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We perform analysis of the band structure, phonon dispersion, and electron-phonon interactions in three
types of small-radius carbon nanotubes. We find that thes5,5d nanotube can be described well by the zone-
folding method and the electron-phonon interaction is too small to support either a charge-density wave or
superconductivity at realistic temperatures. For ultrasmalls5,0d and s6,0d nanotubes we find that the large
curvature makes these tubes metallic with a large density of states at the Fermi energy and leads to unusual
electron-phonon interactions, with the dominant coupling coming from the out-of-plane phonon modes. By
combining the frozen-phonon approximation with the random phase approximation analysis of the giant Kohn
anomaly in one dimension we find parameters of the effective Fröhlich Hamiltonian for the conduction
electrons. Neglecting Coulomb interactions, we find that thes5,5d carbon nanotubesCNTd remains stable to
instabilities of the Fermi surface down to very low temperatures while for thes5,0d and s6,0d CNTs a charge
density wave instability will occur. When we include a realistic model of Coulomb interaction we find that the
charge-density wave remains dominant in thes6,0d CNT with TCDW around 5 K while the charge-density wave
instability is suppressed to very low temperatures in thes5,0d CNT, making superconductivity dominant with
transition temperature around 1 K.
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I. INTRODUCTION

It has been over a decade since the discovery of carbon
nanotubessCNTsd1 and the interest in these systems contin-
ues to be high. The majority of theoretical work on CNTs
focuses on understanding the effects of the electron-electron
interactions using the celebrated Luttinger-liquid theory.2 Ex-
perimental observation of superconductivity in ropes of
nanotubes3 and small-radius nanotubes in a zeolite matrix4

has also motivated theoretical studies of the electron-phonon
interactionssEPIsd, including the analysis of charge density
wave sCDWd5–8 and superconductingsSCd9–13 instabilities.
In this work we study the electron-phonon interactions in
CNTs and discuss possible instabilities to the CDW and SC
orders. Our approach provides reliable parameters for the
effective Hamiltonians we use in contrast to the Luttinger-
liquid treatments where obtaining such accurate quantities is
quite difficult.

A conventional starting point for discussing the electron-
phonon interaction in solids is the Fröhlich Hamiltonian14
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0 , respec-
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Hereucktl=ckt
† u0l is a quasistationary electron state in bandt

with quasimomentumk, êqmsid is the phonon polarization
vector on atomi in the unit cell,Nc is the number of atoms
per unit cell,M is the mass of a single C atom,N is the total
number of unit cells in the system, and]V/]R0i is the de-
rivative of the crystal potential with respect to the ion posi-
tion R0i.

A common approach to obtaining parameters of the
Hamiltonian s1d for the CNTs is the zone-folding method
sZFMd.15 The essence of this method is to take the electron
band structure and the phonon dispersion for graphene and
quantize momenta in the direction of the wrapping. The main
results of such a procedure may be summarized as follows.
The only bands crossing the Fermi level in graphene are the
bonding and the antibonding combinations of the atomicpz
orbitals. Hence, the zone-folding method predicts that these
are the only bands which may cross the Fermi level in carbon
nanotubes. The condition for the quantized momenta to cross
the Dirac points of the graphene gives the condition for the
sN,Md CNT to be metallic:N–M should be divisible by 3.
The ZFM also predicts that the electron-phonon coupling in
the CNTs should be dominated by the in-plane optical
modes. This follows from the fact that the latter have the
largest effect on the overlaps between thepz orbitals of the
neighboring carbon atoms.
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While the ZFM was shown to provide a quantitatively
accurate description of the larger radius nanotubes, it is ex-
pected to fail as the radius of the nanotubes is decreased and
the curvature of the C-C bonds becomes important. Deter-
mining the band structure, the phonon dispersion, and the
electron-phonon coupling of the small radius CNTs requires
detailed microscopic calculations. In this paper we use the
empirical tight-binding model16 to provide such an analysis
for three types of small-radius nanotubes:s5,0d with the di-
ameter 3.9 Å,s6,0d with the diameter 4.7 Å, ands5,5d with
the diameter 6.8 Å. We find that the large curvature of the
C-C bonds leads to qualitative changes in the band structure
of the s5,0d and s6,0d nanotubes. Previous work on the band
structure of small-radius carbon nanotubes can be found in
Refs. 17–24. For example, thes5,0d CNT becomes metallic
from strong hybridization between thes and p bandsssee
Fig. 4d. Frequencies of the phonon modes in small radius
CNTs are also strongly renormalized from their values in
graphene. Not only does the out-of-plane acoustic mode be-
come a finite frequency breathing mode,15 but even the op-
tical modes change their energy appreciablyssee, e.g., Fig.
7d. Finally, the electron-phonon coupling changes qualita-
tively in the small-radius CNTs. It is no longer dominated by
the in-plane optical modes but by the out-of-plane optical
modes which oscillate between thesp2 bonding of graphene
and thesp3 bonding of diamondssee discussion in Sec. VId.
We find that the strong effects of the CNT curvature decrease
rapidly with increasing the tube radius. Already for thes5,5d
nanotubes the ZFM gives a fairly accurate description of the
band structure as well as the electron-phonon interactions.

Determining parameters of the Fröhlich Hamiltonian for a
one-dimensional system is not as straightfoward as for two
and three-dimensional metals. Traditional methods for ana-
lyzing EPI from first-principles calculations are meanfield
and, therefore, suffer from instabilities intrinsic to one-
dimensional systems. In particular, the frozen-phonon ap-
proximation, which is commonly used to determine the pho-
non frequenciesVqm

0 in Eq. s1d gives imaginary frequencies
close to the nesting wave vectorq=2kF. This is the result of
the giant Kohn anomaly,25 which corresponds to the Peierls
instability of the one-dimensional electron-phonon system.26

An important result of our paper is that we developed a for-
malism which combines the frozen-phonon approximation
with the random-phase approximationsRPAd analysis of the
EPI. This allows us to extract effective nonsingular param-
eters of the Fröhlich Hamiltonian from first-principles calcu-
lations or from the empirical tight-binding model. This tech-
nique should be applicable to many systems other than
carbon nanotubes.

After determining parameters of the Fröhlich Hamiltonian
s1d for the s5,0d, s6,0d, and s5,5d CNTs we discuss possible
superconducting and charge-density wave instabilities in
these systems. We find that neglecting the residual Coulomb
interaction leads to much stronger CDW instabilities in all
three casessin such analysis Coulomb interaction is included
only at the mean-field level via the energy of the single-
particle quasi-stationary states«ktd. In the mean-field ap-
proximation we find the onset of the Peierls instability at
temperatures 160, 5, and 10−14 K for s5,0d, s6,0d, and s5,5d
CNTs respectively. However, including the Coulomb interac-

tions at the RPA level27 can lead to a stronger suppression of
the CDW transition temperaturesTCDW than the supercon-
ductingTSC. For instance, we find by using the model Cou-
lomb interaction of Ref. 28 that for thes5,0d CNT, the CDW
transition is suppressed to very low temperatures while su-
perconductivity becomes the dominant phase with transition
temperature ofTSC<1 K.

This paper is organized as follows. In Sec. II we discuss
our method for extracting parameters for the one-
dimensional Fröhlich Hamiltonian. We then apply this
method to thes5,0d, s6,0d, ands5,5d CNTs in Sec. III. In Sec.
IV, we use the constructed Hamiltonian for these CNTs to
study their instabilities toward superconductivity and charge-
density wave states. The effect of introducing the residual
Coulomb interacting between electrons is covered in Sec. V.
Finally all of the results are discussed and summarized in
Sec. VI.

II. EXTRACTING PARAMETERS OF THE EFFECTIVE
FRÖHLICH HAMILTONIAN FROM THE FIRST

PRINCIPLE CALCULATIONS

Now we discuss our methods for calculating input param-
eters to the Fröhlich Hamiltonians1d for the representative
nanotubes. Our analysis relies on the the empirical tight-
binding model16 but it is easily amenable to any density-
functional theory29,30 treatment of the system.

A. Band structure

To compute the electronic structure of the CNTs we study,
we use the NRL tight-binding method16 which has been
tested and provided accurate results on a variety of materials.
In this method, the Slater-Koster tight-binding matrix ele-
ments are parametrized and are fit to reproduce the first-
principles density-functional band structures and total ener-
gies, with around 70 adjustable parameters per element.

We study thes5,0d, s6,0d, and s5,5d CNTs which are
shown in Figs. 4, 8, and 10. The smallest possible unit cells
for these CNTs contain 20, 24, and 20 atoms, respectively.
These CNTs are relaxed by minimizing their total energy per
unit cell with respect to the atomic coordinates using 35k
points in the first Brillouin zone. Matrix elements between
neighboring atoms of up to 5.5 Å were used, which is used
for the parametrization of carbon in the NRL tight-binding
method. The calculations were performed on an orthorhom-
bic lattice with spacing between parallel CNTs of 16 Å, a
distance sufficiently large to ensure negligible dispersion
from intertube hopping. Once the CNTs are relaxed, the band
structure is calculated.

