
SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms

Ryan Barnett,1,2,3 G. R. Boyd,2 and Victor Galitski1,2

1Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
2Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

3Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
(Received 17 July 2012; published 5 December 2012)

Motivated by the recent experimental success in realizing synthetic spin-orbit coupling in ultracold

atomic systems, we consider N-component atoms coupled to a non-Abelian SUðNÞ gauge field. More

specifically, we focus on the case, referred to here as ‘‘SU(3) spin-orbit-coupling,’’ where the internal

states of three-component atoms are coupled to their momenta via a matrix structure that involves the

Gell-Mann matrices (in contrast to the Pauli matrices in conventional SU(2) spin-orbit-coupled systems).

It is shown that the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena and in

particular we find that even a homogeneous SU(3) field on a simple square lattice enables a topologically

nontrivial state to exist, while such SU(2) systems always have trivial topology. In deriving this result, we

first establish an equivalence between the Hofstadter model with a 1=N Abelian flux per plaquette and a

homogeneous SUðNÞ non-Abelian model. The former is known to have a topological spectrum for N > 2,

which is thus inherited by the latter. It is explicitly verified by an exact calculation for N ¼ 3, where we

develop and use a new algebraic method to calculate topological indices in the SU(3) case. Finally, we

consider a strip geometry and establish the existence of three gapless edge states—the hallmark feature of

such an SU(3) topological insulator.
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Following the theoretical prediction [1,2] and experi-
mental observation [3] of the quantum spin hall effect,
topological states of matter have received a recent surge
of attention. The classification of topological states of
matter lies outside of the Landau symmetry breaking para-
digm, and is instead determined by topological quantum
numbers [4]. The existence of nonzero topological num-
bers often has important physical consequences for finite
systems, including the existence of edge states [5]. Strong
spin-orbit coupling is central to the experimental realiza-
tion of the quantum spin hall effect. Spin-orbit coupling
has a long history in solid-state systems and can play a
number of important roles [6]. Recently, interest in spin-
orbit coupling has come to the fore in the seemingly
disparate area of ultracold atoms with the advent of synthetic
gauge fields [7]. Such gauge fields have been employed to
mimic magnetic fields [8–11] as well as Rashba-Dresselhaus
spin-orbit coupling in both bosons [12] and fermions [13].
This progress opens doors not only to quantum simulation
of spin-orbit coupled solid-state systems [14,15], but also
to the realization of a much larger class of structures that
can be engineered in the ultracold laboratory but do not
exist in the solid state (see, for instance, Refs. [16–18]).

In this Letter, motivated by the recent advances in ultra-
cold atoms, we introduce the notion of SUðNÞ spin-orbit
coupling. In particular, we consider a system of atoms in a
square optical lattice under the presence of spin-orbit
coupling corresponding to a spatially homogeneous gauge
field, as such gauge fields are experimentally simpler to
realize [16]. We show that for N ¼ 2 (the case most

relevant in the solid state) all such Hamiltonians are topo-
logically trivial. On the other hand for N ¼ 3 (as can be
realized with ultracold atoms with internal spin degrees of
freedom [19] but which is less relevant for solid state
systems), by direct construction we show that such systems
with nontrivial topological numbers exist. This topological
property results in the physically interesting situation of
gapless edge modes, while the bulk spectrum remains
gapped. Such modes can be experimentally probed through
in situ imaging [20], time-of-flight spectroscopy [21], or
Bragg spectroscopy [22]. The experimental realization of
the fairly simple resulting three-component Hamiltonian
would pave the way to the realization of topological states
of matter in the ultracold laboratory.
The conventional spin-orbit coupling in solid state sys-

tems manifests itself as a Zeeman magnetic field that
depends on the electron’s momentum [6]. Hence a typical
spin-orbit term in a continuum model of a solid is bðpÞ � �̂,
where the form of the momentum-dependent internal field,
bðpÞ, is dictated by symmetries of the crystal structure and
�̂ is a vector of Pauli matrices, which mathematically are
generators of the SU(2) group that act on the electron’s SU
(2) spin. In contrast to solids, synthetic spin-orbit structures
in ultracold atoms are built from the ground up and are not
constrained by fundamental symmetries. Furthermore,
since the ‘‘spin’’ itself is synthetic, there is no requirement
that it be associated with a representation of the SU(2)
group. Hence, a much larger space of SUðNÞ spin-orbit
couplings becomes available for multicomponent atoms,P

ib
iðpÞX̂i, where X̂i are in principle any of the (N2 � 1)
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Hermitian generators of SUðNÞ (e.g., the Pauli matrices for
N ¼ 2, the Gell-Mann matrices for N ¼ 3, etc.).

