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We study the energetics of vortices and vortex lattices produced by rotation in the cyclic phase of F � 2
spinor condensates. In addition to the familiar triangular lattice predicted by Tkachenko for 4He, many
more complex lattices appear in this system as a result of the spin degree of freedom. In particular, we
predict a magnetic-field-driven transition from a triangular lattice to a honeycomb lattice. Other tran-
sitions and lattice geometries are driven at constant field by changes in the temperature-dependent ratio of
charge and spin stiffnesses, including a transition through an aperiodic vortex structure. Finally, we
compute the renormalization of the ratio of the spin and charge stiffnesses from thermal fluctuations using
a nonlinear sigma model analysis.
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One of the many remarkable properties of superfluids is
the appearance of vortex lattices in rotated systems [1,2]
which are analogous to the mixed state of type-II super-
conductors in a magnetic field. Bose condensates of atoms
with nonzero integer spin [3], referred to as ‘‘spinor con-
densates,’’ combine spin and superfluid ordering in differ-
ent ways depending on the spin and the interatomic
interaction. These condensates, and the vortices and other
topological defects that they allow, have been actively
studied in recent years.

Since the physics of individual defects in spinor con-
densates is now understood for the most experimentally
relevant cases with total spin F � 3 [4,5], a natural next
step is to understand the collective physics of many de-
fects. Two examples are the vortex lattice in a rotated
condensate and the superfluid transition in a two-
dimensional condensate. In general, the lowest-energy
vortex defects of spinor condensates have both superfluid
and spin character. Although external rotation of the con-
densate couples only to the superfluid part, the mixed
nature of the vortices means that the interaction between
the spin parts is also important in determining the vortex
lattice.

This Letter uses a general approach to vortex lattice
phases in spinor condensates, including the Zeeman an-
isotropy normally present in experimental systems, to
show that the cyclic phase of an F � 2 spinor condensate
undergoes an unusual vortex lattice transition in a weak
applied magnetic field. The shapes of the lattices are a
result of the nontrivial spin configuration of the vortices
and the interactions between them. Imaging the shape
using a spin-insensitive measurement (such as time of
flight) thus gives us indirect information about the spin
configurations of the defects and the interactions between
them. The comparison of energies of different lattices uses
an Ewald summation technique (which to our knowledge
has not been employed to study two-dimensional electro-

static problems) that exactly reproduces previous results
obtained for simpler lattices using elliptic functions [1].
Using this method, we find several unusual possible vortex
lattice structures such as the rhombic and honeycomb in
addition to the familiar triangular lattice. We also show that
under some conditions there is a strictly aperiodic vortex
structure rather than a true lattice.

Dilute F � 2 bosons interact via the potential V�jr1 �
r2j� � ��r1 � r2��g0P0 � g2P2 � g4P4�, where PF pro-
jects into the total-spin F state and gF � 4�@2aF=M de-
termines gF given aF, the scattering length in the spin-F
channel. This two-body potential gives the interaction
Hamiltonian [6,7]

 H int �
Z
dr:

�
2
� y �2 �

�
2
j yF j2 �

�
2
j y tj2:;

(1)

with a five-component vector field  whose component
 m�r� destroys a boson at point r with Fz � m, m �
�2; . . . ;�2, and F denoting the spin-2 representation of
the SU�2� generators.  t is the time-reversal conjugate of
 :  tm � ��1�m ym. Further, � � �3g4 � 4g2�=7, � �
��g2 � g4�=7, and � � 1

5 �g0 � g4� �
2
7 �g2 � g4�. To Hint

must be added the one-body Hamiltonian for an isotropic
and spatially uniform condensate

 H 0 �
Z
dr

@
2

2M
r y � r �� y ; (2)

where � is the chemical potential. Minimizing this
Hamiltonian over single-particle condensates leads to three
phases: ferromagnetic, antiferromagnetic, and cyclic. The
cyclic phase that will be the focus of our work occurs when
�; � > 0 and is expected to be realized in a condensate of
85Rb atoms [6]. The spinor structure of this state, having
the symmetry of the tetrahedron, results in a non-Abelian
homotopy group.
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In all existing experiments, an important effect even at
the single-particle level is the existence of anisotropy in
spin space resulting from a magnetic field (B) used as part
of the trapping process. Including the hyperfine interaction
�, a Hamiltonian which reproduces the correct energies up

to a constant is given by H z�
�������������������������������������������������
�2���BB�2���BBFz

q
,

where�B is the Bohr magneton [8]. H can be expanded in
powers of Fz. Since the relaxation time of the total mag-
netization is typically longer than the condensate lifetime,
the linear term can be neglected. Particular attention has
been paid to the next term which gives rise to the quadratic
Zeeman effect [3]. However, due to the high symmetry of
the cyclic state, this quadratic term alone is not enough to
select its orientation. For this case, one therefore must
consider the cubic term which is at next order.