B. The phonon modes

To calculate the electron-phonon coupling vertices and the
phonon frequencies which will be discussed in the subse-
quent sections, one needs to have the ionic displacements
corresponding to the normal vibrational modes of the CNT.
As pointed out previously,15,31 we find that it is typically
sufficient to use the zone-folded modes of a graphene sheet,
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even for the small-radius CNTs we study as will be discussed
below.

Following the method used in the book of Saitoet al.,15

we have computed the 60360 dynamical matrix of as5,0d
CNT and in Fig. 1 we compare the resulting phonon disper-
sions with the zone-folding results. The ionic displacement
modes obtained by the two different methods are very simi-
lar except for a few special cases. For instance, the zone-
folding results give three acoustic modes which correspond
to translating the graphene sheet in different directions. Upon
rolling the graphene sheet, these modes get mapped to two
acoustic modes corresponding to rotation about the CNT axis
and translation along the CNT axis and the optical breathing
mode. Conversely, diagonalizing the dynamical matrix of the
CNT gives four acoustic modes corresponding to translations
in three directions and the rotating modesactually using the
method of Ref. 15, one obtains a small spurious frequency
for the rotating mode as pointed in this referenced. Upon
unrolling the CNT to the graphene sheet, the rotating mode
and the mode corresponding to translation along the CNT
axis will become acoustic modes of the graphene sheet.
However, the two CNT translational modes which are per-
pendicular to the CNT axis will get mapped to ionic dis-
placements which are not eigenmodes of the graphene sheet
which are mixtures of in-plane and out-of-plane oscillations.
In addition, using the dynamical matrix of the CNT, we find
that there is mixing between the breathing and stretching
modes aroundk=0.3. In this vicinity, there is level repulsion
from the lifting of the degeneracy of these modes. Away
from this point, the modes are, to a good approximation,
decoupled.

In our analysis of the electron-phonon coupling we use
the displacements obtained from the zone-folding method to
simplify the calculations, as well as to give a clear concep-
tual picture. We then check that none of the important

electron-phonon couplings come from any of the few
graphene modes for which the zone-folding method breaks
down.

C. The electron-phonon coupling vertices

The electron-phonon couplingsEPCd matrix in Eq. s3d
can be evaluated by using the finite difference formula

Mktk8t8m =
1

u
kcktusVqm − V0duck8t8l, s4d

where Vqm and V0 are the perturbed and the unperturbed
lattice potentials, respectively, andu is the magnitude of the
displacement. A method for calculating the expressions4d
with a plane-wave basis set was previously developed.32 In
this paper we extend this procedure to tight-binding models.
We introduce the standard tight-binding notation

ucktl = o
il

Aktil uxkill, s5d

uxkill =
1

ÎN
o
n

eik·Rnufnill. s6d

Hereufnil are the electron states for isolated carbon atoms,n
runs over unit cells,i runs over basis vectors in the unit cell,
and l runs over orbital type. We findsfor details, see Appen-
dix Ad

Mktk8t8m =
1

u
o
ili 8l8

Aktil
* kxkil

qmusHqm − EFduxk8i8l8
qm lAk8t8i8l8. s7d

This expression can be computed by evaluating the tight-
binding Hamiltonian and overlap matrices for the distorted
lattice, evaluating the coefficientsAki and Ak8i8 of the wave

FIG. 1. The phonon dispersions of as5,0d
CNT determined bysad the zone-folding method
and sbd diagonalizing the full dynamical matrix
of the CNT.
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functions for the undistorted lattice, and performing the
above sum.

In all the calculations presented in this paper we used the
ZFM to find phonon eigenvectors in the nanotubes starting
from the phonon eigenvectors in graphene.15 The latter have
been obtained using the 636 dynamical matrix of graphene
given in Ref. 33. We emphasize that we use the ZFM only to
find the phonon eigenvectors in small nanotubes, but not the
phonon frequencies. The frequencies are affected strongly by
the CNT curvature, and should be computed directly. This is
discussed in detail in Secs. II D and III.

D. Phonon frequencies

A standard method of calculating the bare phonon fre-
quenciesVqm

0 in Eq. s1d is the frozen-phonon approximation
sFPAd.34 In this approach

Vqm =
1

uÎMNc

ÎDEcossqd + DEsinsqd, s8d

whereu is the amplitude of the displacement andDEcossqd
andDEsinsqd are the energy differences per unit cell between
the distorted and equilibrium lattice structures where the dis-
tortion corresponds to the real and imaginary parts ofdRni
=ueiqRnêqmsid, respectively. When we apply this procedure to
one-dimensional CNTs, we find thatDEcossqd+DEsinsqd be-
comes negative around certain wave vectorsssee, e.g., Fig.
7d. A closer inspection shows that such anomalous softening
always corresponds to one of the 2kF wave vectors of the
electron bands indicating the presence of the giant Kohn
anomaly.

It is important to realize that the divergence ofVqm ob-
tained in the FPA does not imply the divergence ofVqm

0 in
the Fröhlich Hamiltonians1d. The frequenciesVqm are cal-
culatedafter the electron-phonon interaction in Eq.s1d have
been included, which gives anomalous softening at 2kF due
to the well-known Peierls instability of electron-phonon sys-
tems in one dimensions1Dd. In two- and three-dimensional
systems renormalization of the phonon frequency by elec-
trons in the conduction band is typically negligible. So, one
can use phonon energies obtained in the FPA as a direct input
into the Fröhlich Hamiltonian. By contrast, nesting of the
one-dimensional Fermi surfaces, leads to dramatic renormal-
ization of the phonon dispersion by electrons in the conduc-
tion band.

To extract the bare phonon frequencyVqm
0 from the nu-

merically computedVqm, we point out a connection between
the FPA and the RPA for the Fröhlich Hamiltonian. For neg-
ligible interband couplingsthis condition is satisfied for all
modes showing the giant Kohn anomaly, which we discuss in
this paperd Dyson’s equation for the phonon propagator
Dsq, inmd, as shown in Fig. 2 is given by

Dmsq,inmd = D0msq,inmdf1 + Pmsq,inmdDmsq,inmdg. s9d

Herenm=2pmT are the bosonic Matsubara frequencies and

D0msq,inmd =
2Vqm

sinmd2 − sVqm
0 d2 s10d

is the noninteracting phonon Green’s function. The phonon
self-energy evaluated in the RPA is given by

Pmsq,inmd = 2To
npt

ugptp+qtmu2G0tsp + q,ivm+ndG0tsp,ivnd,

s11d

where noninteracting electronic Green’s functions are given
by G0tsp, ivnd=sivn−«ptd−1 andvn=ps2n+1dT for integern
are the fermionic Matsubara frequencies. Summing overn,
we obtain for Eq.s11d

Pmsq,inmd = 2o
t

ugqtmu2x0tsq,inmd, s12d

where the bare susceptibility is given by

x0tsq,inmd = o
p

fs«ptd − fs«p+qtd
inm + «pt − «p+qt

s13d

with fs«ptd=s1+eb«ptd−1 being the Fermi-Dirac distribution
function.

The poles of the phonon Green’s functionVqm fwe put
inm→Vqm in Dmsq, inmdg, which give the dressed phonon
frequencies, will satisfy the equation

sVqmdRPA
2 = sVqm

0 d2 + 2Vqm
0 Pmsq,Vqmd. s14d

Due to the large energy difference between electrons and
phonons, it is typically a good approximation to setVqm

→0 in Pmsq,Vqmd. This approximation results in an expres-
sion that can be derived by doing stationary second-order
perturbation theory to obtain the change in energy due to the
presence of the phonon. That is, settingVqm→0 in
Psq,Vqmd corresponds to the frozen-phonon approximation

sVqmdFPA
2 = sVqm

0 d2 + 2Vqm
0 Pmsq,0d. s15d

We can typically approximate well the quasiparticle energy
by a plane-wave state with given effective massm* . Then, by
incorporating the FPA, at zero temperature the integral in Eq.
s13d can be done which will enable us to obtain

sVqmdFPA
2 = sVqm

0 d2 + o
t

uM2kFtmu2
2m*a

pMNckFt

lnU2kFt − q

2kFt + q
U .

s16d

This expression explicitly shows the logarithmic divergences
in the phonon dispersion at the nesting wave vectors of the
Fermi surface. This is the famous Peierls instability to a
CDW state. Our procedure for determining the elusive un-
dressed frequencies is then as follows. We takeVqm obtained
from the FPA and fit them with the expressions16d using
Vqm

0 as an adjustable parameter. The coefficients of the log
divergences at the nesting wave vectors of the Fermi surface
are fixed by the effective massesmt

* andkFt sknown from the

FIG. 2. The phonon propagator evaluated within the RPA.
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band structured and the computed EPC matrix elements
M2kFtm. In all cases we found excellent agreement of the
calculated FPA frequencies with Eq.s16d in the vicinity of
the singular points, which provides a good self-consistency
check for our analysis.

