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We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose

gas of spin-1 23Na atoms. The population oscillations in a multi-spatial-mode thermal gas have the same

behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose-Einstein condensate.

We demonstrate this by showing that the two situations are described by the same dynamical equations,

with a factor of 2 change in the spin-dependent interaction coefficient, which results from the change to

particles with distinguishable momentum states in the thermal gas. We compare this theory to the

measured spin population evolution after times up to a few hundreds of ms, finding quantitative agreement

with the amplitude and period. We also measure the damping time of the oscillations as a function of

magnetic field.
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Although Bose-Einstein condensates (BECs) are often
thought of for sensitive measurements, their spatial coher-
ence is not always necessary. Thermal atomic collisions are
often mistakenly thought to be incoherent but, while keep-
ing track of the spatial coherence is difficult, coherence can
sometimes more easily be followed in the internal degrees
of freedom. Thus, cold thermal clouds are often just as
sensitive for use in spin measurements. In this work, we
demonstrate collisionally driven coherent spin population
oscillations that can be interpreted as zero-momentum spin
waves in a cold thermal cloud of spin-1 atoms. Such
oscillations were previously only seen in the context of
BECs [1–5] and two-atom, single-spatial-mode systems
[6,7]. The spin oscillations that we observe in a highly
multi-spatial-mode thermal gas are remarkable in that they
can be described by a theory that is independent of the
spatial degrees of freedom.

Well-known examples of thermal spin systems that pre-
serve internal spin states include optically pumped dilute
gases used for magnetometry [8] and spin-polarized noble
gas imaging [9]. The spin polarization can be maintained
even while the gas is trapped in glass cells, or by living
tissues like lungs. Hydrogen masers are based on inter-
rogating the free precession of a spin superposition of a
thermal gas in a glass cell. Less well-known, collisionally
driven spin-wave effects were predicted in 1982 [10,11],
and observations of such effects were reported soon there-
after in low-temperature spin-polarized hydrogen [12].
Bosonic and fermionic alkali pseudospin-1=2 systems
have also been studied [13–15], and spin domain formation
has been observed in these systems [16–18]. Due to the

spin-dependent interaction that is absent in the
pseudospin-1=2 system, a spin-1 gas is predicted to have
additional interesting coherent collisional (spinor) dynam-
ics which give rise to spin waves or population oscillations
[19,20].
The dynamics of spinor BECs have been widely inves-

tigated in spin-1 Na and Rb gases, as reviewed in
Refs. [21,22]. Rb in the F ¼ 1 state is ferromagnetic
(spin-aligned collisions having the lowest energy), whereas
Na is considered antiferromagnetic. Both of these systems
display interesting population dynamics in spinor BECs
[1,2]. Condensed spin systems with F ¼ 2 and F ¼ 3 have
also been studied [23,24]. Single-spatial-mode BEC sys-
tems can be modeled analytically [25,26] and the system
can undergo regular oscillations such as those seen in
Fig. 1(a). Figure 1(a) also shows that when even a few
spatial modes are excited in the cloud the regular oscilla-
tions break down. In an extended BEC interactions lead to
the formation of spin domains [27–29].
Here we present experimental observations of coherent

spin-population oscillations in a thermal spin-1 Bose gas.
Figure 1(b) shows such coherent oscillations driven by
spin-mixing collisions, which are surprisingly similar to
those seen in a spinor BEC. In fact, we find good agree-
ment with predictions from the same dynamical equations
as satisfied by a single-mode spinor BEC, even though in a
thermal gas many thousands of spatial modes are popu-
lated. In the BEC, the spin-dependent interaction energy
for each added particle is smaller than Planck’s constant
times the trap frequency, so that the formation of spin
domains is suppressed, the spatial degree of freedom stays
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single mode, and it factors out of the problem. In the
thermal gas we have a case where the thermalizing
(spin-independent) collision rate is much smaller than the
trap oscillation rate, but larger than the spin-dependent
collision rate. This preserves the spatial and velocity dis-
tributions and prevents the buildup of any correlations
between spin and spatial modes. The average density
stays constant in time, and the spatial degree of freedom
factors out.

We demonstrate this reduction to a spin-only description
by deriving a Boltzmann transport equation under condi-
tions of a time-independent solution in momentum and
space and showing that the resulting spin density satisfies
the same equations as for a single spatial mode with a
modified spin-dependent interaction coefficient. The spin-
dependent interaction coefficient c2 must be replaced by
2c2; the change is the distinguishable-particle factor of 2
that appears for the thermal case [30].

