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Coexistence of Gapless Excitations and Commensurate Charge-Density Wave
in the 2H Transition Metal Dichalcogenides
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An unexpected feature common to 2H transition metal dichalcogenides (2H TMDs) is revealed with a
first-principles Wannier function analysis of the electronic structure of the prototype 2H TaSe2: The low-
energy Ta ‘‘5dz2 ’’ bands governing the physics of a charge-density wave (CDW) is dominated by hopping
between next-nearest neighbors. With this motivation we develop a minimal effective model for the CDW
formation, in which the unusual form of the hopping leads to an approximate decoupling of the three
sublattices. In the CDW phase one sublattice remains undistorted, leaving the bands associated with it
ungapped everywhere in the Fermi surface, resolving the long-standing puzzle of the coexistence of
gapless excitations and commensurate CDW in the 2H TMDs.
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FIG. 1 (color online). First-principles band structure (dots)
with the dz2 (black circles) and dxy=dx2�y2 [gray (blue online)
circles] characters shown. The bands below �0:7 eV are mainly
Se p bands. Also shown are the bands constructed from low-
energy WFs [gray (green online) solid lines] and a 2D nesting
model [gray (red online) dotted line; see text].
Charge-density waves (CDWs) in solids have been a
topic of central interest in condensed matter physics for
many years [1]. Recent scanning tunneling microscopy
experiments showing a periodic modulation in the local
density of states in cuprate superconductors [2,3] have
reinvigorated such interest. Despite being one of the ear-
liest discovered class of materials which exhibit a CDW at
low temperatures [4], many properties of the 2H transition
metal dichalcogenides (2H TMDs) are still not understood,
leading to much recent theoretical [5–7] and experimental
[8–15] research effort (for a review, see Ref. [16]). Two
key issues concerning the CDW phase in these materials
deserve the most attention. First, controversy exists be-
tween different experimental groups on the driving mecha-
nism of CDW originating from quantitative differences
between the angle-resolved photoemission spectroscopy
(ARPES) data. While some experimental results [9–12]
suggest that the hexagonal Fermi surfaces around the �
point are consistent with the CDW nesting vector, others
[13–15] indicate that this Fermi surface is too large to give
the correct nesting vector. Second, and of a more qualita-
tive nature, ARPES measurements [9–15] find no evidence
of a gap opening on the hexagonal Fermi surface, in direct
contrast with traditional wisdom of CDW materials.

In this Letter, we focus on the latter issue and suggest a
simple picture for why such gapless excitations are per-
mitted in the CDW phase. Using density-functional theory,
the electronic structure of prototype 2H TMD, 2H TaSe2,
is analyzed with a newly developed Wannier function (WF)
approach [17,18], and a striking feature is revealed: the
low-energy bands near Fermi surfaces, which govern the
physics of CDW, are dominated by hopping between
second-nearest neighbors. This special nature of hopping,
in combination with the triangular lattice vectors, effec-
tively splits the system into three weakly coupled tri-
angular sublattices. Since the CDW state gives distortion
of only two of the sublattices, whose stability is illustrated
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with a simple model, such unique electronic structure
naturally leaves the bands associated with the undistorted
sublattice ungapped in this CDW phase, resolving the
puzzle of the observed gapless excitations along the nested
regions of the Fermi surface.

The lattice structure of 2H TMDs consists of stacked
layers of 2D-triangular lattices of transition metals (e.g., Ta
or Nb) sandwiched between layers of chalcogen atoms
(e.g., S or Se). Rough estimation of the ionization leads
to the Ta4�Se2� configuration with one valence 5dz2 elec-
tron left per Ta atom that forms the metallic bands at the
Fermi level. Indeed, the band structure from our first-
principles calculations [19] (see Fig. 1) shows a strong
dz2 character in the two metallic bands corresponding to
two weakly coupled TaSe2 sandwiches per unit cell.
Unexpectedly, little Se p characters are found in these
two bands. The calculated low-energy bands agree well
with experiments, except that the saddle bands on the �K
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and AH lines are not as flat and close to the Fermi level as
reported [9,11].