III. RESULTS FOR REPRESENTATIVE NANOTUBES

A. (5,0) nanotube

The zig-zags5,0d CNT has a diameter of around 3.9 Å
making it close to the theoretical limit.35 Nanotubes of this
size have been experimentally realized through growth in the
channels of a zeolite host.4 Through the Raman measurement
of the frequency of the radial breathing mode, thes5,0d CNT

is thought to be a likely candidate structure for these
experiments.21

We first compute the band structure of this tube by using
the zone-folding method.15 To do this, we use the band struc-
ture of graphene, which is shown in Fig. 3, computed by
using the NRL tight binding method. Shown in this figure are
four valence bands and four conduction bands, coming from
the threesp2 and onepz bonding and antibonding states,
respectively. There is a degeneracy between thepz bonding
and antibonding states at the Fermi energy at theK point in
the first Brillouin zone which accounts for the semimetallic
behavior of graphene. The zone-folding band structure of the
s5,0d CNT is shown in the right of Fig. 4. Since 5/3 is not an
integer, zone folding predicts this CNT to be semiconduct-
ing.

FIG. 3. The first Brillouin zonesad, electronic band structuresbd, and phonon dispersionscd of graphene.
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Figure 4sbd shows the band structure of thes5,0d CNT
calculated directly by using a unit cell of 20 atoms. One sees
that there are significant qualitative differences between the
two band structures, one being that the directly computed
band structure predicts metallic behavior. The inner band
swith smaller Fermi pointkF

Ad is doubly degenerate while the
outer bandswith larger Fermi pointkF

Bd is nondegenerate.
The strong curvature effects causes hybridization betweens
and p bands, pushing them through the Fermi energy and
therefore making the tube metallic. Furthermore, for thes5,0d
CNT, we see that inner band is close to the Van Hove singu-
larity at k=0, which produces a large density of states at the
Fermi energy. The calculated density ofns0d=0.16 states/
eV/C atom is around a factor of 5 larger than that of larger
radius metallic armchair CNTs.

After the band structure is calculated, we consider all pos-
sible scattering processes of electrons between Fermi points
−kF

B,−kF
A,kF

A, andkF
B due to phonons with wave vectorsq that

satisfy the momentum conservation condition. As a starting
point for the phonon spectrum, we use the dynamical matrix
of Jishi et al.33 which uses a fourth nearest-neighbor model,
and we employ the zone-folding method. The reproduced
phonon dispersion of graphene is shown in Fig. 3. For a
given process, we calculate the coupling for all of the
33Nc distinct phonon modes whereNc=20 is the number of
atoms per unit cell. Shown in Fig. 5 is an example of the
outcome for one of these calculations. Shown is the coupling
for the outer band 2kF

A processes vs graphene frequency. One
can immediately see that most couplings vanish which can
be explained by symmetry of the electronic wave functions
and the phonon modes.

To keep this paper concise, we cannot present all of the
coupling results for each scattering process. Instead, we
show the most dominant couplings. These dominant cou-
plings were found to be from intraband 2kF processes. The
largest couplings for thes5,0d CNT occur for phonons along
the GM line of graphene at the appropriate wave vector cor-
responding to the particular 2kF. For the inner band, the larg-
est couplings, in descending order, occur for the out-of-plane
optical mode, the radial breathing mode, and the in-plane
acoustic stretching mode. For the outerswith largerkFd band,
the dominant couplings occur for the out-of-plane optical, an

FIG. 4. The band structure of thes5,0d CNT obtained through zone-foldingsad and calculated directlysbd with the atomic structurescd.

FIG. 5. The couplingMkk8 for the outer band 2kF
B process for

each of the 3320=60 phonon modes, respectively, vs graphene
frequency.
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in-plane optical, the radial breathing, and in-plane stretching
modes. These results are summarized in Fig. 6 and Table I.
Although the magnitunde of the dominant coupling matrix
element for the outer band is larger than that of the inner
band, the inner band processes are significantly more impor-
tant in the study of instabilities because their contribution to
the total density of states at the Fermi energy is significantly
larger than that of the outer band. This is due to the small
Fermi velocity of the inner band and its degeneracy.

It is interesting to note that the phonons that have the
strongest coupling to electrons at the Fermi surface are out-
of-plane modes. This is different than intercalated graphene
where in-plane phonon modes are responsible for
superconductivity.36 The fact that the out-of-plane modes are
the most important for this CNT are presumably due to the
large curvature effects. For instance, we find that the bond
angles of the relaxeds5,0d CNT structureshaving values of
119.4° and 111.9°d are intermediate between thesp2 bond
anglesfound in graphened of 120° and thesp3 bond angles
sfound in diamondd of 109.4°.

Now we calculate the CNT phonon frequencies by using
the frozen-phonon approximation with the eigenvectors from
graphene. The circles shown in Fig. 7 are the frequencies
obtained for phonon modes along theGM line of graphene
for the out-of-plane optical mode which was found to be the
most important mode. First, we see that the calculated FPA

frequencies are significantly lower than the corresponding
ones in graphene. This can be understood as follows. The
strong curvature of the nanotube changes the C-C bonds so
that they are in an intermediate regime between thesp2 bond-
ing sfound in graphened andsp3 bondingsfound in diamondd.
The out-of-plane optical mode oscillates between these two
bonding configurations and is therefore significantly soft-
ened. Next, we notice that there are divergences atq=2kF

A

andq=2kF
B. This result is the giant Kohn anomaly.

To extract the bare phonon frequency of the Fröhlich
Hamiltonians1d for the s5,0d CNT we follow the procedure
discussed in Sec. II D. The dressed phonon frequencies are
given by

sVqmd2 = sVqm
0 d2 + DA lnU2kF

A − q

2kF
A + q

U + DB lnU2kF
B − q

2kF
B + q

U ,

s17d

where

DA = uM2kF
Au2

2mA
* a

pMNckF
A s18d

and

DB = uM2kF
Bu2

mB
* a

pMNckF
B . s19d

All of the quantities needed to calculate the coefficientsDA
andDB have been obtained already. We assume that the bare
phonon frequencies are fit well by the formsVqm

0 d2=a0

+a1q+a2q
2. We then usea0, a1, anda2 as fitting parameters

to fit our expression forVq to the calculated FPA frequen-
cies. Doing this thereby enables us to extract the important
bare frequency dispersionVq

0 which is shown in Fig. 7. Ex-
tracting these bare frequenciesVq

0 allows us to calibrate the
effective Fröhlich Hamiltonians1d which will be used to
study instabilities of the electron-phonon system. With our
previously calculated quantities, we obtainDA=s219 cm−1d2

andDB=s146 cm−1d2. Using these values we thereby extract
Vq=2kF

A
0 =433 cm−1.

B. (6,0) nanotube

The band structure of thes6,0d CNT was considered ex-
tensively by Blaseet al. in Ref. 17. This tube has a slightly
larger diameter of 4.7 Å. The zone-folding band structure of
this CNT is shown in the left of Fig. 8. As is typical of
metallic zig-zag tubes, there are two bands crossing atk=0 at
the Fermi energy. The band structure directly computed with
24 atoms in the unit cell is shown in the right of Fig. 8. As
discussed before,17 these band structures differ qualitatively
which is a result of the hybridization of thesp2 andpz bands.
Here the inner bandswith smallerkF

Bd is nondegenerate and
originates from thepz bonds in graphene while the outer
band swith larger kF

Ad is degenerate and originates from the
sp2 bonds in graphene.

The coupling matrix elements for thes6,0d CNT were
computed and the coupling for the most dominant modes are
shown in Fig. 6 and Table IIscf. also Fig. 9d. The dominant

TABLE I. Calculated values for the dominant coupling pro-
cesses for thes5,0d CNT. The numbering scheme here corresponds
to that given in Fig. 6. 2kF

A and 2kF
B correspond to inner and outer

band processes, respectively. Phonon frequencies are given for
graphene.

s5,0d mode vq
graphscm−1d Mkk8seV/Åd

2kF
A 4 853 5.55

3 39 4.46

5 1588 4.24

2kF
B 4 829 8.56

5 1593 5.23

3 133 4.97

2 684 4.10

FIG. 6. 1–6: The phonon modes at theG point in the first Bril-
louin zone of graphene. 7: An in-plane optical phonon mode at the
K point of the first Brillouin zone of graphene. The out-of-plane
optical mode 4 is the leading cause of the CDW instability in the
s5,0d and s6,0d CNTs.
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inner band couplings were for intraband processes and are, in
descending order, to the out-of-plane optical and an in-plane
optical. The dominant outer band couplings processes were
found to be the out-of-plane optical mode, an in-plane opti-
cal mode, the radial breathing mode, and the in-plane acous-
tic stretching mode.

