity delocalizes, which prevents the formation of a well-
defined peak around the impurity and the interaction can thus
seem repulsive for a long time scale. Ultimately this is of
course only a metastable state. This process continues for
a longer time when the impurity-boson interaction is large,
resulting in a polaron that looks repulsive, which can be ob-
served in Fig 2(b).

B. Impurity velocity

Another quantity that is of great interest is the impurity
velocity. The out-of-equilibrium case gives insight into the
polaron formation and the time scales at work. It is also of
great importance for the equilibrium case since it can be used
to calculate the effective mass of the polaron [58].

Here, the impurity is not at rest when the quench occurs but
instead carries some finite momentum. The sudden quench of
the impurity-boson interaction leads to a momentum trans-
fer from the impurity to the surrounding particles, and we

(a)

(b)

FIG. 3. The impurity velocity over time for different tempera-
tures. The parameters are α = 0.2, γ = 0.04, n0 = 5ξ̃ , and a0 =
3/ξ̃ . We note that the quantum corrections have a big influence for
weak impurity-bath interactions.

expect a slow down of the impurity. The time evolution for
the velocity of the impurity is depicted in Fig. 3. Here it
becomes apparent that quantum corrections have a noticeable
impact on the evolution of the velocity at weak to intermediate
coupling. This can easily be understood by noting that the
impurity is treated as a point particle on the mean-field level,
and as observed in Fig 1, which is not a valid approximation
for weak couplings. This also explains why the MF velocity
is lower than the corrected solution. We also note that the
steady-state velocity increases with the temperature, which
can be understood by noting that the surrounding gas has a
higher average squared velocity for increasing temperature,
and therefore the momentum transfer will be smaller. In con-
trast, for strong couplings, the impurity stays localized and
approximating it as a point particle is, therefore, less of a
simplification. The same behavior can be observed for the
temperature dependence, which is more critical for weak and
intermediate couplings, which is again due to the scattering
length being larger than the thermal length. We also note that
the impurity transfers some of its momentum to the Bose-gas
and then relatively quickly reaches an equilibrium velocity
for not too strong interactions. For stronger interactions, we
observe different behavior. After an initial abrupt slow down
of the impurity, the impurity velocity changes sign, which
directly results from the back action from the condensate. We
note that a similar abrupt slowdown has been observed in the
three dimensional setting in [59]. The velocity then performs
a damped oscillation around its final velocity.
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(a)

(b)

FIG. 4. The absorption spectrum A(ω) = 2Re
∫ ∞

0 G(t )eiωt dt for
different temperatures T calculated using the truncated Wigner ap-
proximation for α = 0.2, γ = 0.04, n0 = 5ξ̃ , and a0 = 3/ξ̃

C. The absorption spectrum

Next we turn our attention to the (injection) absorption
spectrum A(ω) = 2Re

∫ ∞
0 G(t )eiωt dt [10,12], which can be

measured using Ramsey spectroscopy [9,10,14]. It can be
calculated by taking the Fourier transform of the impurity
Green’s function, which characterizes the dephasing of the
system and is closely related to the Lochschmidt echo [60].
The absorption spectrum gives essential information about
the polaron formation and can be used to estimate the po-
laron energy and lifetime [61,62]. At this point, we also want
to stress that pure mean-field (MF) calculations in position
momentum basis are not sufficient to calculate the impurity
Green’s function. This can be seen by noting that there is
no averaging for a classical calculation, which means there
is no dephasing between different trajectories, and therefore
one always obtains |G| = 1 in purely classical calculations.

Our results are depicted in Fig. 4, it can be observed that
the quasiparticle peak widens with increasing temperature,
which is also reported in 3D [31]. However, in contrast to
the 3D case, [27], where the extended Fröhlich model was
considered, we do not find several peaks on the repulsive
side. We also note that the overall amplitude decreases with η,
and the quasiparticle peak gets washed out with increasing η,
which is a direct consequence of the orthogonality catastrophe
[63–65]; hence the emergence of a clear quasiparticle peak
comes under question. We note that the absorption spectrum
shows a functional dependence associated with quasiparticle
behavior, and we do not find an infrared dominated regime as
observed in other one dimensional systems [61]. Those find-
ings are supplemented by the overlap G(t ). Here we can see
another vastly different feature of the one-dimensional case,
compared to the three-dimensional case [27,31], namely that
|G|, approaches zero even for moderate couplings, signaling
the onset of the orthogonality catastrophe. As expected, the
dephasing becomes more rapid with increased temperature
and increased gIB.

IV. SUMMARY AND OUTLOOK

In summary, by leveraging the Keldysh formalism, we
derived a truncated Wigner approach to study dynamical prop-
erties of the Bose polaron in 1D. This allowed us to reduce the
problem to simulating semiclassical equations of motion with
stochastic initial conditions. We showed how to adequately
account for temperature effects of the surrounding bath by
sampling the phase and density of the condensate. We also dis-
cussed how to regularize the arising divergences that typically
occur in such one dimensional systems. The method presented
here takes the back action of the impurity onto the condensate
into account and is therefore applicable from weak to strong
impurity bath couplings.

We then used this framework to calculate the dynamics of
an impurity after sudden immersion in a surrounding bath and
the absorption spectrum. By considering the condensate den-
sity and the position/velocity variance, we showed that there
is a distinct dynamical behavior associated with the strong-
and weak-coupling regime, namely our results indicate self-
trapping of the impurity for strongly repulsive interactions,
and we also find a repulsive polaron on the attractive side.
We also investigated the temperature dependence of the po-
laron formation and found a substantial influence of quantum
corrections on dynamical properties like the velocity of the
impurity, showing the necessity to go beyond pure mean-field
considerations. Lastly, we considered the absorption spectrum
and the impurity Green’s function. Here, we observed a clear
quasiparticle peak for weak to intermediate couplings. In con-
trast to that, we see that the quasiparticle peak is washed out
for strong couplings and that temperature effects widen the
quasiparticle peak. In contrast to the higher dimensional case,
the impurity Green’s function approaches zero even for weak
couplings.

At this point, we want to stress that our approach is neither
limited to 1D nor a single impurity. It could therefore serve as
an exciting starting point to explore higher dimensional sys-
tems, as well as the interplay of several impurities. While the
generalization to several impurities is quite straightforward
we want to stress that, as pointed out for example in [66–68],
the generalization to higher dimensions is highly nontrivial
in general. First we note that in higher dimensions it is not
possible to use bare contact interactions for the boson-boson
interaction and the boson-impurity interaction simultaneously
when employing the approach. One has to resort to using more
realistic interaction potentials for at least one of them as has,
for example, been done in the three dimensional context in
[35,64]. Another major challenge is a purely numerical one,
as it becomes more costly to sample the Bose fields in higher
dimensions. Nevertheless we expect that the presented method
may be paired with some small approximations to address
higher dimensional systems.
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