The Bloch Hamiltonian for a square lattice with nearest
neighbor hopping under the presence of a homogeneous
SUðNÞ gauge field is given by

Ĥ ðkÞ ¼ �2t½cosðkx � ÂxÞ þ cosðky � ÂyÞ�; (1)

where t is the hopping and the gauge fields Âx;y are constant

N � N Hermitian matrices. To make the connection with
spin-orbit coupling clear, the cosines can be expanded and

the Bloch Hamiltonian can be rewritten as Ĥ ðkÞ ¼ aðkÞ þP
ib

iðkÞX̂i. To construct an ‘‘SU(3) topological insulator’’
we relate the model of Eq. (1) to the Hofstadter model [23],
familiar from quantum Hall physics, which describes parti-
cles hopping on a square lattice under a uniform magnetic
field (but nonuniform gauge field). To extend the Hofstadter
model to SUðNÞ systems we consider N decoupled replicas,
each having the same flux per plaquette. Our starting point is
thus the Hamiltonian

HHM ¼ �t
X
i

ð�y
i �iþx̂ þ�y

i e
�i2��ðxiþŜzÞ�iþŷ þ H:c:Þ:

(2)

In this equation �i ¼ ðc i1; c i2; . . . ; c iNÞT are SUðNÞ
spinor operators, Ŝz ¼ diagðs; s� 1; . . . ;�sÞ where 2sþ
1 ¼ N, x̂ and ŷ are the two square lattice vectors where the
lattice constant is set to unity, xi ¼ x̂ � ri where ri is the
position of the ith lattice site, and � gives the magnitude

of the flux. Since Ŝz is diagonal in this representation, the
model trivially decouples into N independent copies of
the Hofstadter model, each having 2�� flux per plaquette.
We restrict the flux to be related to the number of spin
components as � ¼ 1=N.

We will first illustrate the mapping for the case of
two-component spins and later describe how to generalize.

For this case we apply the gauge transformation �i !
e�ið�=2Þ�̂xxi�i where �̂x is a Pauli matrix. This transforma-
tion rotates the spinors about the x axis by a position-
dependent angle. As can be seen after some straightforward
algebra, this transformation removes the spatial dependence
of the second term in Eq. (2) at the cost of introducing a non-
Abelian x-component into the gauge field. In particular,
after the gauge transformation Eq. (2) becomes

H ¼ �t
X
i

ð�y
i e

�iÂx�iþx̂ þ�y
i e

�iÂy�iþŷ þ H:c:Þ

¼ X
k

�y
kĤ ðkÞ�k; (3)

where in the second line we have taken the Fourier trans-
form. For this case, the non-Abelian gauge fields of

Eq. (1) can be expressed as Pauli matrices as ðÂx; ÂyÞ ¼
�
2 ð�̂x; �̂zÞ. The Bloch Hamiltonian can also be expanded

and rewritten as Ĥ ðkÞ ¼ �2t½sinðkxÞ�̂x þ sinðkyÞ�̂z�
which is a lattice version of Rashba spin-orbit coupling.
We now generalize this mapping to any integer N. As

before, we perform a gauge transformation �i ! Ûxi�i.

The unitary matrix Û is defined to have Û1;N ¼ Ûnþ1;n ¼
�i for 1 � n � N � 1 with zeroes elsewhere. One can

verify for this matrix that Ûye�i2��ŜzÛ ¼ e�i2��ðŜz�1Þ.
Therefore this gauge transformation will completely remove
the position dependence of the second term in Eq. (2), and
the transformed Hamiltonian will correspond to particles
on a square lattice under a homogeneous gauge field.
The SU(3) case of this general mapping will be consid-

ered in detail below. For this case, the non-Abelian gauge
fields arrived at through the mapping which enters Eq. (1)
can be expressed in terms of Gell-Mann matrices [24] as

Âx ¼ 2�

3
ffiffiffi
3

p ð�̂2 � �̂5 þ �̂7Þ and Ây ¼ �

3
ð�̂3 þ

ffiffiffi
3

p
�̂8Þ:

(4)

By expanding the cosines, the Bloch Hamiltonian

can also be written as Ĥ ðkÞ¼bðkÞ � �̂ where bðkÞ¼
�tðcosðkxÞ;sinðkxÞ;

ffiffi
3

p
2 sinðkyÞ� 3

2 cosðkyÞ;cosðkxÞ;�sinðkxÞ;
cosðkxÞ;sinðkxÞ;

ffiffi
3

p
2 cosðkyÞþ 3

2 sinðkyÞÞ is an eight-component

vector and �̂ is a vector composed of the eight Gell-Mann
3� 3 matrices.
Geometrical method for Berry curvature and Chern

number computation.—We now describe a geometrical
method of computing the Berry curvature and Chern num-
bers for general SU(3) systems. We first write down
expressions which are valid for anyN. The Berry curvature
�nðkÞ [25] is defined in terms of the normalized eigen-
states �kn of the Bloch Hamiltonian as