Using the same procedure as was used for thes5,0d CNT
in the previous section for extracting the bare phonon fre-
quency at 2kF

A. From the previously computed values for the
electron-phonon coupling matrix elements and the band
structure, we findDA=s166 cm−1d2 and DB=s107 cm−1d2.
After fitting, we extract the valueVq=2kF

A
0 =480 cm−1.

FIG. 7. sad Phonon dispersion for thes5,0d CNT along theGM line of graphene. The X’s denote values for which the frozen-phonon
approximation gave imaginary frequencies for the out-of-plane optical mode in the vicinity of 2kF

A. sbd The mode showing the most softening
fit to the RPA expression.

FIG. 8. The band structure of thes6,0d CNT obtained through zone foldingsad and calculated directlysbd along with the atomic structure
scd.
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C. (5,5) nanotube

Finally, we study the more conventional armchairs5,5d
CNT which has a diameter of around 6.8 Å. As shown in Fig.
10, the zone-folding and directly computed band structure
for this larger diameter tube agree quite will. Both of these
band structures show two bands which originate frompz or-
bitals which cross at the Fermi energy at aroundk= 2

3a/p.
The largest couplings for the CNT were found to again be

from the intraband processes and are shown in Fig. 6 and
Table III. The only significant intraband coupling is for an
in-plane mode shown denoted by 7 in Fig. 6. The wave vec-
tor for this mode is at theK point in the first Brillouin zone
of graphene. For the interband processes, there is coupling to
the the radial breathing mode, but this is significantly
smaller.

For thes5,5d CNT, applying our method of extracting the
bare phonon frequencies, we obtainDB=s228 cm−1d2 ssee
Fig. 11d. Note that for this system, onlyp bands are relevant
at the Fermi surface. We extractVq=2kF

B
0 =1469 cm−1.

It is worth pointing out that there has been some contro-
versy about the relevant phonon mode which couples the

electrons at the Fermi surface for thes5,5d CNT.6,37 Our re-
sults confirm the study of Ref. 37. The 2kF processes couple
to the phonons at theK point of graphene and the
relevant graphene mode has polarization vectorsêqs1d
=s1/Î2dsi ,1 ,0d and êqs2d=s1/Î2ds1,i ,0d. This out-of-phase
circular motion is qualitatively different from the linear os-
cillations thought to couple previously.

IV. INSTABILITIES OF THE ELECTRON-PHONON
SYSTEM

A. Charge-density wave order

The RPA analysis presented in Sec. II D can be used to
investigate the CDWsPeierlsd transition temperature. This
instability corresponds to softening of the phonon frequency
to zero, so we can obtain it from the conditionVQt

=0 in Eq.
s14d whereQt=2kFt is one of the nesting wave vectors of the
Fermi surface. The electron polarization evaluated at tem-
peratureT is given byx0ts2kFt ,v=0,Td= 1

2nts0dlnsT/4«Ftd,
wherents0d=2mt

* /LkFt is the contribution to the total den-
sity of states from bandt. We introduce the CDW coupling
constant

lCDW,tm =
ugQtmu2nts0d

VQtm

0 , s20d

wheret specifies which of the 2kF nesting wave vectors we
are considering andm labels the phonon mode. Note, that
distinguishing between various phonon modes is important,
since it tells us about the nature of the distortion of atoms
below the Peierls transitionsi.e., the in the plane vs out of the
planed. One finds for the CDW transition temperature

TCDW,tm = 4«Fte
−1/lCDWtm. s21d

Corrections to this equation due to an additional band with
different Fermi wave vectorfe.g., the term with the logarith-

TABLE II. Calculated values for the dominant coupling pro-
cesses for thes6,0d CNT. The numbering scheme here corresponds
to that given in Fig. 9. 2kF

A and 2kF
B correspond to inner and outer

band processes, respectively. Phonon frequencies are given for
graphene.

s6,0d mode vq
graphscm−1d Mkk8seV/Åd

2kF
A 4 857 7.27

5 1585 6.80

2kF
B 4 847 6.84

6 1591 6.12

3 68 3.73

2 493 2.31

FIG. 9. sad Phonon dispersion for thes6,0d CNT along theGM line of graphene.sbd The mode showing the most softening fit to the RPA
expression.
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mic divergence at 2kF
B in Eq. s17dg is small and will be ne-

glected. Degenerate bandsfe.g., theA band for thes5,0d
CNTg, are accounted for by an additional factor of 2 in the
density of states is Eq.s20d. In Table IV we summarize our
results for the CDW instability for the CNTs studied.

B. Superconductivity

To analyze the superconducting instability of the CNTs
we use the Migdal-Eliashberg theory. The isotropic Eliash-
berg equations for the one-dimensional case, neglecting the
Coulomb interaction, can be written asssee Appendix B for
detailsd

Zn = 1 + fnsno
n8

lsn − n8dsn8, s22d

ZnDn = o
n8

lsn − n8dfn8Dn8, s23d

where fn=1/u2n+1u, sn=sgns2n+1d, Dn=fn/Zn, and the
frequency-dependent coupling constantlsnd is given by

lsn − n8d = −
1

nss0d o
ktk8t8m

ds«ktdds«k8t8dugkk8mu2

3Dmsk − k8,n − n8d, s24d

where nss0d is the density of states per spin at the Fermi
energy. When analyzing superconductivity in two- and three-
dimensional systems using the Eliashberg equations it is suf-
ficient to take the bare phonon propagatorsD0sk−k8 ,n−n8d
in Eq. s24d. This is justified since in the absence of Fermi
surface nesting there is typically little difference between the
bare and dressed phonon frequencies and propagators. In
one-dimensional systems, however, there is a strong
temperature-dependent renormalization of the phonon spec-
trum which needs to be taken into account. The simplest way
to do so is to use the FPA form of the phonon propagatorfsee
Eqs.s9d–s15dg

Dm
FPAsq,inmd =

2Vqm
0

sinmd2 − sVqmd2 . s25d

HereVqm is the dressed phonon frequency in the FPA given
in Eq. s15d. Taking a soft dressed phonon propagator imme-
diately leads to the enhancement of the electron pairing via
the increase oflsnd. Enhancement of superconductivity by
the giant Kohn anomaly in one-dimensional systems has
been discussed previously by Heeger in Ref. 38. The main
subtlety of the Eliashberg equations in this case is that the
phonon frequencyVqn now has temperature dependence

TABLE III. Calculated values for the dominant coupling pro-
cesses for thes5,5d CNT. The numbering scheme here corresponds
to that given in Fig. 6. Phonon frequencies are given for graphene.

s5,5d mode vq
graphscm−1d Mkk8seV/Åd

7 1479 11.60

3 542 4.64

FIG. 10. The band structure of thes5,5d CNT obtained through zone folding and calculated directly are shown in the upper right and left.
Bottom: the structure of thes5,5d CNT.
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which needs to be found using the finite temperature form of
the polarization operatorPsq,0d in Eq. s15d.

When we analyze thes5,0d nanotube following this strat-
egy, we find, however, that the CDW instability always ap-
pears before the superconducting one. This is in agreement
with the general argument proposed in Ref. 39 that in strictly
one-dimensional electron-phonon systems Peierls instability
alway dominates, since it involves all electrons in the band,
compared to the superconducting instability, which involves
only electrons in the vicinity of the Fermi surface.

To introduce a quantitative measure of the strength of
superconducting pairing we use thebare phonon propagator
in Eq. s24d. This approximation will be more carefully con-
sidered in Sec. V D, along with inclusion of the Coulomb
interaction. A useful approximate solution of the Eliashberg
equationss22d–s24d is given by the McMillan formulasagain
in the absence of Coulomb interactiond40,41

TSC=
kVl
1.20

expF−
1.04s1 + lSCd

lSC
G . s26d

HerelSC is the zero frequency component of Eq.s24d where,
again, the bare phonon frequencies are used

lSC= −
1

nss0do
kk8

ds«kdds«k8dugkk8u
2D0sk − k8,0d. s27d

In accordance with Ref. 9, we takekVl=1400 K. The super-
conducting coupling constants and transition temperatures
calculated in this manner are summarized in Table V. We
emphasize, however, that these numbers should be taken
with some scepticism, since within the same approximation
the CDW instability is usually the dominant one and appears
at much higher temperaturesscompare to Table IVd.

