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Motivated by experimental advances in the synthesis of gauge potentials for ultracold atoms, we
consider the superfluid phase of interacting bosons on a square lattice in the presence of a magnetic field.
We show that superfluid order implies spatial symmetry breaking, and predict clear signatures of many-
body effects in time-of-flight measurements. By developing a Bogoliubov expansion based on the exact
Hofstadter spectrum, we find the dispersion of the quasiparticle modes within the superfluid phase, and
describe the consequences for Bragg spectroscopy measurements. The theory also provides an estimate of
the critical interaction strength at the transition to the Mott insulator phase.
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The spectrum of a particle on a tight-binding lattice in
the presence of a magnetic field [1-3] is a problem that is
simple to state but has surprisingly rich phenomena. In the
infinite system, it is sensitively dependent on the precise
value of «, the magnetic flux per plaquette of the lattice
(measured in units of the flux quantum). For rational @ =
p/q (p and g coprime), the spectrum splits into ¢ bands,
and each state is g-fold degenerate. When the density of
states as a function of energy is plotted against «, the
resulting ““Hofstadter butterfly” [3] has a fractal structure.

Recent work using cold atomic gases has raised the
possibility of observing the Hofstadter spectrum directly
in experiment [4—7]. Two distinct approaches to producing
effective magnetic fields for neutral atoms have been pro-
posed and implemented. In a rotating optical lattice [8—10],
the Coriolis force simulates the magnetic Lorentz force,
while external lasers applied to a stationary lattice can
imprint motion-dependent phases to synthesize a gauge
potential [11,12].

Previous theoretical work on this system [10] has con-
sidered vortex pinning for both shallow [13] and deep [14]
lattice potentials, and the transition from the superfluid to a
Mott insulator [14-18]. In this work, we introduce an
alternative theoretical approach to the system, using
Bogoliubov theory [19,20] to provide a controlled expan-
sion for the superfluid phase, in terms of both thermal and
quantum fluctuations. We consider the case with both «
and mean density p (particles per site) of order unity,
which is of direct relevance to experiment. To the best of
our knowledge, this is the first theoretical study of the
superfluid phase in this parameter regime using the Bose-
Hubbard model. Starting from this microscopic descrip-
tion, and including the exact Hofstadter spectrum, we
calculate the condensate configuration based on a minimi-
zation of the on-site interactions, without resorting to a
phenomenological Ginzburg-Landau functional. This as-
pect is similar to earlier work on frustrated Josephson
junction arrays [21-23], and related models of bosons
and fermions in optical lattices [24,25].
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Besides describing the real-space condensate configura-
tion, which demonstrates the intricate interplay of the
magnetic vortices and the external lattice potential, our
approach predicts features that should be directly observ-
able in time-of-flight images. In particular, we show that
the superfluid necessarily breaks translation symmetry,
resulting in extra peaks in time-of-flight images, clearly
distinguishing this case from that with zero flux [26] and
also with noninteracting bosons [7].

We then go beyond mean-field theory to calculate the
spectrum of Bogoliubov quasiparticles, which inherits the
complex structure of the Hofstadter spectrum, while also
exhibiting the characteristic features of the Bose-Einstein
condensate, including a linearly dispersing phonon mode.
This spectrum is accessible in experiments using Bragg or
lattice-modulation spectroscopy, and we make predictions
for the appropriate response functions.

The approach that we describe is valid deep within the
superfluid phase, in contrast to previous theory [14-18],
and is directly relevant to experiments. Within our theory,
we calculate the depletion of the condensate, due to both
thermal and quantum fluctuations, providing limits on the
validity of the approach and also approximate boundaries
for the superfluid phase. The range of applicability can be
extended by taking into account higher-order terms in the
Bogoliubov expansion, which give interactions between
the quasiparticles.

We begin with the Hamiltonian for a single-band Bose-
Hubbard model on a two-dimensional square lattice, in the
presence of a uniform magnetic flux of « per plaquette
[4.,27],
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where b; and n; are the annihilation and number operators
on site j with coordinates (x_,-, yj); t, U, and u are the
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hopping strength, Hubbard interaction, and chemical po-
tential, and @ = 2™, We use the Landau gauge, with the
vector potential vanishing on links in the x direction, which
is both theoretically convenient and best suited to experi-
ments using an optically induced gauge potential [11,12].
For rotating lattices [9], the symmetric gauge is more
natural, requiring a straightforward gauge transformation
to be applied.