�nðkÞ ¼ ið@kx�y
kn@ky�kn � @ky�

y
kn@kx�knÞ; (5)

where n labels the eigenstate (or band). The Chern number
for a particular band is defined as [26]

�n ¼ 1

2�

Z
BZ

d2k�nðkÞ; (6)

where the integral is performed over the first Brillouin
zone (BZ). The Berry curvature can also be expressed in

terms of eigenstate projection operators P̂kn ¼ �kn � �y
kn,

where � denotes the outer product, through the useful
relation [27,28]

�nðkÞdkx ^ dky ¼ iTrðP̂kn ^ dP̂kn ^ dP̂knÞ; (7)

where dkx ^ dky ¼ �dky ^ dkx.

Before generalizing we first describe a well-known geo-
metrical expression for the Berry curvature for SU(2)
systems (see, e.g., Ref. [29]). This will be used to demon-
strate that SU(2) Bloch Hamiltonians of the form of Eq. (1)
are in general topologically trivial. The Bloch Hamiltonian
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for SU(2) systems can be expressed in terms of Pauli

matrices as Ĥ ðkÞ ¼ aðkÞ þ bðkÞ � �̂. The projection
operators corresponding to the two eigenstates can be

written in terms of bðkÞ as P̂k�¼ 1
2½1�bðkÞ � �̂=jbðkÞj�.

Inserting this into Eq. (7) then gives

��ðkÞ ¼ � 1

2jbðkÞj3 bðkÞ � ½@kxbðkÞ � @kybðkÞ�: (8)

Thus, the Berry curvature can be expressed directly in
terms of the Bloch Hamiltonian, rendering the intermediate
steps of computing its eigenstates and evaluating Eq. (5)
unnecessary. For SU(2) systems, one can write arbitrary

gauge fields of Ĥ ðkÞ as linear combinations of Pauli

matrices as Âx;y ¼ ux;y þ vx;y � �̂. After expanding the

exponents to obtain bðkÞ, it is a straightforward exercise
to verify that @kxbðkÞ � @kybðkÞ / vx � vy. Then through

Eq. (8) one sees that the Berry curvature vanishes identi-
cally, rendering SU(2) systems described by Eq. (1) topo-
logically trivial.

We now move on to develop a central technical result of
our work, namely the generalization of Eq. (8) to SU(3)
systems. We will utilize the elegant formalism presented in
Ref. [30] which describes an efficient way to represent
pure-state density matrices (or projection operators) for
three-state systems. For SU(3) systems, a general Bloch
Hamiltonian can be expressed in terms of the eight Gell-
Mann matrices as

Ĥ ðkÞ ¼ aðkÞ þ bðkÞ � �̂; (9)

where aðkÞ is a scalar and bðkÞ is an eight-dimensional
real vector. The product of two Gell-Mann matrices can be

written as �̂a�̂b ¼ 2
3�ab þ dabc�̂c þ ifabc�̂c where dabc

and fabc are the symmetric and antisymmetric structure
constants of SU(3) [24]. These structure constants define
three bilinear operations for the eight-component vectors.
In particular, one has the dot product u � v ¼ uava, the
cross product ðu� vÞa ¼ fabcubvc, and the so-called star

product [30] ðu 	 vÞa ¼
ffiffiffi
3

p
dabcubvc for two arbitrary vec-

tors u and v where repeated indices are summed over. One
can also write eigenstate projection operators in terms of
the Gell-Mann matrices as

P̂kn ¼ �kn � �y
kn ¼ 1

3
ð1þ ffiffiffi

3
p

nkn � �̂Þ; (10)

where TrP̂kn ¼ 1. The condition that ðP̂knÞ2 ¼ P̂kn, leads
to two constraints on the vector nkn which are nkn � nkn ¼
1 and nkn 	 nkn ¼ nkn [30]. Due to the star-product con-
straint, nkn lies in a restricted region of S7. This can be
compared to the SU(2) system where the vector analogous
to nkn can lie anywhere in S2.