We start with the second-quantized Hamiltonian
describing atoms in a magnetic field B and trapping
potential VðrÞ [31,32],

H ¼
Z

dr

�
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a

�
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where the ĉ aðrÞ are bosonic field operators for spin pro-
jection a in the interaction picture that incorporates the
linear Zeeman effect. m is the atomic mass, @ is Planck’s
constant divided by 2�, qS2z is the quadratic Zeeman
interaction with q ¼ �B2, and �=h ¼ 27:7 kHz=ðmTÞ2
for Na. S ¼ ðSx; Sy; SzÞ is a vector of matrices, where the

S� are the spin-one matrices. We use the convention of
summing over repeated indices. The interaction parameters
c0 and c2 can be expressed in terms of the s-wave scatter-
ing lengths a0 and a2 for two colliding atoms with total
molecular angular momentum 0 and 2, i.e., c0 ¼
4�@2ða0 þ 2a2Þ=ð3mÞ and c2 ¼ 4�@2ða2 � a0Þ=ð3mÞ.
The Hamiltonian conserves the total atom number and
magnetization. 23Na is antiferromagnetic with c2 > 0.
Only s-wave collisions need to be considered here as
barrier heights for other partial waves are much higher
than our typical thermal energies. In fact, for a spin-1
system Bose symmetry would also prevent p-wave
collisions from contributing to spinor oscillations.
Hyperfine-changing collisions to the F ¼ 2 state are also
not energetically allowed.
A kinetic theory for a thermal gas of spinor bosons with

no condensate component can be developed by assuming

hĉ ai ¼ 0 for all a and assuming that the spatial and
momentum distributions are time independent. To this
end, we introduce the Wigner density operator [33]

f̂abðr;pÞ ¼
Z

dr0e�ip�r0=@ ĉ y
b ðr� r0=2Þĉ aðrþ r0=2Þ: (2)

A Boltzmann transport equation can be derived by

computing the Heisenberg equations of motion of f̂ab
using Eq. (1), taking the expectation value with the initial

state, defining fabðr;p; tÞ � heiH t=@f̂abðr;pÞe�iH t=@i, and
applying the Hartree-Fock approximation. Following this
procedure, one arrives at the equation

@tfþ p

m
�rrf�rrV �rpfþ i

@
½f;M�þ1

2
frpf;rrMg ¼ 0;

(3)

where f is the matrix with components fab and curly and
square brackets denote anticommutators and commutators,
respectively. In this equation, we have introduced the
position-dependent matrix

MðrÞ ¼ c0TrðnÞ þ c0nþ c2TrðS�nÞS� þ c2S�nS� þ qS2z ;

(4)

with the spin position-density matrix nðr; tÞ �R
dpfðr;p; tÞ=ð2�@Þ3 and the repeated index � is summed

over x, y, and z. This transport equation was obtained
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FIG. 1 (color online). (a) Spin population oscillations of a
spin-1 Na spinor BEC. The fractional mF ¼ 0 population is
shown as a function of time. The black circles represent a
single-mode BEC with initial relative phase � ¼ � and magnetic
field B ¼ 37 �T. Here, � ¼ �1 þ ��1 � 2�0, and �i is the phase
of spin component i. The blue triangles correspond to a multi-
spatial-mode BEC (�5 modes) with initial � ¼ � and B ¼
42 �T. The solid curve is a sine wave fit to the data. The dashed
line is a guide to the eye. (b) Fractional mF ¼ 0 spin population
of a cloud of thermal spin-1 Na atoms as a function of time with
sinusoidal fits shown as solid lines. The solid (open) triangles are
for an initial condition of � ¼ � (0) and B ¼ 11 �T (21 �T).
Note the very different time scales.
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previously in [19,20] and details of its derivation can be
found there. We do not include the collision integral, which
has the role of describing damping.

We search for solutions of Eq. (3), making the ansatz

fabðr;p; tÞ ¼ e�½p2=ð2mÞþVðrÞ�=ðkTÞ�abðtÞ=Z; (5)

under the assumption that the momentum and spatial
profiles of the gas have a Boltzmann distribution with
temperature T, and the dynamics of the spinor degrees of
freedom are contained in �abðtÞ. Here, k is the Boltzmann
constant, Z is chosen such that Trð�ðtÞÞ ¼ 1 andR
dpdrTr½fðr;p; tÞ�=ð2�@Þ3 ¼ N, where N is the total

atom number. Upon inserting Eq. (5) into Eq. (3) and
integrating over position and momentum, the equations
of motion reduce to i@@t� ¼ ½�;MTG� where

MTG ¼ 2c2 �nTrðS�nÞS� þ qS2z (6)

and �n ¼ R
dr½TrðnðrÞÞ�2=N [34].