Based on the first-principles ground state, the low-
energy Hilbert space can be accurately extracted via local
WFs (see Fig. 2), which we constructed by extending the
recently developed energy-resolved method [17,18] to in-
corporate desired symmetry [22]. As expected, the WF
located at each Ta site has strong dz2 symmetry near the
center, before extending its unusual tails of dxy=dx2�y2

symmetry to the nearest neighboring Ta sites due to strong
hybridization with the dxy=dx2�y2 orbitals near theK andH
points (see Fig. 1). This particular shape of the WF results
in an intriguing feature in the hopping integral (evaluated
via t�� � h�jh

DFTj�i with density-functional theory
Hamiltonian hDFT and Wannier states j�i and j�i). That
is, the second-neighbor hopping, t2 � 115 meV, over-
whelms the first-neighbor hopping, t1 � 38 meV, due to
remarkable phase cancellation in the latter case (to be
discussed in more detail below). In addition, interlayer
hoppings are found to be comparable to first-neighbor in-
plane hopping with t?;1 � 29 meV and t?;2 � 23 meV.

A simple microscopic picture for the unexpected domi-
nance of second-neighbor hopping can be obtained from
the symmetry of the WFs. As shown in Figs. 2(c) and 2(d),
the contributions to the hopping parameters between
neighboring WFs come mainly from the overlap of their
hybridization tails, since the tail-center (dz2 � dxy=dx2�y2 )
overlap gives negligible contribution due to its odd parity.
While the first-neighbor hopping suffers seriously from the
phase cancellation [illustrated by the opposite sign in
Fig. 2(c)], the second-neighbor hopping benefits greatly
from the phase coherence [the same sign in Fig. 2(d)] of the
overlap. Such symmetry consideration should hold for all
2H TMDs of the same class, due to their similar local
environment around the transition metal sites.

Specifically in 2H TaSe2 this unusual electronic struc-
ture provides a plausible intuitive resolution to the puzzling
a)
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FIG. 2 (color online). (a) Low-energy WF centered at Ta sites
with dz2 symmetry, colored to show its gradient from large (dark)
to small (light) in magnitude. (Red/blue online indicates posi-
tive/negative value.) Notice the local dxy=dx2�y2 symmetry in the
hybridization tail (circled) located at neighboring Ta sites.
(b) Schematics of the WF in the layer of the Ta triangular lattice,
with three small contributions at Se sites in the next layer.
Dashed/solid parts are positive/negative. (c), (d) Schematics of
phase interference in hopping to first- and second-nearest neigh-
bors, respectively.
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experimental observation of gapless excitations in the
CDW phase. Indeed, with the dominating second-neighbor
hopping in a triangular lattice, the system effectively splits
into three weakly coupled sublattices. As we discuss below,
one of the sublattices remains undistorted in the CDW
phase (see Fig. 4) and therefore the bands associated
with it are ungapped.

With the dominance of the second-neighbor hopping
established, we now move on to construct a minimal,
‘‘nesting’’ model which captures the essential physics of
the gapless CDW in 2H TMDs. We start with the simple
2D tight-binding energies given by

"0
k �

X
R

tjRj cos�k �R� (1)

where R runs over the triangular lattice defined by lattice
vectors a1 � a�

���
3
p
=2; 1=2� and a2 � a�

���
3
p
=2;�1=2�. In

addition to t2, t6 � t2=3 [23] (all other hoppings neglected)
is introduced to produce the Fermi surface of an almost
perfectly nested ‘‘hexagonal checkerboard’’ pattern similar
to the recent ARPES data with extended saddle bands (very
close to but below the Fermi energy for extended regions
along �K) [9–12], as shown in Fig. 3. The corresponding
band (with t2 adjusted to 140 meV) compares reasonably
well with the first-principles results (see Fig. 1; the two
metallic bands are degenerate in the 2D model). As we
show below, even with such a perfect Fermi surface nest-
ing, no gap is opened upon the formation of CDW.