To determine the spin states for B � 0, one must also
consider the spin exchange interaction energy of the con-
densate per particle, which is Es �

1
2n�hFi � hFi �

1
2 n�jh�j�tij

2, where n is the condensate density. Since
the total spin is assumed to be conserved, we can neglect
the first term in this expression. Minimizing Es � Ez
(where Ez � hH zi) over possible spinor states, we find
the following: At small magnetic fields, the spinor �t1 �
�
��������
1=3

p
; 0; 0;

��������
2=3

p
; 0�T (up to any rotation about the z axis)

is selected. In the classification scheme described in
Ref. [9], this state is represented by a tetrahedron with
one of its faces parallel to the xy plane. Upon increasing
the magnetic field, there is a transition at �BBc � n�=16
to the spin orientation �t2 � � sin���=

���
2
p
; 0; cos���; 0;

� sin���=
���
2
p
�T , where � changes continuously with in-

creasing magnetization. This spinor has the symmetries
of a distorted tetrahedron with one of its edges parallel to
the xy plane (when � � �=4, it has the symmetries of the
regular tetrahedron). These two types of orientations are
summarized in Fig. 1. The magnitude of the critical field is
of the order of ambient fields in current experiments [10],
but smaller fields can, in principle, be simulated by optical
means [11].

An applied rotation couples to the phase of the conden-
sate and produces point vortices in two dimensions or
vortex lines in three dimensions. A vortex is a special
type of configuration that is locally in an ordered state
but cannot be smoothly deformed to the uniform configu-
ration. In general, vortices form a two-dimensional lattice

whose properties depend on the nature of the constituent
vortices and the interactions between them. For simplicity,
in our study we assume that the magnetic field and the axis
of rotation are in the same direction. Owing to the 2�=3
spin rotation symmetry of state (a) that is stabilized at
fields B< Bc, its vortices are of three types: �n;m�, �n�
1=3; m� 1=3�, and �n� 1=3; m� 1=3�, where n and m
are integers and the first argument inside the parentheses is
the winding number of the phase while the second is that of
the spin. Physically, this corresponds to the spinor order
parameter rotating m or m� 1=3 times as the vortex is
circled. The superfluid winding then has to satisfy the
constraint that the wave function is single-valued. For
instance, the �2=3; 1=3� vortex will correspond to the
spinor rotating by 2�=3 counterclockwise as the vortex is
circled. Only �n;m� vortices can be shown to be stable in
state (b). The vortex lattices that are formed in each case
have a net nonzero winding number for the phase and zero
winding number for the spin.

The energetics, in addition to the above constraints on
the winding numbers, depends on the stiffnessesKc and Ks
of the condensate corresponding, respectively, to the
charge (phase) and the spin. The interaction energy of
two vortices �x1; y1� and �x2; y2� separated by a distance r
in state (a) is given by

 E � 2�Kcx1x2 log�	=r� � �Ksy1y2 log�	=r�; (3)

where 	 is the typical radius of a vortex. 	 � @=
��������������
2M�n
p

,
since �; �	 � in Eq. (1) for typical systems. It should be
noted that Kc and Ks in Eq. (3) are not the bare stiffnesses
that would be obtained from Eq. (2) but renormalized
values due to the effects of thermal and quantum fluctua-
tions. We will turn the issue of relating these stiffnesses to
the bare values later in this Letter. We can use Eq. (3) to
determine the types of fundamental vortices that are pro-
duced for different values of Ks=Kc and B. This is sum-
marized below.

(a) (b)

B

FIG. 1 (color online). Orientations of the cyclic state in an
external magnetic field which breaks the spin rotational symme-
try. The spin-two spinors are represented by four spin-half vec-
tors on the unit sphere [9]. Upon increasing the magnetic field,
the spinor will undergo a transition from state (a) to state (b). As
indicated by the tetrahedra, orientations (a) and (b) will have
rotational symmetries given by the angles 2�n=3 and 2�n=2,
respectively (n is an integer), when rotated about the vector
defined by the magnetic field. These symmetries determine what
types of vortices can occur for such spin configurations.

TABLE I. Fundamental vortices produced.