Finally, it is known thatq<0 scattering processes due to
acoustic phonons can be important in one-dimensional
electron-phonon systems.42–44 However, in the approxima-
tions leading to Eq.s27d these contributions were neglected.
In Appendix C we show that while these processes can be
important for some systems, their inclusion leads to only a
small correction tolSC for the CNTs we study. This is due to
the fact that the dominant contributions to the superconduct-
ing coupling constant are from optical phonons.

V. ROLE OF THE COULOMB INTERACTION

In the discussion above we concentrated on the electron-
phonon interaction with electron-electron Coulomb interac-
tion included only at the mean-field level via the band struc-
ture. It is useful to consider how the residual Coulomb

TABLE IV. The dominant mode for the CDW instability, the
extracted bare phonon frequency, the CDW coupling parameter, and
the CDW transition temperature for the various CNTs studied.

s5,0d s6,0d s5,5d

mode 4 4 7

V2kF

0 scm−1d 433 480 1469

lCDW 0.26 0.12 0.024

TCDW sKd 160 5 7310−14

TABLE V. The SC coupling parameter, and the SC transition
temperature for the various CNTs studied. The CDW instability and
the residual Coulomb interaction between electrons are neglected in
the calculation of these quantities.

s5,0d s6,0d s5,5d

lSC 0.57 0.12 0.031

TSCsKd 64 0.071 1.11310−12

FIG. 11. sad Phonon dispersion for thes5,5d CNT along theMK line of graphene.sbd The mode showing the most softening fit to the RPA
expression.
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interaction can modify the analysis of the Peierls and super-
conducting instabilities discussed above. We take

H = He-ph + He-e,

He-e = 1
2 o

kk8qtt8ss8

Vqtt8ck+qts
† ck8−qt8s8

† ck8t8s8ckts, s28d

where He-ph is still given by Eq. s1d and we will always
assumek andk8 around the Fermi surface. Note that we have
neglected interband scattering which is typically small due to
the orthogonality of the wave functions from different bands.
In the following, we will consider how introducing this Cou-
lomb interaction modifies the results.

A. Coulomb interaction potential

For the Coulomb interaction between conduction elec-
trons, we take the form used by Eggeret al. in Ref. 28

Vsr − r 8d =
e2/k

Îsx − x8d2 + F2RsinSy − y8

2R
DG2

+ az
2

.

s29d

Here, they direction is chosen to be along the perimeter of
the CNT andx measures the distance along the CNT axis. A
measure of the spatial extent of thepz electrons perpendicu-
lar to the CNT is given byaz<1.6 Å and R is the CNT
radius. We note that the spatial extent of these electrons will
differ inside and outside of the CNT, but the error from this
approximation does not affect the magnitudes of the Cou-
lomb matrix elementsswhich we evaluate belowd signifi-
cantly. Note that this interaction potential is periodic in they
direction. For the dielectric constant due to the bound elec-
trons, we will take the valuek<2 predicted by the model of
Ref. 45.

We can now use Eq.s29d to obtain the Coulomb interac-
tion entering Eq.s28d

Vqtt8 =E d2rd2r8Vsr − r 8d

3 ck+qt
* sr dcktsr dck8−qt8

* sr 8dck8t8sr 8d. s30d

The region of integration above is over areas of lengthL
along thex direction whereL is the length of the system and
of width 2pR along they direction. For backward scattering
processessq<2kFd between the inner bands of thes5,0d and
s6,0d CNTs we find thatVqtt8 is independent oft andt8, and
ssee Appendix E for derivationd

Vq < g
1

L2E dxdx8e−iqsx−x8d

3E
0

2pR dy

2pR
E

0

2pR dy8

2pR
Vsr − r 8d, s31d

whereg=0.59 and 0.0016 for thes5,0d and s6,0d CNTs, re-
spectively. This is significantly reduced from the value of
g<1 that one obtains for larger radius CNTs Ref. 28 which

is due to the fact that wave functions at the Fermi points
have different symmetries for thes5,0d CNT ands6,0d CNTs.
More specifically, it can be found thatmCDW is very small for
the s6,0d CNT due to the fact that for metallic zig-zag nano-
tubes, the wave functions at −k and k close to the Fermi
energy are nearly orthogonal within the unit cell of the CNT
since they correspond to symmetric and antisymmetric com-
binations of atomic orbitals in the graphene sheet.

B. Modification of CDW instability due to Coulomb interaction

The simplest approximationsbeyond mean fieldd which
includes the Coulomb repulsion is the RPA shown in Fig. 12
ssee, e.g., Refs. 14 and 27d. Equations14d now becomes for
a one-band system

sVqmd2 = sVqm
0 d2 + 2Vqm

0 Pmsq,Vqmd
1 − Vsqdx0sq,Vqmd

, s32d

where Pmsq,Vqmd= ugqmu2x0sq,Vqmd. We immediately see
that including the Coulomb interaction can suppress the
CDW instability. The second term in Eq.s32d no longer di-
verges whenq=2kF and the softening of the 2kF phonons
occurs only formCDW,lCDW,m, where

mCDW ;
1

2
ns0dVq=2kF

. s33d

From Eq. s32d we also find how the Coulomb interaction
modifies the Peierls transition temperature

TCDW,m = 4«F expS−
1

flCDW,m − mCDWgD . s34d

We will now estimate the magnitude ofmCDW from this
residual Coulomb interaction for thes5,0d which was seen
above to be the most unstable toward the formation of a
CDW from distortion of the out-of-plane optical mode
shown in Fig. 6. Carrying through the straightforward gen-
eralization of the RPA analysis for the multiple-band system,
and carrying out the integrals in Eq.s31d for the Coulomb
backward scattering interaction, we obtainmCDW=0.24. Note
that this is quite close tolCDW=0.26 for this particular in-
stability. This indicates that it is possible that the Coulomb
interaction can significantly suppress the CDW transition
temperature or even remove the CDW instability altogether.
Indeed, taking these values we find thatTCDW is suppressed
to less than 10−18 K.

For thes6,0d CNT, we calculate the smaller valuemCDW
=0.0019. This will not change the value ofTCDW=5.0 K that
we calculated previously for thes6,0d CNT.

FIG. 12. Dyson’s equation for the phonon propagatorsad, where
the Coulomb interactions are taken into acount within the RPAsbd.
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C. Phonon vertex renormalization through screening

It can be seen that the Coulomb interaction further can
screen the electron-phonon vertex. By including screening
through the RPA, we find that the screened vertex is given
by14

gqm =
gqm

1 − Vqx0sqd
s35d

for a one-band system wherex0sqd;x0sq,Vqm=0d. Thus we
see that the inclusion of screening reduces the electron-
phonon vertex. We note that in the treatment in Sec. V B of
the CDW instability it would be inappropriate to use the
screened vertices since this would lead to double counting.

Full charge self-consistent calculations will determine the
dressed electron-phonon vertexssee Appendixes A and Dd.
This is desirable in 3D, where the renormalization is presum-
ably small. However in 1D, one would calculate greatly sup-
pressed values for the couplings, dominated by the screening
due to the logarithmic divergence of the susceptibility at 2kF.
Because of the subtle interplay between these divergences, it
is desirable to calculate the bare vertex and then manually
put in the Coulomb interaction as we do.

Since with the method we use, the charge distribution is
not calculated self-consistently, we calculate the bare
electron-phonon vertexgqm. We point out, however, that
there is an approximation here. The true bare electron-
phonon vertex should be calculated in the absence of the
conduction electron entirely which is separately accounted
for in the residual Coulomb term. In our method, however,
the conduction electron is taken to adiabatically follow the
ion through the distortion. Because of this, we expect our
results to slightly underestimate the bare electron-phonon
coupling vertices.

D. Modification of superconducting instability due
to Coulomb interactions

To include the Coulomb interaction in the Eliashberg
equations, it is necessary to dress both electron-phonon ver-
tices shown in Fig. 14 according to Sec. V C as well as the
phonon propagator according to Sec. V B. This leads to the
modified phonon-mediated interaction between electrons of

ugqmu2Dmsq,Vd =
ugqmu2

f1 − Vqx0sqdg2

3
2Vqm

0

V2 − sVqm
0 d2 − 2Vqm

0 ugqmu2
x0sqd

1 − Vqx0sqd

.

s36d

Using this leads to a modified result for the superconducting
coupling constantlSC. For a specific process of wave vector
q, coupling points on the Fermi surface, we find that the
renormalized contribution to the superconducting coupling
constant is given by

lqm = S 1

f1 − Vqx0sqdg2D1 1

1 +
2ugqmu2

Vqm
0

x0sqd
1 − Vqx0sqd 2lqm

0 ,

s37d

wherelqm
0 is the unrenormalized contribution. All such con-

tributions must be summed over to determine the totallSC.
The first and second factors tend to decrease and increase the
electron-phonon coupling, respectively. Physically, the first
factor is due the screening of the electron-ion interaction due
to conduction electrons. The second factor is due to the soft-
ening of particular modes due to the Kohn Anomaly which
will in turn enhance the overall electron-phonon coupling.
Since these renormalization factors depend on temperature
through the susceptibilityx0, TSC must be determined self-
consistently.

