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We consider a system of interacting spin-one atoms in a hexagonal lattice under the presence of a
synthetic gauge field. Quenching the quadratic Zeeman field is shown to lead to a dynamical instability of
the edge modes. This, in turn, leads to a spin current along the boundary of the system which grows
exponentially fast in time following the quench. Tuning the magnitude of the quench can be used to
selectively populate edge modes of different momenta. Implications of the intrinsic symmetries of the
Hamiltonian on the dynamics are discussed. The results hold for atoms with both antiferromagnetic and
ferromagnetic interactions.
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Topological Bloch bands and their concomitant pro-
tected edge modes play important physical roles in several
solid-state materials including quantum Hall systems [1]
and topological insulators or superconductors [2,3]. Recent
years have experienced remarkable progress in engineering
systems which possess topological Bloch bands as a result
of induced effective gauge fields. Effective gauge fields
have been realized in systems of ultracold atoms through
mechanical rotation, optical lattice “shaking,”and laser-
assisted tunneling (see Ref. [4] for a review). Recent
milestones include the experimental realization of the
Rice-Mele [5], Hofstadter [6–8], and Haldane [9] models
in optical lattice systems. The emerging field of topological
photonic lattices offers a separate and complementary
system where topological Bloch bands have also recently
been realized [10–13]. Most of the experimental systems
with ultracold atoms involve temperatures for which the
particle dynamics can be accurately described by non-
interacting theories. However, as experimental techniques
are refined and quantum degeneracy is reached, interactions
and particle statistics will play an essential role in the
physics of these systems.
Of central interest in each of these models is the presence

of topologically protected edge modes. The physical
consequence of edge modes for a degenerate Fermi gas
in a topological band is clear: if the Fermi energy resides
within the bulk band gap, the near-equilibrium dynamics
will be described by degrees of freedom localized along the
edge of the system. On the other hand, for bosonic systems,
particles will generally condense into the lowest bulk band,
leaving the higher-energy edge states largely unimportant
for the dynamics of the system.
In this Letter, we propose a scheme to bring to the fore

the role of edge states in the dynamics of bosons in a
prototypical two-dimensional topological band system.
In particular, we describe how a quantum quench of
an interacting spinor generalization of the well-known

Kane-Mele model [14] can result in an exponentially
fast growth in the population of edge (but not bulk) states.
This will be exhibited as an exponential growth of the spin
current along the boundary of the system. Furthermore, the
momenta of these edge states can be selected by tuning
the magnitude of the quench.
Before proceeding, we briefly comment on previous

related work. Probing the topology of band systems
through a quench has received considerable attention in
the recent theoretical literature (e.g., Refs. [15–22]). One of
us [23] has described the exponentially fast population of
an edge mode in perhaps the simplest topological system,
the Su-Schrieffer-Heeger (SSH) model [24], by preparing a
bosonic gas in an excited spatial mode. A photonic version
of the SSH model was in fact realized [25] where on-site
absorption was shown to lead to fast population of edge
states [26]. Quadratic fermionic Hamiltonians have been
previously classified in terms of their symmetries [27,28].
Much less work, however, has been carried out for bosonic
systems. An expression for the Chern number, accounting
for the symplectic transformation properties of bosonic
systems, was obtained in Ref. [29]. In Ref. [30], the
topology of real Bogoliubov excitations in inversion-
symmetric lattices was analyzed. However, to our knowl-
edge, a classification of quadratic bosonic systems allowing
for dynamical instabilities does not presently exist.
The Haldane model [31] was realized in an ultracold

atomic system by the Esslinger group [9]. This system
involves atoms on a hexagonal optical lattice where spin-
orbit coupling is induced through shaking. In this work, we
consider a spin-one version of this system where atoms
experience spin-orbit coupling proportional to the z com-
ponent of their spins. In particular, we introduce the
following generalization of the Kane-Mele model [14]:

ĤS1KM ¼ −w
X
hiji

Φ̂†
i Φ̂j þ iλ

X
hhijii

νijΦ̂
†
i SzΦ̂j ð1Þ
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where Φ̂i ¼ ðΦ̂i;1; Φ̂i;0; Φ̂i;−1ÞT is a vector composed of
bosonic annihilation operators at site i for each spin
component and we denote the 3 × 3 spin-one matrices as
S ¼ ðSx; Sy; SzÞ. The second term above describes hopping
between second neighbors, and νij ¼ þ1ð−1Þ if the atom
makes a left (right) turn to reach a second-neighbor site
[14]. The spin components are decoupled in ĤS1KM: the
spin-zero component is described by the nearest-neighbor
graphene model with hopping w while the spin-�1 com-
ponents are described by two Haldane models with
opposite magnetic fields. We restrict our attention to w >ffiffiffi
3

p jλj so that the single-particle state of lowest energy
occurs at the center of the Brillouin zone.
Next, we include on-site interactions that preserve spin

rotation invariance [32–34]:

Ĥint ¼
X
i

�
U
2
ðΦ̂†

i Φ̂iÞ2 þ
Us

2
ðΦ̂†

i SΦ̂iÞ2
�

ð2Þ

where U and Us describe the magnitude of the density and
spin interactions, respectively. Finally, we introduce the
standard quadratic Zeeman effect for spinor condensates
[34]: Ĥext ¼ q

P
iΦ̂

†
i ðSzÞ2Φ̂i. While external magnetic

fields will provide only positive values of q, microwave
fields can be utilized to access both positive and negative
quadratic Zeeman shifts [35]. Introducing a chemical
potential μ, the full Hamiltonian reads Ĥ ¼ ĤS1KMþ
Ĥint þ Ĥext − μ

P
iΦ̂

†
i Φ̂i. which is invariant under time

reversal and global spin rotations about the z axis, the
importance of which will be addressed below.
In this work, we consider a quantum quench that

abruptly changes the quadratic Zeeman energy q from
an initially large and positive value to a final value qf. This
form of quenching has been experimentally achieved in
several experiments in the past decade (see Ref. [34] and
references therein). The initial state is a coherent state with
all bosons in a spatially uniform spin-zero state:

jΨini ¼ e−ð1=2ÞNpe
ffiffī
n

p P
i
Φ̂†
i;0 j0i ð3Þ

where Np is the total atom number. There are no particles
with sz ¼ �1 in this state. This initial state is the mean-field
superfluid ground state of the graphene-lattice boson
Hubbard model. A variational calculation shows that the
average number of bosons per site, n̄, is related to the
chemical potential by μ ¼ n̄U − 3w.
To investigate the ensuing dynamics after the quench, we

consider small fluctuations of the Hamiltonian with q ¼ qf
around the initial state, Eq. (3). Let ϕ̂i ¼ Φ̂i − ð0; ffiffiffī

n
p

; 0ÞT
where ϕ̂i ¼ ðϕ̂i;1; ϕ̂i;0; ϕ̂i;−1ÞT . The Hamiltonian can be
expanded to quadratic order in ϕ̂i as Ĥ ¼ hΨinjĤjΨiniþ
ĤB. One finds

ĤB ¼ −w
X
hiji

ϕ̂†
i ϕ̂j þ iλ

X
hhijii

νijϕ̂
†
i Szϕ̂j þ

X
i

ϕ̂†
i Mϕ̂i

þ
X
i

��
Un̄
2

ϕ̂i;0ϕ̂i;0 þ Usn̄ϕ̂i;1ϕ̂i;−1

�
þ H:c:

�
ð4Þ

where M ¼ diagð3wþ Usn̄þ qf; 3wþ Un̄; 3wþ Usn̄þ
qfÞ and qf is the quadratic Zeeman energy after the

quench. The Sz-rotation symmetry of ĤB ensures that
the spin-�1 components are decoupled from the spin-0
components and hence the Eq. (4) can be written as
ĤB ¼ Ĥ0 þ Ĥ�1. The Hamiltonian Ĥ0 describes the
dynamics of the spin-zero components and has no spin-
orbit coupling. It is readily diagonalized by a Bogoliubov
transformation. The resulting spectrum is stable and exhib-
its the usual linearly dispersing phonon mode. From now
on, we will focus on the spin-�1 sector described by Ĥ�1.
As we are primarily interested in the dynamics of the

edge states of this model, we will focus on the strip
geometry. Denoting the primitive lattice vectors of gra-
phene as a1 and a2 [36], we consider open (periodic)
boundary conditions along the a1 (a2) direction. It is
instructive to rewrite Eq. (4) in the eigenbasis of the
noninteracting spin-one Kane-Mele model, Eq. (1), in this
geometry. The spin-�1 Hamiltonian becomes

