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In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of
quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated
with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field.
In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge
states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a
topological band structure with a band gap traversed by edge states. We also find that the number of edge
states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an
energy shift while traversing the first Brillouin zone which is related to the topological properties of the
system. We find an analytical expression for the edge-state energies and our comparison with numerical
computation shows excellent agreement.
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Optical lattice experiments offer the possibility of
simulating atomic crystal structures, creating a clean and
well-controlled environment for probing many-body phys-
ics concepts and phenomena. In recent years, lattices
reassembling the Hofstadter [1–3] and Haldane [4] models
were created in optical lattice setups. A central focus in
such systems lies in the manifestation of surface states
which is a result of the nontrivial bulk topological proper-
ties. In topological insulators [5,6], for instance, electron
excitations form a Fermi sea and provided the Fermi level is
within the band gap the near-equilibrium dynamics is
dominated by the states localized either at the sharp
boundaries or at the interface with a system of a different
topology. However, unlike solids, ultracold atoms are
typically confined by a harmonic trapping potential. The
influence of the harmonic trap on the band structure and its
topology is therefore of significant importance.
Theoretical studies suggest the presence of a confining

potential can modify both the bulk and edge energy
spectrum significantly, leading not only to a change in
group velocity of edge modes but also to an emergence of
additional edge states [7,8], their disappearance [9], or
localization and a shrinking of the bulk region [8,10].
Possible ways of overcoming these difficulties include
inducing topological interfaces [11,12] or creating so-
called box traps [13–15]. Creation of such trapping
potentials represents a separate challenge and cost for
experimental setup. The role of mean field interactions
in the Haldane boson model was also considered in
Ref. [16] where it was shown that the bulk gap can close
when the harmonic trap is taken into account. We, however,
show that an interacting gas of spin-one bosons prepared in
a polar ground state on a two-dimensional lattice can have a

clear gap in the energy spectrum of the spin-�1 excitations.
Furthermore the gap is crossed by edge states that reflect
the topological structure of the lattice.
Advances in the creation of synthetic gauge fields for

atoms in optical lattices, as well as in photonic crystals,
have allowed the investigation of topological bands popu-
lated by bosons [17,18]. Of particular relevance is the
realization of topological collective excitations in these
systems [19–21]. While fermions form a Fermi sea, bosons
tend to occupy the lowest energy state available and
population of the higher energy edge modes is a challenge.
Ways to overcome this challenge were suggested. In
particular, quantum quenches provide a tool to selectively
induce dynamical instabilities in edge modes of topological
bosonic systems [19] (quenches in similar fermionic
systems were considered in Ref. [22]). The use of periodic
driving has also been proposed [21,23,24]. In these studies,
idealized (e.g., open) boundary conditions were adopted for
simplicity.
In this Letter, we show that pristine edge modes, much

like those occurring in systems with idealized open
boundary conditions, can occur in certain harmonically
trapped interacting systems. In particular, interactions
treated at the mean-field level can screen out the confining
potential near the center of the trap, leading to an effectively
flat potential. Additionally, in a spinor system one can have
pairing terms which are either small or zero near the center
of the trap. We demonstrate that, with these combined
ingredients, robust topological edge states can exist in the
collective excitation spectrum of such a system when the
bulk gap is larger than the characteristic energy scale γ ∼
Mω2xTFa in the Thomas-Fermi regime where ω is the
trapping frequency, M is the mass of the constituent
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bosons, xTF is the Thomas-Fermi radius of the system, and
a is the lattice constant. Additionally, for the case of γ much
smaller than the band gap, we will derive an analytical
expression for the edge state dispersion, which is also a
central result of this work. We illustrate our findings on a
honeycomb Kane-Mele lattice model, although our results
hold for other lattice geometries. The presence of the spin
degree of freedom, on the other hand, is essential for an
accurate reconstruction of the energy band structure of a
general lattice model with idealized boundary conditions.
We focus on S ¼ 1 spinor condensates on a lattice. We

introduce boson spinor operators Ψ̂j ¼ ðΨ̂j;1; Ψ̂j;0; Ψ̂j;−1ÞT
and consider a spin-one generalization ofKane-Melemodel:

Ĥlatt ¼ −w
X
hjj0i

Ψ̂†
jΨ̂j0 þ iλ

X
hhjj0ii

νjj0Ψ̂†
jSzΨ̂j0 ; ð1Þ

where we denote the 3 × 3 spin-one matrices as S ¼
ðSx; Sy; SzÞ and the tunneling towards the left (right) next
nearest-neighbor site is determined by iλνjj0 ¼ þið−iÞλ
[25]. Although we expect the results of the current work
to exist for other models, we concentrate on Eq. (1) to be
concrete, and because we considered this model in a
previous work [19]. The model exhibits two bands for each
spin component. The next-nearest-neighbor term vanishes
for spin 0 components and the Hamiltonian reduces to the
graphenemodel. The other two spin components each have a
gap of 4λ in energy spectrum, closed only by chiral
topological edge modes. In the following, we will write
this model more compactly as Ĥlatt ¼

P
ijΨ̂

†
iH

ij
lattΨ̂j where

the Hij
latt matrix can be directly determined from Eq. (1).

Since we are mainly interested in the manifestation of
edge modes, we will consider the strip geometry. We keep
the lattice periodicity along a1 primitive lattice vector,
while considering harmonic trapping confinement in the
perpendicular direction given by

V̂ω ¼
X
j

Mω2x2j
2

ρ̂j; ð2Þ

where ω is the confining frequency, ρ̂j ¼ Ψ̂†
jΨ̂j is the local

number operator, and xj is the location of the jth site with
respect to the center of the trap taken along the x direction
as depicted in Fig. 1.
We now include on-site interaction terms that do not

break spin rotational symmetry:

Ĥint ¼
X
j

�
U
2
ρ̂2j þ

US

2
Ŝ2
j

�
; ð3Þ

where Ŝj ¼ Ψ̂†
jSΨ̂j is the local spin operator, andU andUs

are the density and spin interaction strengths. We also
consider a quadratic Zeeman term ĤZ ¼ qZ

P
jΨ̂

†
jS

2
zΨ̂j

which is experimentally adjustable using external magnetic

fields or microwave fields [26]. The linear Zeeman term is
omitted due to the Sz symmetry of our model. The total
Hamiltonian now reads

Ĥ ¼ Ĥlatt þ Ĥint þ ĤZ þ V̂ω − μ
X
j

ρ̂j; ð4Þ

where μ is the chemical potential.
At low enough temperatures atoms occupy the ground

state Ψ̄j which we treat in mean field theory. We will focus
on the case when the ground state is a polar state where
S̄j ¼ Ψ̄†

jSΨ̄j ¼ 0 and Ψ̄j ¼ ð0; ffiffiffiffiffi
ρ̄j

p
; 0ÞT . To achieve this,

we require a positive qZ for positiveUs, and qZ > 2jUsj for
negative Us [27]. We consider a slowly varying confining
potential, much slower than the lattice characteristic length
scale, so the ground state population extends over a con-
siderable number of lattice sites. Provided the density and
spin fluctuations, δρ̂ ¼ ρ̂ − ρ̄ and δŜ ¼ Ŝ − S̄, are small,
the fluctuations about the ground state ψ̂ ¼ Ψ̂ − Ψ̄ up to
quadratic order are described by the Bogoliubov–de Gennes
(BdG) Hamiltonian:

(a)

(b)

FIG. 1. (a) Lattice structure, determined by the primitive lattice
vectors a1 and a2 of length a. Closed and open circles denote the
triangular sublattice sites A and B, respectively. We consider a
strip geometry with open (periodic) boundary conditions in xðyÞ
direction. (b) The effective potential Veff (red solid line) and the
density profile of the ground state Uρ̄ (black cross marks). These
quantities are obtained numerically and are in excellent agree-
ment with the Thomas-Fermi profile. Here λ ¼ w=2, Mω2a2 ¼
0.02w and UNstr ¼ 800w, where Nstr is the total number of
bosonic particles in a strip denoted by the (green) dashed lines in
(a). The Thomas-Fermi radius is xTF ≈ 30a.
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HB ¼
X
ij

ψ̂†
i ðHij

latt − δijH̄lattÞψ̂j þ
X
j

Veff;jψ̂
†
j ψ̂j

þ
X
j

qZψ̂
†
jS

2
zψ̂j þ

U
2
δðρ̂2jÞ þ

US

2
δðŜ2

jÞ; ð5Þ

where we have introduced the mean kinetic energy per
particle in the condensate H̄latt ¼

P
i;jΨ̄

†
iH

ij
lattΨ̄j=

P
j0 ρ̄j0

and the effective potential:

Veff;j ¼ Mω2x2j=2þ H̄latt þUρ̄j − μ: ð6Þ
Prior to evaluating the fluctuation modes of the BdG

Hamiltonian, we first discuss the effect of screening
of confining potential. The ground state density profile
Ψ̄ is determined by the time-independent Gross-Pitaevskii
equation:X

j

ðHij
latt − H̄lattδij þ Veff;iδijÞΨ̄j ¼ 0: ð7Þ

At large distances from the center of the trap the population
density n̄j vanishes and the confining potential takes the
leading role in Veff . On the other hand, for distances closer
to the center of the trap, the ground state population is larger.
Under the Thomas-Fermi approximation for the mean-
field density, applicable when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω2a2w

p
≪Umaxjρ̄j,

the effective potential Veff indeed will vanish
identically inside the Thomas-Fermi radius given by
xTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðμ − H̄lattÞ=ðMω2Þ

p
. Shown in Fig. 1 is the effec-

tive potential which is computed numerically and demon-
strates the statements above. Such a screening occurs in
standard scalar BECs. In this sense, interactions contribute to
the screening of the harmonic trap inside the Thomas-Fermi
region.Deviations fromperfectThomas-Fermi screening can
be seen as oscillations on the scale of the lattice spacing in the
effective potential Veff . These are due to variations of the
harmonic potential within the unit cell that are not perfectly
screened [28]. Although the magnitude of these variations is
small in comparison to the band and gapwidths controlled by
ω and λ, we retain them in our numerical computation.
We now turn to the discussion of the fluctuation spectrum

of the BdG Hamiltonian Eq. (5), which is the central focus
of this work. Because of Sz symmetry, the spin-�1 compo-
nents decouple from the spin-0 ones in HB. The density
fluctuation term in Eq. (5) carries only spin-0 components
δρ̂2j ¼ ρ̄jðψ̂†

j;0ψ̂ j;0 þ ψ̂ j;0ψ̂ j;0 þ H:c:Þ, while the spin fluc-

tuation term couples the spin-�1 components: δŜ2
j¼

ρ̄jðψ̂†
j;þ1ψ̂ j;þ1þψ̂†

j;−1ψ̂ j;−1þψ̂ j;þ1ψ̂ j;−1þψ̂†
j;þ1ψ̂

†
j;−1þH:c:Þ.

In typical spinor condensates, the spin-spin interaction is
much smaller than the density-density interaction. For
instance, for 87Rb, US will be 2 orders of magnitude smaller
than U. For this case, the Hamiltonian describing the �1
components will be, to a good approximation, translationally
invariant within the Thomas-Fermi radius. An interface is
then encountered at x ¼ xTF, where the effective potential

rises (Fig. 1) and the system loses its translational invariance.
Similar approximations have previously been employed to
simplify the computation of the spatial structure of para-
metrically amplified spin modes [29].
To better understand the effect of trap screening on the

manifestation of topological edge modes, we now turn to an
effective description of the edge state emergence around the
screening boundaries outside the Thomas-Fermi radius. As
the edge states are composed entirely of �1 components,
we will restrict our attention to these modes. Outside of the
Thomas-Fermi radius, we may neglect the last two terms in
Eq. (5) as the mean-field particle density vanishes in this
region, so that pairing terms are absent. We assume the
boundary region to be sufficiently small in comparison to
the lattice constant induced by optical lattice potential and
will discuss the effect of these restrictions later.
In the following, we will describe a fairly general method

to compute the dispersion of edge modes in a soft potential,
but will give quantities relevant to our particularmodel in the
Supplemental Material [28]. Note that outside the Thomas-
Fermi radius, the effective potential reduces to the trapping
potential, and interactions are unimportant since the mean-
field density vanishes in this region. As a result the spin
components decouple and without loss of generality wewill
focus on one spin component. Let k denote thewave number
along the a1 periodic direction and n label the unit cell along
the a2 lattice vector. The two sublattices of our model are
spatially separated and consequently the corresponding
atoms at the same nth unit cell experience a different
magnitude of the confining potential. While the excitations
related to one sublattice experience an effective potential
VðnÞ, the excitations related to the other sublattice experi-
ence a potential Vðnþ sÞ, where s accounts for the relative
lattice separation. For the specific model Eq. (1) of this
Letter, s ¼ 1=3 [28]. The energy spectrum of the system
outside of the Thomas-Fermi radius is given by the eigen-
values Ek of a difference equation of the formX

n0
Hk;n−n0Φk;n0 þ VnΦk;n ¼ EkΦk;n; ð8Þ

where Hk;n−n0 and Vn ¼ diag(VðnÞ;Vðnþ sÞ) are 2 × 2

matrices corresponding to the sublattice degrees of freedom
[28] (the treatment can also be generalized to larger
matrices). In Eq. (8), Hk;n−n0 follows from Hij

latt while Vn

follows from the effective potential Eq. (6).
We consider a lattice point n̄ outside of the Thomas-