For simplicity, we will treat an infinite spatially uniform
system and assume rational « throughout. The main effect
of the finite trap size is to wash out the small-scale fractal
structure of the Hofstadter butterfly [3,4], so our results
should be valid for either rational or irrational . We
assume that other effects of the trapping potential can be
incorporated using a local-density approximation.

Assuming rational @ = p/q, one has w? = 1, so the
magnetic unit cell spans ¢ sites in the x direction, and the
Brillouin zone (BZ) is correspondingly reduced. It is help-
ful to introduce the magnetic translation group [2], with
primitive translation operators T vy Obeying T.b ;=
bj+;(’wa_>’-/‘ and ’Tybj = bjﬂa’fy. The phase factor in
the former expression, resulting from using the dynamical
rather than canonical momentum, gives [T . H]=0.In
momentum space, 7 , shifts by ¥ = 27ay, while the
hopping term in JH mixes states separated by X = 27 aX.

This leads to a noninteracting spectrum [3] consisting of
g bands (labeled by ), within which each state is g-fold
degenerate. The single-particle states i, (k) are given by
linear combinations of momenta k + nX for n =
0,...,g — 1. We define annihilation operators ayg,, for
crystal momentum k + €Y, where £ =0,...,¢ — 1 and
k is the momentum referred to the doubly reduced BZ 3,
— 7 = ky, ky <7Z.The energy associated with these single-

q q
particle states is €, (k), independent of €. (The case @ = %
is shown by the dashed line in Fig. 1.)

Written using the operators aj,, the Kinetic term in H
is diagonal, while the interaction term can be expressed
using coefficients u depending on four sets of k, €, and y.
These coefficients are constrained by symmetries [28] such
as translation, which enforces conservation of crystal
momentum.

Within the superfluid phase, the U(1) phase symmetry is
spontaneously broken and the boson annihilation operator

has a nonzero expectation value <(b;). Following
Bogoliubov [19,20], we use the ansatz
akgy = A€7(27T)262(k) + dk€'y’ (2)

where the ¢ numbers Ay, give the condensate order pa-
rameter and the operators dy¢, describe fluctuations out of
the condensate. The condensate can contain contributions
from all bands y and from crystal momenta €Y with non-
zero £, and so also breaks symmetry under 7~ y (but not
T;I-). Note that, at least within our mean-field theory, trans-
lational symmetry is simultaneously broken at the conden-
sation transition [22,28].

r M X r

FIG. 1 (color online). Quasiparticle dispersion (solid lines) and
noninteracting single-particle dispersion (dashed), both in units
of hopping ¢, for a = § = % The dispersions are plotted along a
path in the reduced Brillouin zone B shown in the left inset. In
the interacting case, U = 2t, the mean density is p = 1, and the
real-space density pattern is as shown in the right inset (one unit
cell of g X g sites; black squares are sites with higher density
than gray squares). In both cases, there are g> = 9 modes, of
which only the lowest 6 are shown. For U = 0, the modes are
g-fold degenerate and have been shifted vertically by an arbi-
trary choice of chemical potential.

Our approach is to expand the Hamiltonian in powers of
the operators dy¢,, which in physical terms is an expansion
in fluctuations, both thermal and quantum. The lowest
order in this expansion contains no operators and leads to
mean-field theory, while the terms with a single operator
cancel. The quadratic terms describe Bogoliubov excita-
tions above the condensate, and higher orders give inter-
actions between these modes.