Continuing the development of our minimal model, we
next consider the CDW lattice distortions. The detailed
neutron diffraction experiments of Moncton et al. [21]
have determined that the ionic displacements have �1

symmetry, which corresponds to longitudinal motion of
the Ta atoms in the basal plane with amplitude given by
experiment. However, the fitting procedure to the measured
geometric structure factors was insensitive to the overall
phase ’ of the distortions. Following this work, the atomic
displacements having �1 symmetry corresponding to the
triple period CDW in the 2H TMDs are given by
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FIG. 3 (color online). (a) The Fermi surface from the tight-
binding band structure. White indicates unoccupied states and
black indicates occupied states. (b) The Fermi surface for a
slightly smaller chemical potential showing the extended saddle
bands (small white regions). The first Brillouin zone is the
hexagonal cell formed by the (red online) dashed lines.
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FIG. 5 (color online). The bands in the low temperature CDW
state originating from the undistorted (a) and distorted
(b) sublattices. The increase in the number of bands corresponds
to backfolding resulting from the 3� 3 supercell. Theoretical
ARPES spectra for the normal (c) (corresponding to vanishing
electron-phonon coupling) and CDW (d) states for wave vectors
over the nested region of the Fermi energy along �M. The
energy range is �0:47 to 0 eV relative to the Fermi energy
and the momentum range is b1�b2
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FIG. 4 (color online). Atomic displacement pattern corre-
sponding to the phase ’ � �=2 in Eq. (2). The inset shows
the total energy of the CDW state as the function of phase ’
where the total energy units are arbitrary and the phase is in units
of �.
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�R �
X
Q

u cos�Q �R� ’�Q̂: (2)

Here u is the amplitude and the sum runs over the vectors
Q1 � b1=3, Q2 � b2=3, and Q3 � ��b1 � b2�=3, where
the reciprocal lattice vectors are given by b1 �

2�
a �

�1=
���
3
p
; 1� and b2 �

2�
a �1=

���
3
p
;�1�. The above atomic dis-

placements also split the lattice into three independent
sublattices, where one of these sublattices does not expe-
rience displacements for any ’. We will determine the
overall phase factor ’ by minimizing the total energy. It
can be seen that the magnitude of the displacements given
by Eq. (2) will not depend on ’. Thus the elastic energy of
the system will not depend on the phase of the CDW for
this model system and our problem is reduced to finding
the phase that minimizes the energy of the conduction
band. Expanding the crystal potential to first order in �R
given by Eq. (2) leads to the perturbation

H 0 �
X
k;Q

�Q
kc
y
kck�Q � H:c: (3)

where the wave vector k is summed over the first Brillouin
zone. For simplicity, we assume that the change in the hop-
ping parameters due to the lattice distortion is proportional
to the change in the absolute distance between neighboring
atoms: �tRR0 / ��R� �R0� � �R�R0�. Then

�Q
k � �ue

�i’
X
R

�jRj�e
�iQ�R � 1�e�ik�RQ̂ � R̂ (4)

where the lattice vector R is summed over the second-
nearest neighbors to the atom at the origin and �jRj�2 > 0
is the electron-phonon coupling constant in the unit of
energy/distance. Since the unit cell of the distorted lattice
contains nine sites of the original lattice, the renormalized
energies "�n�k are given by the eigenvalues of a 9� 9 matrix
which is rather cumbersome and we will give its explicit
expression elsewhere.