Fermi radius and expand about it to first order:
Vn ¼ Vn̄ þ Vn̄

0ðn − n̄Þ. We will search for solutions local-
ized about n̄. Such an approximation is valid since the
effective potential is nearly linear in this region (see Fig. 1).
We next introduce Φk;φ ¼ P

ne
−inφΦk;n. This is 2π peri-

odic in φ which follows directly from its definition. We
now work with the wave function using this momentum
representation for the motion in the x direction. Then
Eq. (8) in terms of Φk;φ reduces to
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EkΦk;φ ¼ ½Hk;φ þ Vn̄ þ Vn̄
0ði∂φ − n̄Þ�Φk;φ; ð9Þ

whereHk;φ ¼ P
ne

−iðn−n0ÞφHk;n−n0 is the Fourier transform of
Hk;n−n0 . The following analysis is simplified by performing a
unitary transformation so that matrices corresponding to the
potential in the above aremade to be proportional to the identity
matrix. Such a transformation is achieved by Uφ ¼
diagð1; eisφÞ. Under this transformation, Eq. (9) becomes

iγn̄∂φ
~Φk;φ ¼ ðEk − ~Hk;φ − ~Vn̄ þ 1n̄γn̄Þ ~Φk;φ ð10Þ

where ~Φk;φ ¼ U†
φΦk;φ, ~Hk;φ ¼ U†

φHk;φUφ, ~Vn̄ ¼ Vðn̄Þ1,
and γn̄ ¼ V 0ðn̄Þ. The solution to this is readily found to be

~Φk;φ ¼ e−iðn̄þ
Ek−Vðn̄Þ

γn̄
ÞΔφPe

i
γn̄

R
φ

φ0
dφ0 ~Hk;φ0 ~Φk;φ0

: ð11Þ
Here P is the path ordering operator for φ and Δφ ¼ φ − φ0

where φ0 is arbitrary. Note that the eigenvalues of ~Hk;φ give the
bulk band dispersions in the noninteracting limit.
For the case when γn̄ is significantly smaller than the

eigenvalue spacing of ~Hk;φ, i.e., much smaller than the bulk
band gap, the adiabatic approximation can be used. To do so,

we introduce the “instantaneous” eigenbasis: ~Hk;φ
~ϕðνÞ
k;φ ¼

εðνÞk;φ
~ϕðνÞ
k;φwhere ν labels the eigenvectors or eigenenergies and

let ϕðνÞ
k;φ ¼ Uφ

~ϕðνÞ
k;φ. Here, ε

ðνÞ
k;φ are the bulk eigenstates of the

noninteracting infinite system. Invoking the adiabatic
approximation, and transforming back to the original
variables, one finds

Φk;φ ¼ e−iðn̄þ
Ek−Vðn̄þs

2
Þ

γn̄
ÞΔφ

×
X
ν

e
i
R

φ

φ0
dφ0ð

ε
ðνÞ
k;φ0
γn̄

þAðνÞ
k;φ0−

sZ
ðνÞ
k;φ0
2

Þ½ϕðνÞ†
k;φ0

Φk;φ0
�ϕðνÞ

k;φ ð12Þ

where AðνÞ
k;φ ¼ iϕðνÞ†

k;φ ∂φϕ
ðνÞ
k;φ is the Berry connection and

ZðνÞ
k;φ ¼ ϕðνÞ†

k;φ σzϕ
ðνÞ
k;φ (σz is a Pauli matrix). Such derivations

are standard for periodically driven quantum systems in the
adiabatic limit (here φ is analogous to time) [30].
Requiring Φk;φ to be 2π periodic in φ enables one to

determine the energies Ek entering Eq. (12). Labeling these

as Eðn̄νÞ
k , one finds

Eðn̄νÞ
k ¼V

�
n̄þ s

2

�
þ 1

2π

Z
2π

0

dφ

�
εðνÞk;φþ γn̄A

ðνÞ
k;φ−

sγn̄
2

ZðνÞ
k;φ

�
:

ð13Þ
Different values of n̄ correspond to edge states localized at
different places along the x direction. This expression is
remarkable in that it expresses the edge state dispersion
purely in terms of the external potential and basic quantities
of the bulk system. The (integer) Chern numbers of the bulk
system are given by

Cν ¼
1

2π

Z
2π

0

dφ
Z

2π

0

dkΩðνÞ
k;φ; ð14Þ

whereΩðνÞ
k;φ ¼ ið∂kϕ

ðνÞ†
k;φ ∂φϕ

ðνÞ
k;φ−∂φϕ

ðνÞ†
k;φ ∂kϕ

ðνÞ
k;φÞ is the Berry

curvature. Using this and Eq. (13), one sees that the edge
state band energies change by γn̄Cν as the one-dimensional

Brillouin zone is traversed:ΔEðn̄νÞ
k ¼ Eðn̄νÞ

k¼2π − Eðn̄νÞ
k¼0 ¼ γn̄Cν.

A result similar to Eq. (13) was previously uncovered in
Ref. [31], though the methods used there are rather different
from those used presently. The work [31] considered a
topological system under a strictly linear external field, the
so-called Wannier-Stark ladder. A semiclassical theory of
the system was developed using the methods of Ref. [32].
The theory was quantized by the Bohr-Sommerfeld con-
dition to deduce the eigenenergies. Our expression Eq. (13)
reduces to the result of Ref. [31] in the limit when V n̄ is a
strictly linear potential and the external field couples
identically to sites with the same n (i.e., s ¼ 0). We also
point out that the above derivation can be extended to lattice
systems having more than two sublattices. For this case, the

term containing ZðνÞ
k;φ in Eq. (13) will be modified, reflecting

the more complex lattice geometry.
We support our results by performing numerical com-

putations. We evolve the Gross-Pitaevskii equation
[Eq. (7)] in imaginary time to find the ground state in
the Thomas-Fermi regime. We then compute the collective
spin excitations. Comparison with the analytical result

FIG. 2. Left: The energy spectrum corresponding to the spin-
1ð−1Þ excitations. The solid lines correspond to numerical
results, while the dashed line corresponds to the analytical
expression Eq. (13) for a particular mode. Right: The effective
potential in units of w near the Thomas-Fermi radius xTF ≈ 30a
(red) and the wave functions of the eigenmodes in arbitrary units
at k ¼ 2π (blue). All parameters are the same as in Fig. 1(b):
λ ¼ w=2, Mω2a2 ¼ 0.02w and UNstr ¼ 800w.
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Eq. (13) shows excellent agreement (see Fig. 2). Deviations
from Eq. (13) do occur for the edge states with energies
close to the corresponding bulk band from which they
emerge. For these energy levels the overlap between states
Eq. (12) and bulk states cannot be ignored. The focus of
this Letter, however, lies in describing the emergence of
topological edge states with energies well within the gap
and/or outside the bulk bands. Nevertheless, we point out
that our method can be improved by requiring correspond-
ing matching conditions at the screening radius and
retaining higher order derivatives of the confining potential.
We also find that the degeneracy of the edge states changes
depending on its energy. As can be seen in Fig. 2, the chiral
edge states can pass through a given energy level several
times. However, the difference between the number of right
and left movers, Nν

R and Nν
L correspondingly, at the same

energy level is fixed by the topological structure of the bulk
states: Nν

R − Nν
L ¼ Cν. This is a direct indication of the

topological nature of the bulk states and a consequence of
the bulk-boundary correspondence [5,6].
In summary, despite harmonic confinement being known

for obscuring observation of topological edge states, we
have shown that interactions can facilitate the emergence of
these states in topological lattices populated by a spinor
Bose condensate. In the Thomas-Fermi regime sharp boun-
daries emerge due to the screening of the harmonic trap
inside the Thomas-Fermi radius. We have found localized
states emerging outside the Thomas-Fermi radius. We have
also shown that these states carry information about the
lattice topology inside the screening radius. Our results are
valid both for antiferromagnetic (Us > 0) and ferromagnetic
(Us < 0) interactions. Though we have focused, for con-
creteness, on the spin-oneKane-Melemodel, the same effect
will be present in other spinor lattice systems, like a spinful
Hofstadtermodel [2]. Our analysis gives new insight into the
emergence of topological edge states at soft boundaries and
opens new doors to the exploration of topological properties
in optical lattice experiments with spin-1 bosons.
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