Ĥ�1 ¼
X
k;ν

½ðεðνÞk − ΔÞðα̂†k;ν;1α̂k;ν;1 þ α̂†−k;ν;−1α̂−k;ν;−1Þ

þ Usn̄ðα̂k;ν;1α̂−k;ν;−1 þ H:c:Þ�: ð5Þ

Here, εðνÞk are the single-particle energies of the Haldane
model in the strip geometry, k ¼ k · a2 is the momentum
along the periodic direction, and α̂k;ν;m annihilates a boson
in the eigenbasis of Eq. (1). We have introduced Δ ¼
−Usn̄ − 3w − qf which serves as the tuning parameter for
our quench. Because of time-reversal symmetry and the
spatial uniformity of the initial state, Ĥ�1 can be separated
into pairwise couplings between (k; ν; m) and (−k; ν;−m)
modes which greatly simplifies the analysis.
Unlike Ĥ0, Ĥ�1 cannot in general be brought to

diagonal form and may exhibit a dynamical instability.
Therefore, we focus instead on the Heisenberg equations of
motion: i∂tα̂k;ν;�1ðtÞ ¼ ½α̂k;ν;�1ðtÞ; Ĥ�1� where α̂k;ν;�1ðtÞ ¼
eiĤ�1tα̂k;ν;�1e−iĤ�1t and we have set ℏ ¼ 1. These can be
solved to give

α̂k;ν;1ðtÞ ¼ Ak;νðtÞα̂k;ν;1 þ Bk;νðtÞα̂†−k;ν;−1;
α̂−k;ν;−1ðtÞ ¼ Bk;νðtÞα̂†k;ν;1 þ Ak;νðtÞα̂−k;ν;−1; ð6Þ

where Ak;νðtÞ ¼ cosðEðνÞ
k tÞ − iðεðνÞk − ΔÞ sinðEðνÞ

k tÞ=EðνÞ
k

and Bk;νðtÞ ¼ −iUsn̄ sinðEðνÞ
k tÞ=EðνÞ

k with the Bogoliubov
energies
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EðνÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεðνÞk − ΔÞ2 − ðUsn̄Þ2

q
: ð7Þ

For sufficiently low condensate depletion, the Bogoliubov
Hamiltonian can be used to propagate the initial state
Eq. (3) as jΨðtÞi ¼ e−iĤBtjΨini. The solutions, Eq. (6), can
then be used to obtain the expectation value of bilinear
operators:

hΨðtÞjα̂†k;ν;mα̂k0;ν0;m0 jΨðtÞi ¼ δk;k0δν;ν0δm;m0 jBk;νj2;
hΨðtÞjα̂k;ν;mα̂k0;ν0;m0 jΨðtÞi ¼ δk;−k0δν;ν0δm;−m0Ak;νBk;ν; ð8Þ

for spin m ¼ �1 components.
We now arrive at the central result of this Letter. If we

tune the quench parameter Δ to satisfy

εðνÞk −Usn̄ < Δ < εðνÞk þ Usn̄; ð9Þ

the Bogoliubov energies EðνÞ
k becomes imaginary signify-

ing a dynamical instability for the ðk; νÞ mode. Physically,
this provides exponentially fast population of the unstable
modes. In other words, through Eq. (9), the quenching
protocol gives a “window” (centered on Δ and of width

2Usn̄) of unstable modes in the spectrum εðνÞk .
To understand the instability criterion, we now discuss

the single-particle eigenstates for the spin-�1 components.
As already mentioned, these are the eigenstates of the
Haldane model with opposite fluxes for the two spin
components. The bulk states form two bands of states
separated by a band gap of 6

ffiffiffi
3

p
λ centered about zero [31].