B< Bc B> Bc
Ks
Kc
> 1 Only �1; 0� Only �1; 0�

1=4< Ks
Kc
< 1 �2=3; 1=3� & �1=3;�1=3�a Only �1; 0�

Ks
Kc
< 1=4 �1=3; 2=3� & �1=3;�1=3�b Only �1; 0�

aEqual numbers of �2=3; 1=3� and �1=3;�1=3� vortices.
bTwice as many �1=3;�1=3� vortices as �1=3; 2=3� vortices.
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We now evaluate the energies of the lattices produced by
the above fundamental vortices. Because of the long-
ranged nature of the logarithmic interactions, the energy
of a vortex lattice is difficult to evaluate directly. Thus, we
develop a method that is similar to the Ewald summation
technique for the cohesive energy of three-dimensional
ionic crystals [12,13]. For simplicity, we use a scalar
condensate to demonstrate the technique; the generaliza-
tion to spinor condensates is straightforward and will be
given presently. The energy (in units of the stiffness) of a
single vortex taken to be at the origin is given by

 
�0� �
X

R�0

log
�
	
R

�
�
Z
d2r�0 log

�
	
r

�
; (4)

where R are the lattice vectors and 	 the size of the vortex.
The second term is due to a uniform negative background
charge of density �0 which arises from the fact that we are
working in a rotating frame of reference. Note that each of
these terms diverges individually, but their difference does
not. The Ewald prescription is to add and subtract a nor-
malized Gaussian function 1

��2 e�r
2=�2

from each point
charge, where � is a screening length. For instance, the
potential of a point charge at the origin screened by such a
Gaussian function is 
�r� � 1

2 Ei�r2=�2�, where Ei�x� �R
1
x dte

�t=t is the exponential integral. Proceeding along
these lines, the resulting potential corresponding to Eq. (4)
is
 


�0� �
1

2

X
R�0

Ei
�
R2

�2

�
�

X
G�0

�0
2�

G2 e
���2=4�G2

� log
�
	
�

�
�

2
� �0

�
2
�2; (5)

where G are the reciprocal lattice vectors and  is the
Euler-Mascheroni constant. The first term comes from the
density of point charges screened by the Gaussian function,
while second term comes from difference of the charge
density of the Gaussian functions and the uniform charge
density. The term� log�	�� �


2 is obtained after subtracting

off the additional Gaussian function at the origin where we
omit the charge. Finally, the last term is to make the
average of the screened potential zero [13]. The best check
of this procedure is to see if the sum is independent of the
parameter �. The sums in real and reciprocal space in
Eq. (5) converge exponentially fast. For vortices in spinor
condensates, which contain windings of phase and spin, the
above procedure is applied individually to each sector with
the Ewald sums being weighted by the corresponding
stiffnesses. The main advantage of the Ewald technique
is that it can be easily generalized to treat complicated unit
cells with an arbitrary number of vortices.

Let us first consider the case B> Bc. As noted earlier,
the vortices produced by the rotation are of the type �1; 0�.
These form the usual triangular lattice for all values of
Ks=Kc. For B< Bc, the fractional winding numbers of the

fundamental vortices give rise to more interesting possi-
bilities. For 1=4<Ks=Kc < 1, the lattice is bipartite with
equal numbers of �2=3; 1=3� and �1=3;�1=3� vortices. We
use the Ewald summation technique to numerically evalu-
ate the energy of the lattice assuming the same parallelo-
gram unit cell for both sublattices and an arbitrary
displacement between them. We then perform a minimi-
zation of the energy over these parameters to identify the
lattice that is produced at different values of Ks=Kc. The
sequence of lattices is described in Fig. 2. At exactly
Ks=Kc � 1, the two sublattices do not interact with each
other, and each is a triangular lattice. As soon as Ks=Kc is
lowered and the two begin to interact, the honeycomb
lattice is stabilized and remains so until Ks=Kc � 0:76.
Below this value, the vortices of one type move to the
centers of the rhombic unit cells formed by the other type
forming an interpenetrating rhombic lattice. The internal
angle of the rhombus changes continuously with Ks=Kc
from �=3 at Ks=Kc � 0:76 to �=2 at Ks=Kc � 0:64. The
interpenetrating square lattice thus obtained at Ks=Kc �
0:64 is stable down to Ks=Kc � 1=4. This sequence of
lattices is the same as obtained for rotating two-component
condensates in the quantum Hall regime [14], or equiva-
lently the F � 1 polar condensate, but the values where the
transitions occur are different for F � 2.