While this formalism can treat mixed-state spin den-
sities, we only prepare pure spin states (although mixed
spatial states) in the experiment. Such states remain pure
under our equations of motion and the spin density can be
written as �ab ¼ ffiffiffiffiffiffi

�a
p

expð�i�aÞ ffiffiffiffiffiffi
�b

p
expði�bÞ, where �a

and �a are the population and phase of spin component a.
For comparison, we consider the mean-field dynamics in

a single-spatial-mode BEC without any thermal compo-
nent [26]. It is given by

i@@t� ¼ c2 �nð�yS��ÞS��þ qS2z�; (7)

where � ¼ ð�1; �0; ��1ÞT is the vector order parameter
of the condensate, which is normalized to

P
aj�aj2 ¼ 1.

To make a connection with the thermal case, we introduce
the matrix 	ab ¼ ��

a�b. It is straightforward to compute
the equation of motion i@@t	 ¼ ½	;MBEC� where

MBEC ¼ c2 �nTrðS�nÞS� þ qS2z : (8)

By comparing with Eq. (6), one sees that the dynamics
of the thermal gas can be obtained from the BEC case by
simply doubling the spin-interaction coefficient c2.
Reference [26] shows that, by taking into account the
conservation laws, the system can be described by two
real variables, �0 and � ¼ �þ1 þ ��1 � 2�0. In addition,
they derive expressions for the period and amplitude of
these oscillations as a function of c2 �n, the magnetic field,
and the initial state.

Our experimental apparatus consists of a 1070 nm
crossed-optical-dipole trap loaded with Na atoms in the
F ¼ 1 hyperfine ground state. We prepare approximately
9� 104 thermal atoms with a temperature of� 1 �K after
a brief period of optical molasses and 6.25 s of forced
evaporation [2]. A weak magnetic field gradient is applied
during the evaporation to polarize the atoms into either the
mF ¼ �1 or mF ¼ 0 sublevel. After the evaporation, the
magnetic field is changed adiabatically to a uniform field

that splits magnetic sublevels by 1 MHz. Microwave
sweeps are used to selectively transfer any atoms remain-
ing in the unwanted magnetic sublevels to the F ¼ 2
manifold, where they are pushed out of the trap with light
pulses resonant on the S1=2ðF ¼ 2Þ to P3=2ðF0 ¼ 3Þ tran-
sition. The magnetic field is then changed adiabatically to
the desired value for the spin evolution experiment. The
measured mean trap frequency of the crossed dipole trap is
� 490 Hz for thermal atoms, while after evaporating to a
pure BEC it is�140 Hz. The typical density of the thermal
sample is �n ¼ 5� 1012 cm�3. The temperature is about
100 nK above the critical temperature for a BEC in our
system.
Once atoms are prepared in either the pure mF ¼ 0 or

mF ¼ �1 state, we transfer the atoms to a coherent super-
position spin state using a short radio frequency (rf) pulse.
These states evolve differently during the resonant rf pulse.
In both cases the population distribution in the final super-
position state is �0 � 0:5 and �þ1 ¼ ��1 � 0:25 but the
relative phase � is different. Cold (or BEC) atoms that are
prepared in the mF ¼ 0 state have an initial relative phase
of � ¼ �, whereas when the atoms start in the mF ¼ �1
sublevel the prepared phase is � ¼ 0. These phases result
in different behavior for the amplitude and frequency of the
population oscillations [26], as well as the damping.
After the rf pulse the initial superposition is allowed to

evolve for a variable amount of time, after which the
population in the mF ¼ 0 state is detected by adiabatically
sweeping a microwave field over the F ¼ 1 to F ¼ 2
transition, and detecting the F ¼ 2 state atoms by absorp-
tion imaging on the F ¼ 2 to F0 ¼ 3 transition. We
observe clear oscillations in the mF ¼ 0 spin population
for the thermal gas for different magnetic fields and initial
phases. An example is shown in Fig. 1(b). The oscillations
are damped on the time scales shown in Figs. 2(b) and 3(b).
We make sinusoidal fits to the oscillations and extract

the amplitudes and frequencies as functions of the mag-
netic field. These data are then fit using the theory of
Ref. [26], replacing c2 with 2c2 for our thermal gas, and
using the total atom number and initial population fraction
inmF ¼ 0, which was measured separately. The parameter
c2 �n is found from the fit. The data and fits are shown in
Figs. 2 and 3, and the fits are consistent with the data within
the uncertainties, which are 1 standard deviation from the
sinusoidal fits.
For an initial � ¼ 0 the oscillation amplitude peaks and