In addition to the renormalization of the Coulomb vertex,
there is also the direct Coulomb repulsion between electrons
that is taken into account through the Coulomb pseudopoten-
tial mSC

* which is included in McMillan’s expression40,41

TSC=
kVl
1.2

expS−
1.04s1 + lSCd

flSC− mSC
* s1 + 0.62lSCdg

D , s38d

where

mSC
* =

mSC

1 + mSC lnS EF

vD
D s39d

andmSC is the screened Coulomb interaction averaged over
the Fermi surface.

We will now estimatemSC
* . Taking into account screening

within the RPA one finds

Vq
s =

Vq

1 − Vqx0sqd
s40d

for the screened Coulomb interaction. In 1D forq<2kF,
Vq

s<0. This is due to the divergence ofx0sqd at q=2kF. Also,
one finds that forq<0, Vssqd<1/ns0d. Using this RPA
screened Coulomb interaction we find for our three band
system of thes5,0d CNT

mSC;
1

nss0d o
ktk8t8

ds«ktdds«k8t8dVtt8
s sk − k8d = 0.25.

s41d

Then, using Eq.s39d, we obtainmSC
* =0.19 for the Coulomb

pseudopotential with the calculated values of the Fermi en-
ergy and Debye frequency.

We now see how taking into account the Coulomb inter-
action in this manner modifies the superconducting transition
temperature for thes5,0d CNT. The most significant renor-
malization of the total superconductinglSC given by Eq.s37d
will be for the 2kF process that couples to the out-of-plane
optical mode which was previously seen to have the overall
strongest coupling. That is, at temperatures where the renor-
malizedlSC will start to differ from the barelSC

0 , all of the
renormalization will come from this mode. Using Eq.s37d
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and s38d, we find that a self-consistent solution for the su-
perconducting transition temperature occurs atTSC<1.1 K
which is larger than the previously calculated CDW transi-
tion temperature. This therefore shows that the Coulomb in-
teractions can favor superconductivity over the CDW insta-
bility.

For thes6,0d CNT, we see that the value ofTSC without
the inclusion Coulomb interaction is smaller thanTCDW
=5 K that we computed in the previous section with the
inclusion of the Coulomb interaction. We therefore conclude
that the CDW will be dominant for thes6,0d CNT.

E. Summary of Coulomb effects

In the above, we have shown that the introduction of the
residual Coulomb interaction will lower both the SC and
CDW transition temperatures. We also illustrated the possi-
bility that the CDW instability can be suppressed so much by
Coulomb interactions that SC will be dominant at low tem-
peratures. However, we stress the difficulty of obtaining such
quantitative results. In principle, to obtain an accurate Cou-
lomb interaction in our basis of Bloch states, one needs to
use the interaction

Vkk8k9k- =
1

k
E d3rd3r8ck

*sr dck8
* sr 8d

e2

ur − r 8u
ck9sr 8dck-sr d

s42d

where theck’s are Bloch state wave functions of the CNT
which is difficult to obtain. The Coulomb interactionVq we
used is only a rough approximation to this more realistic
interaction. On the other hand, the SC and CDW transition
temperatures have exponential dependence on the Coulomb
interaction parameters. One also has to be very careful not to
double count the electron-electron interaction terms taken
into account in the single-particle energies«k through the
Hartree term. As shown in Appendix D, using a method in
which the charge density is calculated self-consistently will
give more accurate values for the phonon frequencies calcu-
lated through the FPA. However, there are serious difficulties
with calculating the bare electron-phonon vertex with such a
method as discussed in Sec. V C.

VI. DISCUSSION

A. Comparison to other carbon based materials

As a consistency check, we now compare our results for
the attractive potential due to electron-phonon coupling to

established results for other carbon based solids, namely, the
intercalated graphene KC8 and the carbon fullerene K3C60.
Calculations of the density of states at the Fermi energy yield
ns0d=0.24 sRef. 46d and 0.29sRef. 47d states/ eV / C atom
for KC8 and K3C60, respectively. Estimates oflSC for these
are 0.21sRef. 46d and 0.7sRef. 9d. In the BCS theory,lSC is
expressed in terms of the product of the electronic density of
states at the Fermi level and the attractive pairing potential
strengthlSC=ns0dV.14 Now that we have the magnitudelSC

andns0d, we can extract the magnitude of the pairing poten-
tial for the intercalated graphene, the fullerene, and the CNTs
we study. The results are summarized in Table VI.

The following analysis will be very similar to that of
Benedictet al. in Ref. 9 The central idea in their analysis is
as follows. Since curvature increases the amount of hybrid-
ization betweens andp states at the Fermi energy, the strict
selection rules for phonon scattering between purep states in
graphene will be lifted. The amount ofs-p hybridization has
roughly a 1/R dependence on the radius of curvature, so the
matrix elements and therefore the attractive potential due to
curvature will go as 1/R.29

Neglecting presence of pentagons in fullerenes, we write
the attractive potential for the fullereneVball as the sum of
contributions from that of the graphene sheetVflat and that
from curvature effectsVcurve

Vball = Vflat + Vcurve. s43d

This relation enables us to obtain the value forVcurve
=1.5 eV. Now we can write the expected attractive interac-
tion for the CNT

VtubesRd = Vflat + VcurveSR0/2

R
D2

, s44d

whereR0<5 Å is the radius of a fullerene and the factor of
2 comes in because there is twice as muchs-p hybridization
in a fullerene as there is in a CNT of radiusR0.

9 In Fig. 13,
we show that Eq.s44d, which was calibrated by using only
quantities from intercalated graphene and fullerenes, is con-
sistent with the attractive potentials we obtain for thes5,0d,
s6,0d, ands5,5d CNTs.

B. Beyond mean field theory

One-dimensional electron-phonon systems have several
competing instabilities and the true ground state may be
found only by analyzing their interplay.48,49 Hence, one may
be concerned that we use a mean-field approach to analyze a
1D CNT. We point out that when we calculate the supercon-

TABLE VI. Density of states at the Fermi energy, the superconducting coupling strength, and the attrac-
tive potential strength for various carbon materials. Superscriptsa,b, and c denote Refs. 46, 47, and 9,
respectively.

KC8 K3C60 s5,0d CNT s6,0d CNT s5,5d CNT

ns0d seV−1d 0.24 0.29 0.16 0.068 0.034

lSC 0.21 0.7 0.57 0.12 0.031

VseVd 0.875 2.4 3.6 1.8 0.92
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ducting TSC we include the interplay of the CDW and SC
orders. That is, the effective superconducting couplinglSC
that we obtain in Eq.s37d includes softening of the 2kF pho-
non mode. Such an approach is equivalent to the two param-
eter RG analysis used in Ref. 50. The mean-field transition
temperature obtained by our method is equivalent to the cou-
pling constants becoming of the order of unity in the RG
analysis. AtTSC electrons start to pair, but the system has
strong fluctuations in the phase of the SC order parameter.
The most important kind of fluctuations are thermally acti-
vated phase slips, discussed originally for superconducting
wires in Refs. 51 and 52. Phase slips lead to only a gradual
decrease of resistivity with temperatures belowTSC.

For an incommensurate CDW, long-range order may not
appear at finite temperature either. To understand the physi-
cal meaning of the mean-field transition, we can introduce a
Landau-Ginzburg formalism.53 Here we concentrate on
the s5,0d and s6,0d CNTs which have three partially filled
bands with Fermi pointskF

A andkF
B, where the exact relation

2kF
A=kF

B is satisfied. We introduce a complex order parameter
C1sxd related to the amplitude of the lattice distortion

as qsxd=e2ikF
AxC1sxd+e−2ikF

AxC1
*sxd. At low temperature the

free energy is given by FsfC1g=edxsauC1u2+buC1u4
+cudC1/dxu2d. Below the mean-field transition temperature
TCDW we havea,0 and the system develops an amplitude
for the order parameterC1. The phase ofC1, however, is
still fluctuating, leading to short range correlations for the
CDW order kC1sxdC1

*s0dl~e−x/jsTd. Even at T=0 we can
have at best a quasi-long-range order forC1 due to the in-
commensurate value of 2kF

A. Lattice distortions at 2kF
B can be

included by introducing another complex fieldC2sxd that

contributese2ikF
BxC2sxd+e−2ikF

BxC2
*sxd to the distortion ampli-

tude. The relation 2kF
A=kF

B implies that the free energy allows
coupling betweenC1 and C2 of the form FpsfC1,C2g
=gedxsC1

2C2
* +C1

*2C2d, so when the amplitude ofC1 is es-
tablished, it will immediately induce the amplitude forC2

salthough none of the fields have a long-range orderd. Ap-
pearance of such amplitudes should lead to a pseudogap state
of the system belowTCDW.53 The dominant contribution to
electrical conductivity in a clean system would then come
from the Goldstone mode of the phase of theC’s, i.e., sliding
of CDWs sFröhlich moded. Any kind of disorderse.g., impu-
rities or crystal defectsd, however, gives strong pinning of the
CDW phase and suppresses collective mode contributions to
transport. Therefore, we expect insulating behavior of the
low temperature resistivity in most experimentally relevant
circumstances if CDW is the dominant low-temperature
phase.