In addition, the noninteracting spectrum exhibits topologi-
cally protected edge modes which exist within the bulk gap.
In the Supplemental Material [36], we show that the
dispersion of the edge states is

εedgek ¼ � 6wλ sinðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 16λ2sin2ðk

2
Þ

q ð10Þ

where spin-�1 modes propagate in opposite directions. If
we tuneΔ to sit inside of the band gap, then, for sufficiently
small Usn̄, we can achieve the intriguing situation where
the bulk states are stable while the edge states experience
exponentially fast population growth. A similar scheme for
populating edge modes has been previously reported in
Ref. [23]. Moreover, unlike Ref. [23], due to the tunability
of Δ, the current scheme allows one to selectively populate
states with particular momenta along the edge. From
Eq. (7), we see that the most unstable modes occur at

momenta for which εðνÞk ¼ Δ, so, for instance, whenΔ ¼ 0,
edge modes with momenta k ¼ π will be populated most
rapidly. Bulk and edge bands are shown in Fig. 1 for two
particular quenches.

The symmetries (inversion, time reversal, and spin
rotation) of the Bogoliubov Hamiltonian greatly simplify
the above analysis. That is, given the single particle
energies of the Haldane model, the above analysis essen-
tially reduced to solving a two-mode problem. For more
general couplings with less symmetry, it is easiest to
proceed by solving the Bogoliubov–de Gennes (BdG)
equations.

τ3Hkvk;ν ¼ EðνÞ
k vk;ν ð11Þ

where Hk is the BdG Hamiltonian which, for our problem,
can be directly determined from Eq. (4). For a system
having length Nja1j along the direction with open boun-
dary conditions, Hk is a 2N × 2N dimensional matrix
where N ¼ 6N (the factor of 6 accounts for the spin and
sublattice degrees of freedom) while τ3 ¼ σ3 ⊗ 1N×N . The
BdG Hamiltonian generically possesses a “particle-hole”

symmetry which requires the eigenvalues to come in �EðνÞ
k

FIG. 1 (color online). The Bogoliubov energy spectrum �EðνÞ
k

corresponding to Eq. (7) for the interacting spin-one Kane-Mele
model in the strip geometry. Parameters in (a) are Usn̄ ¼ 0.2w,
λ ¼ w=2, and qf ¼ Usn̄ which correspond to a shallow quench
with stable spectrum. Parameters in (b) are the same as (a) except
qf ¼ −3w − 3Usn̄ for which the bulk states are stable while the
edge states experience an exponentially fast population growth.
Gray curves indicate hole bands while black curves indicate bulk
particle bands. Red and blue curves indicate edge states propa-
gating in opposite directions. For clarity, edge states on only one
side of the system are plotted (on the opposite side, the roles of
the particle and hole edge bands are reversed). Imaginary parts of
eigenvalues are given by dashed lines.
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pairs. For each pair of stable (real) eigenvalues, one
member will have the positive norm defined with the τ3
metric, v†k;νþτ3vk;νþ > 0, while the other will have negative

norm v†k;ν−τ3vk;ν− < 0. In analogy with BCS superconduc-
tors, we refer to bands composed of eigenstates with
positive (negative) norms as “particle” (“hole”) bands,
which are indicated in Fig. 1.
For stable systems, positive (negative) norm states

correspond to positive (negative) eigenvalues EðνÞ
k . This

is not the case for unstable systems. In Ref. [37], the origin
of a dynamical instability was traced to positive and
negative norm states that become degenerate in the absence
of pairing (nonparticle number conserving) terms. Then,
pairing terms generally lift such degeneracies and lead to
complex Bogoliubov energies. This is precisely the mecha-
nism leading to the unstable edge modes in our problem.
On the other hand, as is evident from Fig. 1(b), one can
have overlap between bulk particle and bulk hole bands
which do not lead to dynamical instabilities.
We interpret these bulk-band degeneracies as being

protected by symmetries of the problem. Indeed, we have
numerically observed that small contributions to the
Hamiltonian that break time reversal, inversion, or Sz
symmetry can hybridize the bulk particle and hole bands
leading to bulk dynamical instabilities [36] which would
obscure the population growth of the edge modes. Such
symmetries can be used to construct other bosonic models
having unstable topological edge modes with stable bulk
modes. However, for definiteness and due to experimental
relevance [9], we focus on the interacting S1KM model in
this work.
We now move on to discuss the physical consequences

related to the quenching protocol. We first consider the
number of particles excited into the spin-�1 modes as a
result of the quench. Using Eq. (8), we find