the period diverges. This happens when the difference in
collisional energies matches the difference in quadratic
Zeeman energies (q ¼ 2c2 �n) for the oscillating states.
This occurs at �14:5 �T, as shown in Fig. 2(a). Because
of the sharp, resonant behavior the fit is sensitive to the
value of c2. From the fit in Fig. 2, we obtain c2 �n=h ¼
2:62ð2Þ Hz with the measured density of �n ¼ 4:9ð2Þ �
1012 cm�3. We find c2=h ¼ 5:3ð2Þ � 10�13 Hz cm3,
which agrees within the error with the theoretical value

PRL 111, 025301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

025301-3



of c2=h ¼ 5:5ð4Þ � 10�13 Hz cm3 [35]. The uncertainty
is 1 standard deviation and only reflects statistical
uncertainty.

A thermal gas with an initial phase of � ¼ �, shown in
Fig. 3, exhibits quite different behavior. The amplitude has
a maximum at zero magnetic field and goes to zero at large
fields. The period diverges at zero field. Above 40 �T the
oscillation amplitude cannot be discerned above the
experimental noise level. Fitting the data we find c2 ¼
5:4ð8Þ � 10�13 Hz cm3, consistent with the result from
Fig. 2, but with a much larger uncertainty.

We have followed the population oscillations in some
cases over tens of periods. At longer times we observe
amplitude damping of the oscillations, as well as a change
of the mean number of atoms in the m ¼ 0 state. The total
atom number is observed to be constant over the time scale
of the measurements. In Figs. 2(b) and 3(b) we plot, in
addition to the oscillation period, the damping time of the
oscillation amplitude, obtained by fitting to a damped sine
wave plus a decaying baseline. Uncertainties in the damp-
ing times are 1 standard deviation of the mean, from 3–5
measurements. The damping times are approximately
equal for � ¼ 0 or � above 15 �T, but diverge at low
fields and differ by more than a factor of 2 below 10 �T.
Although we do not understand the damping mechanism at

this time, it is perhaps not surprising that it should vary,
given that the spin dynamics vary dramatically with � here
as well. A theoretical model of spin damping in Ref. [19]
predicts a time scale proportional to ðc2Þ2 that is 1 order of
magnitude slower than we observe. This discrepancy might
be a limitation of the linearization around thermal equilib-
rium of the spatial distribution in the collisional integral
and contributions from terms proportional to c0c2 and/or
ðc0Þ2 might be responsible for the change. It is also possible
that uncontrolled experimental issues such as field gra-
dients contribute.
In conclusion, we report the first observations of coher-

ent spin-mixing collisions in a thermal spin-1 Bose gas. We
show that this multi-mode thermal gas obeys a theoretical
model that displays the same separation of the spatial and
spin degrees of freedom as for a BEC in the single-mode
regime. The crucial difference is that the interaction
strength c2 is replaced by 2c2 for the thermal case. The
measured population oscillations agree well with theory.
Fits to the data return a value of c2=h in good agreement
with that of previous predictions [35]. In addition, the
damping of the oscillations is found to vary with the initial
conditions and magnetic field, but to be an order of mag-
nitude faster than predicted. We are currently investigating
spin-1 BEC/thermal-atom mixtures, which promise to
reveal information about spin-locking between the thermal

(a)

(b)

FIG. 2 (color online). (a) Amplitude, (b) period (black points),
and damping time (blue triangles) of the spin-population oscil-
lations of thermal atoms that are prepared in the mF ¼ �1 state
(initial � ¼ 0) as functions of the magnetic field. The solid
curves are predictions from the single-mode theory (see text)
with the initial fraction in mF ¼ 0 set to the measured mean of
�0 ¼ 0:45. The theory curve would go to zero at zero field in
panel (a) if �0 ¼ 0:5.

(a)

(b)

FIG. 3 (color online). (a) Amplitude, (b) period (black points),
and damping time (blue triangles) of spin-population oscillations
of thermal atoms that are prepared in the mF ¼ 0 state (initial
� ¼ �) as functions of the magnetic field. Solid curves are
predictions of the amplitude and period from the single-mode
theory (see text) with the initial mF ¼ 0 fraction set to the
measured mean �0 ¼ 0:52.
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and Bose-condensed components, as seen in [36]. Finally,
while Heisenberg-limited interferometry with nonclassical
spin-matter-waves using BECs has been suggested [37],
our results suggest that such experiments based on the spin
degree of freedom [38] could also be performed with a cold
thermal gas.
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