The mean-field energy density is

hO = ZAzyA{fy[ey(O) - ILL]
Ly

+ WAL AL ALy, Aty 3
(b

where # is the interaction coefficient u with all momenta
k, 4 = 0 (and a factor of volume removed). The quantity
hy should be minimized with respect to Ag,, to give the
mean-field condensate wave function in momentum space.
The corresponding  real-space  quantity, (b;) =
Y@ty (0)Ay,, is a function of x; and y;
modulo ¢g; the ansatz of Eq. (2) implies a real-space unit
cell of g X g sites. (The density pattern minimizing the
mean-field energy for a = 1, which consists of diagonal
stripes, is shown in the right inset of Fig. 1 below.) The
minimization of A is therefore equivalent to minimization
with respect to the real-space condensate configuration.
The latter perspective [13,14] is more appropriate in the
continuum, whereas here the lattice provides a strong
pinning potential that simplifies the momentum-space
approach.

The g X g real-space unit cell implies a reduced BZ,
with observable consequences in time-of-flight images,
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where Bragg peaks are expected at points corresponding to
momenta k equal to reciprocal lattice vectors [26]. (Note
that the natural gauge for time-of-flight measurements
depends on the experimental procedure. We use the
Landau gauge appropriate to current experiments with
artificial gauge potentials [11,12].) The peak fork = nX +
€Y has intensity |3, A¢, ¢, |*, multiplied by an envelope
due to the momentum-space Wannier wave function. We
find that on-site interactions generally favor conden-
sate configurations with intensity (but not phase) indepen-
dent of €, implying that the only € dependence of the peak
intensity results from the Wannier envelope. Significantly,
the peaks with € # 0 result from spontaneous translational
symmetry breaking and are not expected in the noninter-
acting case [7], so time-of-flight measurements give a clear
signature of many-body effects.

Like the single-particle states, the condensate configu-
rations are at least g-fold degenerate, corresponding to
different symmetry-related spatial orderings. This allows
for the possibility of real-space domain formation, which
would not affect time-of-flight images and would likely
require more sophisticated in situ probes to confirm.

Minimization of the mean-field energy h, causes the

terms in JH linear in the operators Gy to vanish. Combin-
1.

ing the creation and annihilation operators into Qg =
(é}:{,y, d_y¢,) and “flattening” this into a 2¢* component
vector for each k, the quadratic terms can be written as
2
H O = l dk
2 Jrew (2m)?

alMk)a, + H, @

where H _ is a constant. Similarly to &, the matrix M(k)
has contributions from both the kinetic and interaction
energy; the latter are self-energy terms for the quasipar-
ticles due to scattering with bosons in the condensate. They
include ““anomalous” processes in which a pair of con-
densed particles scatter from each other into an excited
state and the reverse process where they return to the
condensate, resulting in quadratic terms that do not con-
serve the number of Gy, quanta [19,20].

In the limit £k — 0, M(0) is the Hessian matrix for the
mean-field energy &, (with respect to variations of A,,, and
its conjugate) and so is a nonnegative-definite matrix, with
a single vanishing eigenvalue corresponding to the U(1)
symmetry of h,. For nonzero k, all eigenvalues of M(k) are
strictly positive.

To find the quasiparticle modes, one must diagonalize
the quadratic form in Eq. (4) using a Bogoliubov trans-
formation, which for bosons amounts to finding the sym-
plectic transformation that diagonalizes M(k) [29]. The
quadratic part of the Hamiltonian then becomes

d*k
HO = [k > éped) die + HL (5
¢

ew (27)2

where dj is the annihilation operator for the Bogoliubov
mode labeled by / = 1, ..., g%, with energy & ¢~ While the

Bogoliubov quasiparticles have definite momentum re-
ferred to B, they cannot be labeled by €, because the
condensate configuration breaks the symmetry under trans-
lation T~ )

The constant H, in Eq. (5) gives the zero-point correc-
tion to Ay which, along with the contribution from ther-
mally excited quasiparticles, can in principle change the
global minimum of the free energy and hence the most
stable condensate configuration.

Using the fact that M(k) is positive definite for k # 0,
one can show that the mode energies &, are all real and
positive [29]. At k = 0, one of the eigenvalues vanishes,
giving the Goldstone mode resulting from the broken phase
rotation symmetry. This mode has linear dispersion near
k = 0, with phonon velocity independent of the direction
of k, while the remaining g> — 1 modes have a nonzero
gap and quadratic dispersion. Figure 1 shows the disper-
sions &, for a = %, found by minimizing ki, and diago-
nalizing M(k) numerically. For all «, there are ¢g> modes,
including one Goldstone mode; here only the lowest 6 are
shown, for clarity.