N �1ðtÞ ¼
X

i;m¼�1

hΨðtÞjϕ̂†
i;mϕ̂i;mjΨðtÞi ¼ 2

X
k;ν

jBk;νj2: ð12Þ

For quenches satisfying Eq. (9) and chosen to select only
edge modes for instability, the population growth in N �1

will be localized to the edges of the system. Keeping only
unstable modes and linearizing the edge spectrum about
k ¼ π, for jUsjn̄t ≫ 1 one finds

N �1ðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16λ2

w2

s
N2

12λ

ffiffiffiffiffiffiffiffiffiffiffi
jUsjn̄
πt

r
e2jUsjn̄t ð13Þ

where N2 is the number of lattice sites along the a2
direction. Note that this expression is also valid for negative
Us, e.g., for 87Rb atoms.
The quenching protocol is also expected to create a spin

current along the edge. The continuity equation for the
local spin moments Φ̂†

i SzΦ̂i gives an expression for the spin

current operator. At long wavelengths, the spin current
operator along the edge is found to be [38]

Ĵ ðszÞ
k ¼ 1

N2

X
k0;m¼�1

mΦ̂†
k−k0

2
;m
∂k0H

ðmÞ
k0 Φ̂kþk0

2
;m; ð14Þ

where Φ̂k;m is a 2N1-dimensional vector composed of
annihilation operators for spin-m bosons on sites in a unit

cell of the strip geometry. HðmÞ
k is the noninteracting matrix

Bloch Hamiltonian for spin component m which can be
directly determined from Eq. (1). We wish to evaluate the
expectation value of this operator with the state jΨðtÞi.
Writing Ĵ ðszÞ

k in an eigenbasis of the noninteracting
Hamiltonian, employing Eq. (8) and the Feynman-
Hellman relation, we find the intuitive relation

JðszÞðtÞ≡ hĴ ðszÞ
k¼0i ¼

2

N2

X
k0;ν

∂k0ε
ðνÞ
k0 jBk0;νðtÞj2 ð15Þ

where the two spin components have contributed an equal

amount. Additionally, the k ≠ 0 components of hĴ ðszÞ
k i

vanish. Under the same conditions as were used for the
evaluation of N �1, one finds

JðszÞðtÞ ≈ 1

4

ffiffiffiffiffiffiffiffiffiffiffi
jUsjn̄
πt

r
e2jUsjn̄t: ð16Þ

Before closing, we comment on the experimental fea-
sibility of the above protocol. It is expected that quantum
degeneracy in topological optical lattice systems will be
reached in the near future with advances in experimental
techniques. This will open new doors for exploring the
nonequilibrium dynamics of topological band systems. In
addition to the optical lattice, atoms are further confined in
experiments by an overall (typically harmonic) trapping
potential. Harmonic traps can obscure the edge states in the
single-particle spectrum [39] of such systems. This prob-
lem can be surmounted by using box-shaped traps which
are now available [40,41]. On the other hand, we expect
many aspects of our results with open boundary conditions
to be qualitatively correct for a harmonic trap provided the
initial state is in the Thomas-Fermi regime. The reason is
that the condensate will screen the trap potential, leading to
an effective potential with sharp boundaries in the BdG
equations for the edge excitations of interest. Indeed, the
dynamics of a spinor condensate in a harmonic trap
following a quench in the quadratic Zeeman field can be
accurately modeled by an effective spherical-box potential
[42]. Because of the sharp boundaries of the effective
potential, we expect that well-defined edge states will
continue to exist in this geometry. Finally, we note that
our results will hold for either antiferromagnetic (Us > 0)
or ferromagnetic (Us < 0) interactions and so are relevant
for both 87Rb and 23Na condensates.
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In summary, we have proposed a method whereby
topological edge modes are populated exponentially fast
through a quantum quench. Although edge states are
typically unimportant for bosonic gases near equilibrium,
we have shown that the nonequilibrium dynamics after a
quench can be dominated by degrees of freedom localized
on the boundary of the system. The growth of the edge
modes will be limited at longer times by interactions not
captured in the Bogoliubov theory. The long-time decay
mechanism of the dynamically populated edge modes will
also be due to these interaction terms.
This quenching protocol provides a means of collecting

cold atoms coherently in a quasi-one-dimensional structure
without the need for extra trapping lasers. Though this
work focused on ultracold atoms, it will also be worthwhile
to consider the parallels with photonic lattices where
pairing terms can be generated by nonlinear optical
methods.
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