C. Experimental implications

Proximity induced54,55as well as intrinsic3,4 superconduc-
tivity has been experimentally observed in carbon nanotubes.
On the other hand, the CDW state, despite being endemic to
quasi-1D systems has never been reported for carbon nano-
tubes. As we discuss above, one needs to have very small
carbon nanotubes to have electron-phonon interaction strong
enough to make either the CDW or the SC instabilities ap-
pear at experimentally relevant temperatures. In this work we
address quantitatively both of these instabilities. Our main
conclusion is that when we include Coulomb interaction be-
tween electrons, the CDW instability does no appear even for
the ultrasmall nanotubes, whereas the superconductingTSC
may be in the few Kelvin range.

In the work by Kociaket al. in Ref. 3, electronic transport
through ropes of single-walled CNTs suspended between
normal metal contacts was measured. The ropes are com-
posed of several hundred CNTs in parallel with diameters of
the order 1.4 nm. It was found that below 0.5 K, the resis-
tance abruptly drops, an effect which is destroyed by the
application of an external magnetic field of order 1 T. The
largest radius CNT we study is thes5,5d CNT, which was
seen to be in the regime where zone folding is applicable.
For this CNT, we calculatedlSC=0.031, a value far too small
to support superconductivity at this temperature even without
the inclusion of the Coulomb interaction. This small value of
lSC is consistent with the experimental measurements of the
electron-phonon coupling in CNTs of similar diameter by
Hertel et al. in Ref. 56. It is possible that the interactions
between CNTs in the rope play a tantamount role for super-
conductivity in the experiment of Ref. 3 as suggested by
Gonzalez in Ref. 12. Another possibility is that a small num-
ber of nanotubes in the rope have a small diameter. For nano-
tubes with a diameter of 4 Å we find superconductingTSC in
the 1 K range which would be consistent with these experi-
ments. A small number of superconducting nanotubes could
provide a short circuiting in transport measurements or even
induce superconductivity in other CNTs via the proximity
effect.

In the experimental work of Tanget al. in Ref. 4, electri-
cal transport was measured through a zeolite matrix contain-
ing single-walled CNTs. In the zeolite matrix, the CNTs are
well separated from each other creating an idealized one-
dimensional system. The diameters of the CNTs were deter-
mined to be approximately 4 Å by measuring the radial

FIG. 13. VtubesRd from Eq.s44d calibrated with parameters from
intercalated graphene and fullerenesssolid lined compared to the
attractive potentials calculated for the representative CNTssfilled
circlesd.

ELECTRON-PHOTON INTERACTION IN ULTRASMALL-… PHYSICAL REVIEW B 71, 035429s2005d

035429-15



breathing phonon mode frequency by Raman spectroscopy.
The superconducting transition temperature for this system
was found to be 15 K from transport measurements. In ad-
dition, the Meissner effect was observed through the tem-
perature dependence of the magnetic susceptibility suggest-
ing that the large currents observed in transport
measurements are not from the sliding charge-density wave
collective mode, but are indeed from superconducting corre-
lations.

The ultrasmalls5,0d CNT we study is the likely candidate
structure for the CNTs confined in the zeolite matrix in these
experiments. We find for this system that the electron-
phonon coupling is very strong. We find in the mean-field
theory, neglecting Coulomb interactions, thatTCDW=160 K
and TSC=64 K, indicating that the charge-density wave in-
stability is stronger in this approximation. However, putting
in the Coulomb interaction as in Eq.s28d, the charge-density
wave transition was suppressed to very low temperatures,
making super-conductivity dominant withTSC=1 K. Dis-
crepancy between our calculatedTSC and the experimentally
observed 15 K should not be a reason for concern. The su-
perconducting transition temperature in Eq.s38d is exponen-
tially sensitive to the strength of the Coulomb interaction,
and our estimates of the latter are not very accurate.

VII. SUMMARY AND CONCLUSIONS

In this work, we have used the Fröhlich Hamiltonian writ-
ten in Eq.s1d to study three types of small-radius CNTs. For
this Hamiltonian, the band structure energies were computed
by using an empirical tight-binding method16 to first relax
the structure, and then to compute the eigenvalues of the
secular tight-binding equation. The electron-phonon interac-
tion gktk8t8m is evaluated for scattering between all Fermi
points. The dressed phonon frequenciesVqm are computed
by using the frozen-phonon approximation given in Eq.s8d
by the displacement vectors from the dynamical matrix of
graphene given in Ref. 33. The undressed frequenciesVqm

0 ,
which enter the Fröhlich Hamiltonian in Eq.s1d, are then
extracted by using the previously computed quantities of the
band structure and the electron-phonon coupling, and the
RPA analysis of the Peierls instability. This method is elabo-
rated in Sec. II D. After the calculation of these quantities,
the effective Fröhlich Hamiltonian has been fully con-
structed. The remarkable agreement of the coefficients of the
logarithmic divergences computed by using quantities from
the band structure and the electron-phonon coupling with the
frozen-phonon frequencies is a consistency check for this
method.

With the Fröhlich Hamiltonian, we then used the RPA
analysis of the Peierls instabilitysin Sec. IV Ad and the Mc-
Millan equationsin Sec. IV B and Appendix Bd to obtain the
charge-density wave and superconducting transition tem-
peratures, the result with the higher transition temperature
being the dominant phase at low temperatures. For instance,
when the CDW is dominant, the Fermi surface will be de-
stroyed aroundTCDW eliminating super-conductivity alto-
gether. By this method, we provided an exhaustive analysis
of three types of CNTs:s5,0d, s6,0d, and s5,5d. The more

conventional larger-radiuss5,5d CNT was seen to be stable
against the CDW and SC transitions down to very low tem-
peraturess!1 Kd if we only include electron-phonon inter-
actions. For the ultrasmall radiuss5,0d ands6,0d CNTs, how-
ever, the CDW was found to be the dominant phase, with
transition temperatures of 160 and 6 K, respectively. For
both of these CNTs, 2kF is incommensurate with the under-
lying lattice. Furthermore, in contrast to larger radius CNTs
which have dominant electron-phonon coupling to the in-
plane phonon modes, the ultrasmalls5,0d and s6,0d CNTs
were found to have dominant coupling to the out-of-plane
phonon modesssee Fig. 6d, as seen from the direct compu-
tation of the electron-phonon matrix elementsMktk8t8m. This
is further supported by the frozen-phonon computation of
frequencies which show the most robust Kohn anomalies for
these modesssee Fig. 6d.

When we include the Coulomb interaction, for thes5,0d
CNT we find that the CDW order is suppressed much more
strongly than superconductivity. More specifically, our analy-
sis presented in Sec. V shows that the CDW transition is
pushed down to unobservably low temperatures, whereas the
superconductingTSC is reduced to 1 K. Hence our calcula-
tion supports the possibility of observing superconductivity
in ultrasmall CNTs. It is quite foreseeable that a more de-
tailed model for the Coulomb interaction could raiseTSC to
the value seen experimentally, especially considering the ex-
ponential dependence of the superconducting transition tem-
perature on the Coulomb interaction strength. For thes6,0d
CNT, we found that the CDW remains dominant when the
Coulomb interactions are included due to the weak Coulomb
interaction between electrons at the Fermi points, and occurs
at aroundTCDW=5 K.
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APPENDIX A: THE ELECTRON-PHONON COUPLING
VERTICES

The electron-phonon coupling matrix is given by

Mktk8t8m = Nkcktuo
i

]V

]R0i
· êqmsiduck8t8l. sA1d

One can see that the above expression can be evaluated by
using the finite difference formula

Mktk8t8m =
1

u
kcktusVqm − V0duck8t8l. sA2d

A method for calculating this expression with a plane-wave
basis set was previously developed.32 This section will be
devoted to describing how to calculateMktk8t8m with a tight-
binding method. We introduce the standard tight-binding no-
tation
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ucktl = o
il