The Bogoliubov ansatz, Eq. (1), and expansion in
powers of operators is in principle exact, with the higher-
order terms leading to interactions between the quasipar-
ticles. The present approximation, truncating the series at
quadratic order, is valid provided that the system can be
treated as a low-density gas of quasiparticles, or equiva-
lently, that the system is deep within the superfluid, with
only weak thermal and quantum fluctuations.

This criterion can be quantified by calculating the con-
densate depletion, the quasiparticle contribution to the total
particle density. The leading contribution is the mean-field
term due to the condensate, ZM |Ag, |2, while the first-order
correction includes both thermally excited quasiparticles
and zero-point quantum fluctuations, integrated over ‘3.
We define the depletion as the ratio of this correction to the
mean-field result.

For nonzero temperature 7', the momentum integral in
fact diverges logarithmically, an instance of the Mermin-
Wagner-Hohenberg theorem [30,31], which forbids break-
ing of a continuous symmetry in two dimensions for 7 > 0.
In the infinite system, there is therefore no true condensate,
and so the “depletion” is complete. In a real system, the
small-momentum divergence is cut off at a scale k,, given
either by the finite size R.y of the system in the two-
dimensional plane (k, = Re_f}) or by a small hopping ma-
trix element 7, in the transverse direction (ky, = /2m*t,
where m” is the effective mass in the lowest band).

Figure 2 shows the depletion for @ = %, as a function of
density, interaction strength, and (in the inset) temperature.
It is small deep within the superfluid phase and increases to
roughly 25% for the largest values of U and T shown.
Neglecting cubic and quartic terms within the Bogoliubov
theory relies on the assumption of small depletion, and so
the conclusions presented here are only qualitatively ap-
plicable for larger values of U and 7.
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FIG. 2 (color online). Condensate depletion for « 2% as a

function of interaction U/t (main figure) and temperatuie T/t
(inset), where ¢ is the hopping strength. In the main figure, 7 = 0
and the densities are p =1 (top curve), 2 (middle), and 4
(bottom); in the inset, p = 1 and U/t = 2. The depletion is
smallest, and hence the approximation best, deep in the super-
fluid phase, with weak interactions, high density, and low tem-
perature. For T > 0, the logarithmic divergence of the depletion
integral is removed with small-momentum cutoffs of ky = 0.1
(solid line) and 0.02 (dashed line) lattice units, corresponding to
an effective system radius of 10-50 sites.

The depletion calculation also provides a rough estimate
for the boundary of the superfluid phase, at the point where
the depletion reaches 100%, although the approximation of
independent quasiparticles is probably not valid at this
point. For a = %, p = land T = 0, this gives an estimate
of (z/U),. = 0.08, in reasonable agreement with the value
of (t/U),. = 0.063 (at the tip of the p = 1 Mott lobe) found
using the Gutzwiller ansatz [17]. It should be noted that the
latter approach, which neglects fluctuations within the
Mott insulator, generally underestimates (z/U), [32].

Techniques to measure the quasiparticle spectrum in
ultracold atomic experiments [33,34] include Bragg spec-
troscopy [35,36], where a two-photon Raman transition is
used to measure the dynamic structure factor, a four-point
correlation function of the boson operators by. In the
presence of a condensate, the dominant contribution fac-
torizes into the product of the condensate density and the
two-point correlation function of the quasiparticle opera-
tors dj;. The structure factor at frequency w is therefore
given by a delta function 6(w * £;,) at the energy of each
quasiparticle mode ¢, allowing the quasiparticle spectrum
to be measured directly.

We have presented a theory describing the superfluid
phase of bosons in a magnetic field on a square lattice, and
showed how many-body effects modify the Hofstadter
spectrum of noninteracting particles. Our theory describes
the spatial symmetry breaking of the condensate wave
function and allows the quasiparticle spectrum to be found.
We predict clear signatures for time-of-flight images and
Bragg spectroscopy, which we expect to be observable in
experiments with ultracold atoms in the near future.
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