For Ks=Kc < 1=4, a lattice with �1=3; 2=3� and
�1=3;�1=3� vortices is obtained with twice as many of
the latter as the former. Exactly at Ks=Kc � 1=4, the two
sublattices do not interact, and each is a triangular lattice.
The sublattice of the �1=3; 2=3� vortices has a unit cell of
length

���
2
p

times that of the �1=3;�1=3� vortices. These two
lattices are incommensurate for any rotation angle between
them, which follows from showing that the nonzero

FIG. 2 (color online). Phase diagram of the different types of
vortex lattices obtained as a function of temperature and rotation
rate for B< Bc where T0 �

@
2n3D

2MkB
�4�

4	3

3 �
1=3 and �0 �

�@
M	2 . The

color code for the vortices is �2=3; 1=3�, blue; �1=3;�1=3�,
white; and �1=3;�2=3�, red. The temperature and rotation rate
are related to ratio Ks=Kc via Eq. (7) for three dimensions.
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squared lengths of lattice vectors in one lattice are disjoint
from those in the other lattice. This incommensurability
implies that the energy of interaction between the two
lattices can be calculated using the Ewald technique by
averaging over all displacement vectors instead of specific
lattice points, and the result is zero. In the other limit,
Ks=Kc ! 0, the interaction between all pairs of vortices
is identical, and a triangular lattice is obtained. While there
are several ways to distribute the two kinds of vortices in
such a lattice, the lattice where the �1=3;�1=3� vortices
form a honeycomb lattice, while the �1=3; 2=3� vortices are
at the centers of each hexagon is the most symmetric one
with three vortices per unit cell. The behavior between the
incommensurate structure at Ks=Kc � 1=4 and this spe-
cific triangular structure as Ks=Kc ! 0 is difficult to de-
termine reliably by our technique, since, given the
existence of the incommensurate structure, there is no
justification for a numerical search over unit cells with a
finite number of basis vectors.

As demonstrated above, transitions between different
vortex lattices can be tuned by a magnetic field B or the
ratio Ks=Kc. While the field B can be applied directly or its
effect simulated through optical techniques in experiments
[11], the ratio Ks=Kc is more difficult to manipulate di-
rectly. In spinor condensates at close to zero temperature,
this ratio is typically close to 1 but is renormalized by
quantum and thermal fluctuations with the bare stiffnesses
K0
s � K0

c �
@

2n
M as can be seen from Eq. (2), where n is the

density of atoms. Increasing temperature (T) causesKs and
Kc to be renormalized by thermal fluctuations. To a first
approximation, the renormalization at low temperature can
be given by an O�n� nonlinear sigma model (NL�M) with
Ks corresponding to N � 3 and Kc to N � 2 [5]. The
renormalization of the stiffnesses comes from the interac-
tion between goldstone modes (spin waves) of the phase
and spin at finite temperature. The nonlinear sigma model
considers the interaction between these modes in a renor-
malization group scheme enabling us to calculate the flows
of the stiffnesses. We take the stiffnesses at the short
distance cutoff (	) to be K0

s and K0
c . The flow equations

for Ks and Kc are integrated up to a length scale L �������������������
�@=M�

p
, which is the average intervortex separation

for B< Bc and angular velocity �. We thus obtain Ks
Kc
�

1� kBTM
2�@2n2D

log� �@
M�	2� in two dimensions and

 

Ks
Kc
� 1�

2MkBT

@
2n3D

�
3

4�4	3

�
1=3
�

1�

��������������
M�	2

�@

s �
(7)

in three dimensions. In both cases, the ratio Ks=Kc can be
seen to decrease linearly with temperature from its bare
value of 1. The above analysis neglected quantum effects
due to Bogoliubov modes. One can on general grounds
argue that they produce a weaker (T4) dependence of

Ks=Kc at low temperature. The above analysis also as-
sumed an unbroken spin rotation symmetry despite the
presence of the magnetic field. This can be justified if the
field scale is smaller than the temperature. A more rigorous
analysis involves including the Zeeman term as a mass
term in the NL�M and integrating the flow equation up to a
length scale where this term is of order unity. If this length
scale is larger than the intervortex separation, the above
results would hold. If not, one would integrate from this
length scale to the intervortex separation assuming anO�2�
model for the spin. Either way, the final renormalization of
Ks=Kc would be linear in temperature with a weak B
dependence in the latter case.

To conclude, we have shown using the Ewald summa-
tion technique that different types of vortex lattices can be
produced in cyclic condensates as functions of magnetic
field and the ratio of the charge and the spin stiffnesses. In
the low-field limit, there are both abrupt transitions and
continuous families of lattices as functions of the ratio of
the stiffnesses, including the appearance of an incommen-
surate structure at one value. The ratio of the stiffnesses
can, in principle, be tuned by temperature.
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