Now we will express nkn in terms of bðkÞ appearing in
the Bloch Hamiltonian of Eq. (9). For projection operators

corresponding to eigenstates we have ½P̂kn;Ĥ ðkÞ� ¼ 0 so
that bðkÞ � nkn ¼ 0. One can verify that this equation,

along with the above constraints, is satisfied by nkn ¼
�kn½	knbðkÞ þ bðkÞ 	 bðkÞ� with coefficients

	kn ¼ 2jbðkÞj cos
�

k þ 2�

3
n

�
;

�kn ¼ 1

jbðkÞj2½4cos2ð
k þ 2�
3 nÞ � 1� ;

(11)

where 
k ¼ 1
3 arccos½bðkÞ�bðkÞ	bðkÞjbðkÞj3 � and n runs from one to

three. The resulting expression for P̂kn can be inserted into
Eq. (7) to obtain the Berry curvature. One finds

�nðkÞ ¼ � 4�3

33=2
½	2@kxb� @kybþ 	@kxb� @kyðb 	 bÞ

þ 	@kxðb 	 bÞ � @kybþ @kxðb 	 bÞ
� @kyðb 	 bÞ� � ð	bþ b 	 bÞ; (12)

where we have suppressed the k, n arguments on the right-
hand side. Notice that due to orthogonality relations, the
derivatives do not act on the coefficients. While Eq. (12) is
complicated in appearance, it is straightforward to com-
pute with a given bðkÞ. This equation provides an explicit
expression for the Berry curvature in terms of quantities
from the Bloch Hamiltonian and thus should be viewed as a
generalization of Eq. (8) to SU(3) systems.
Analysis of SU(3) model.—Having established the above

formalism, we now move on to analyze the specific SU(3)
model arrived at above, given by Eqs. (1) and (4). The
resulting bðkÞ can be directly inserted into Eqs. (11) and
(12) to find the Berry curvature for this system. One finds

�nðkÞ ¼
2 cosð4
k þ 2�

3 nÞ � 3ffiffiffi
3

p ½1þ 2 cosð2
k � 2�
3 nÞ�3 ; (13)

where 
k ¼ 1
3 arccos½�1ffiffi

8
p ðcosð3kxÞ þ cosð3kyÞÞ�. In addi-

tion, using the expression Ekn ¼ TrfP̂knĤ ðkÞg, the bulk
eigenenergies are found to be

Ekn ¼ 2
ffiffiffi
2

p
t
cosð3
kÞ þ 2 cosð
k þ 2�

3 nÞ
1þ 2 cosð2
k þ 2�

3 nÞ : (14)

These bands are gapped and ordered such that Ek1 <
Ek2 <Ek3. With the above expressions for the curvature,
the Chern numbers can be computed via Eq. (6) and are
found to be ð�1; �2; �3Þ ¼ ð�3; 6;�3Þ.
Due to the bulk-boundary correspondence [5], nonzero

Chern numbers imply the existence of edge states. To
elucidate the behavior of these edge states, we investigate
the SU(3) system in a strip geometry. We apply periodic
boundary conditions in the y-direction, and take a system
of finite length in the x-direction. The system in this strip
geometry is described by

Hstrip ¼ �t
X
i

½�y
i ðkyÞ2 cosðky � ÂyÞ�iðkyÞ

þ�y
i ðkyÞe�iÂx�iþ1ðkyÞ þ�y

iþ1ðkyÞeiÂx�iðkyÞ�;
(15)

PRL 109, 235308 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

235308-3



where i now is a one-dimensional finite sum. The eigen-
states of Hstrip are plotted in Fig. 1. The spectrum exhibits

characteristic topological edge states that connect the
bands with different Chern numbers.

In conclusion we make a few general remarks. First, we
note that while the SU(3) topological insulator constructed
here relies on spin-orbit coupling of a new type and while
the calculation of Chern numbers requires a new algebraic
construction, its overall topological characterization
resides within the existing general classification scheme
[31,32] and corresponds there to a lattice quantum Hall
state labeled by an integer topological index. However in
contrast to solid-state systems where the absence or pres-
ence of time-reversal symmetry is an obvious physical
constraint, for synthetic spin-orbit systems the notion of
time-reversal symmetry does not have such a direct mean-
ing, because the synthetic spins do not behave like real
spins under time reversal. Classification of cold-atom
Hamiltonians with respect to transformations of the time-
reversal type can still be formulated but in a more formal
way by examining the existence of an antiunitary symme-
try of the Hamiltonian which may or may not have a
direct physical interpretation. From this perspective, our
Hamiltonian does not have such a symmetry. One can
argue that in general such Chern topological insulators
are much easier to realize with cold atoms than Z2 topo-
logical insulators, because imposing an additional unphys-
ical symmetry would require fine tuning the synthetic
Hamiltonian, in contrast to the situation in the solid state
where in the absence of external magnetic fields and mag-
netic impurities time-reversal invariance is automatically
preserved. Finally, we briefly comment on the experimen-
tal realization of the SU(3) system. There exists a consid-
erable literature on the realization of synthetic gauge fields

in cold atom systems (for a review, see Ref. [16]). The
gauge fields from Eq. (4) can be realized with variations of
the so-called N-pod schemes [16,33]. While the N-pod
schemes yield static gauge fields (as considered in this
work) only, there are proposed extensions to dynamical
gauge fields [34] whose study in the context of SU(3)
systems have important connections with particle physics
and will be an interesting avenue of future consideration.
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