We can now write the total energy as a function of the
amplitude and phase of the distortion as

Etot�u;’� �
Z �

�1
"��"�d"� Eel�u� (5)

where ��"� �
P

k;n��"� "
�n�
k � is the density of electronic

states and Eel�u� is the elastic energy which, as we noted
before, is independent of the phase of the distortion. The k
integration is performed by using a fine Monkhorst-Pack
mesh and corresponding weights [24] in the irreducible
Brillouin zone of the triangular lattice. We determine the
chemical potential � by considering two extreme cases:
(i) Fixed particle number N, which corresponds to an
isolated metallic band at the Fermi energy. (ii) Fixed � �
0, which corresponds to significant spectral weight from
the other bands at the Fermi energy. The realistic situation,
with two metallic bands at the Fermi energy arising from
the multilayer structure should reside somewhere between
these two extremes. We find that the unanimous minimum
for both extreme cases occurs when ’ � �=2. This mini-
02640
mum will become more pronounced with an increased
electron-phonon coupling constant. In Fig. 4 we show the
corresponding atomic displacement pattern, which is con-
sistent with the charge maxima seen in scanning tunneling
microscopy experiments [25,26]. Furthermore, to check
the robustness of this result, we have performed the same
calculation, but with t6 set to zero, and have found that the
minimal total energy still occurs at ’ � �=2.

Now that the phase of the CDW has been determined we
will analyze the renormalized quasiparticle dispersion in
the presence of the CDW. The energy spectrum from the
undistorted sublattice is shown in Fig. 5(a) and that from
distorted sublattices is shown in Fig. 5(b) along the �M
direction, which is along the nested region of the
6-3



PRL 96, 026406 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JANUARY 2006
�-centered hexagonal Fermi surface. Clearly, those asso-
ciated with the undistorted sublattice do not change
[Fig. 5(a)]. Thus, the corresponding sub-bands remain
metallic in the CDW phase. On the other hand, the bands
originating from the two distorted sublattices are doubly
degenerate and we find a gap opens at the Fermi energy
[Fig. 5(b)]. Moreover, to make comparison with experi-
ment more direct, in Figs. 5(c) and 5(d) we present theo-
retical ARPES spectra A�k; !� � 1

� f�!� ImG�k; !�where
G�k; !� is the single particle Green’s function and f�!� is
the Fermi distribution function for wave vectors in a small
region of the nested portion of the Fermi surface. To
emulate experimental data, we have chosen a broadening
of � � 40 meV of the spectral density function. In
Fig. 5(b) both the gapped and ungapped bands are visible
(for an account of the weightings of satelite bands in CDW
materials, see Voint et al. [27]). The most direct compari-
son between experimental data is with the work of Valla
et al. [13] where there is a plot similar to Fig. 5(a). It is also
shown in that paper that no gap opens along �K, being
consistent with Fig. 5(b).

A question that naturally follows is how robust this
result is when the finite first-neighbor interaction—which
mixes all bands and thus destroys the exact decoupling into
the three independent sublattices—is taken into account.
We examine this issue, switching on the first-neighbor
electron-phonon coupling constant �1 in Eq. (4), up to a
third of the value of �2 as suggested by the first-principles
results: t1 ’ t2=3. As expected, we find that the degeneracy
of the bands originating from the distorted sublattices
shown in Fig. 5(b) is lifted. In addition, the triple degen-
eracy originating from the undistorted sublattice shown in
Fig. 5(a) at the Fermi energy is lifted. However, this does
not produce a quasiparticle gap at the Fermi energy. More
specifically, this triple degeneracy is lifted in such a way
that two of the energies are increased to above the Fermi
energy and the other one is decreased to below the Fermi
energy. It can be seen that this will indeed not gap the
Fermi surface, given �1 is considerably smaller than �2.

In conclusion, we have studied the CDW state in the 2H
transition metal dichalcogenides and found that due to a
unique feature in the electronic structure of these materials
revealed from first-principles calculations, the triangular
lattice can be effectively decoupled into three independent
sublattices, with one remaining undistorted in the CDW
phase. As illustrated with a model calculation, this leads to
the remarkable situation where no regions of the entire
Fermi surface become gapped even when these materials
exhibit a commensurate CDW.
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