Aktil uxkill, sA3d

uxkill =
1

ÎN
o
n

eik·Rnufnill. sA4d

Heren runs over unit cells andi runs over basis vectors in
the unit cell andl over orbital type. Because the kinetic en-
ergy operator will be the same in the perturbed and unper-
turbed Hamiltonians, we can write

Mktk8t8m =
1

u
kcktusHqm − «Fduck8t8l. sA5d

The reason why we keep the«F term which clearly is zero
through orthogonality will become clear below. Expanding
the wave functions in the tight-binding basis set, we obtain

Mktk8t8m =
1

u
o
ili 8l8

Aktil
* kxkilusHqm − «Fduxk8i8l8lAk8t8i8l8.

sA6d

Now, we write uxkil
qml= uxkill+ udxkil

qml where the orbitals of
uxkil

qml are centered on the perturbed lattice. Inserting this into
the above equation, we obtain

Mktk8t8m =
1

u
o
ili 8l8

Aktil
* fkxkil

qmusHqm − «Fduxk8i8l8
qm lg

− fkdxkil
qmusHqm − «Fduxk8i8l8l + H.c.gAk8t8i8l8.

sA7d

In the second term we can do the substitutionHqm→H0 be-
cause the effect of doing this will be second order inu and
we are interested in an expression that is accurate to first
order. Then, this term will be

o
ili 8l8

Aktil
* skdxkilusH − «Fduxk8i8l8l + H.c.dAk8t8i8l8

= o
il

Aktil
* kdxkilusH − «Fduck8t8 + H.c. = 0. sA8d

So we finally have the expression

Mktk8t8m =
1

u
o
ili 8l8

Aktil
* kxkil

qmusHqm − «Fduxk8i8l8
qm lAk8t8i8l8.

sA9d

This expression can be computed by evaluating the tight-
binding Hamiltonian and overlap matrices for the distorted
lattice, evaluating the coefficientsAktil and Ak8t8i8l8 of the
wave functions for the undistorted lattice, and performing the
above sum. There is a slight technical problem with the
above method becausek andk8 are not the same in the tight-
binding matrix. However, it can be shown that the correct
result will be obtained by usingkxkil

qmuHqmuxki8l8
qm l and

kxkil
qm uxki8l8

qm l for the tight-binding and overlap matricessor the
similar expression withk→k8d in the limit of a large super-
cell. That is, when the distance over which neighboring at-
oms interact is small compared to the length of a unit cell,

this method becomes exact. When we apply this method, we
checked for convergence of the coupling as a function of the
unit cell size.

APPENDIX B: ISOTROPIC ELIASHBERG EQUATIONS
IN 1D

Obtaining quantitative parameters of superconductors de-
scribed by the BCS theory such as the transition temperature
and the wave-vector-dependent superconducting gap from
microscopic models has developed into a powerful tool for
understanding experimentally realized systems as well as
even predicting new superconductors.57 Though excellent re-
view articles exist,41,58we will establish the key results of the
theory below in attempt to be as self-contained as possible.
We will also show how to incorporate the electron-phonon
coupling into the phonon parameters which become impor-
tant in 1d due to the CDW instability.

In the following, to simplify notation, we will consider a
single band system only. The central ingredient which, in
principle, allows one to calculate the superconducting transi-
tion temperature to high accuracy is Migdal’s theorem59

which allows one to evaluate the electron self-energy with
small error as

Ssk,ivnd = −
1

b
o

k8n8m

t3Gsk8,ivn8dt3ugkk8mu2

3D0msk − k8,n − n8d. sB1d

This expression for the self-energy is shown in Fig. 14. In
this equation,b is inverse temperature,ti are Pauli matrices
si =0 gives the identity matrix whilei =1, 2, 3 give thex, y,
z Pauli matrices, respectivelyd, D0 is the noninteracting pho-
non Green’s function, andvn=ps2n+1d /b are the fermionic
Matsubara frequencies. The electronic Nambu-Green func-
tion, a 232 matrix, is given byGsk, ivnd=sivnt0−«kt3

−Sd−1.
Now, we can expandS in terms of Pauli matrices

S = s1 − Zdivnt0 + ft1. sB2d

We did not include thet3 term because this just shifts the
quasiparticle energies and similarly we neglected thet2 term
which can be eliminated by a proper choice of phase forf.

FIG. 14. Migdal’s expression for the electronic self-energy. The
thick line denotes the dressed electronic Green’s function and the
wavy line denotes the phonon Green’s functions.
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Written in terms of these parameters, the Green’s function
becomes

G = −
Zivnt0 + «kt3 + ft1

sZvnd2 + «k
2 + f2 . sB3d

Inserting this into Eq.sB1d we obtain

S =
1

b
o

k8n8m

Z8ivn8t0 + «k8t3 − f8t1

sZ8vn8d
2 + «k8

2 + f82

3ugkk8mu2D0msk − k8,n − n8d. sB4d

Now, we insert the identityed«ds«−«k8d into the above ex-
pression to obtain

S =
1

b
E d« o

k8n8m

ds« − «kd
Z8ivn8t0 + «t3 − f8t1

sZ8vn8d
2 + «2 + f82

3 ugkk8mu2D0msk − k8,n − n8d. sB5d

The Lorentzian term in the integrand peaks very strongly at
«=«F=0 with width on the order of temperature. Assuming
that the rest of the integrand doesn’t vary as rapidly about
«=0, we can replaceds«−«k8d with ds«k8d and perform the«
integral to obtain

S =
p

b
o

k8n8m

ds«k8d
Z8ivn8t0 − f8t1

ÎsZ8vn8d
2 + f82

ugkk8mu2D0msk − k8,n − n8d.

sB6d

This approximation can be seen to break down for small
momentumsforwardd scattering due to acoustic phonons.
This case will be discussed in Appendix C. When close to
TSC, f8 will be small and can be neglected in the denomina-
tor of Eq. sB6d.

Now we perform the so-called isotropic approximation.
Multiply both sides of Eq.sB6d by ds«kd /nss0d, wherenss0d
is the density of states at the Fermi level per spin and sum
over k. In the right-hand side of Eq.sB6d we then replace
Zsk8 ,n8d andfsk8 ,n8d with their Fermi-surface averagesZn8
andfn8. This approximation is valid when the Fermi surface
is fairly isotropic. Now by equating the coefficients of the
matricest0 andt1 we finally arrive at the equations

Zn = 1 + fnsno
n8

lsn − n8dsn8, sB7d

ZnDn = o
n8

flsn − n8d − mSC
* gfn8Dn8, sB8d

where fn=1/u2n+1u, sn=sgns2n+1d, Dn=fn/Zn, and

lsn − n8d = −
1

nss0d o
kk8m

ds«kdds«k8dugkk8mu2D0msk − k8,n − n8d.

sB9d

The Coulomb pseudopotentialmSC
* was inserted to account

for the bare electron-electron interaction that is not included
in our original Hamiltonians1d. The superconducting transi-
tion temperatureTSC is the temperature at which nontrivial

solutions for the gapDn begin to appear. Equations
sB7d–sB9d are known as the isotropic Eliashberg equations.60

Input parameters have been calculated and the Eliashberg
equations have been solved to calculateTSC for a variety of
superconductors described by the BCS theory. We also note
that a generalization to the case where the Fermi surface is
anisotropic is straightforward.61

Now, for typical three-dimensional solids the phonon fre-
quencies are affected very little by the electron-phonon cou-
pling. Therefore, the above formalism where we have used
the non-interacting phonon Green’s functionD0m works re-
markably well in 3D. This is not the case, however, in 1D,
where one is encountered with the CDW instability. A more
accurate phonon Green–s function is given by

Dmsk,nd =
2Vqm

0

sinnd2 − sVqmd2 , sB10d

where Vqm
0 is the undressed frequencyswithout electron-

phonon couplingd andVqm is the dressed frequencyswhich,
as seen above can have strong temperature dependenced. Cal-
culating the dressed phonon Green’s function can be chal-
lenging because one needs bothVqm

0 andVqm. However, we
notice that when we substitute Eq.sB10d into Eq. sB9d we
have the fortuitous cancellation ofVqm

0 in the numerator of
Dmsk,nd with that in the denominator ofugkk8mu2. Thus one
sees that knowledge of the undressed frequenciesswhich are
significantly more difficult to obtaind will not be necessary to
construct the Eliashberg equations. By doing the substitution
Vq

0→Vqm in Eqs. sB7d–sB9d, one can thereby construct the
“dressed” Eliashberg equations which takes into account the
influence of the electron-phonon coupling on the phonon fre-
quencies which is important in 1D.

Note also that since some modes will have temperature
dependence, the Eliashberg equations must be solved self-
consistently. That is, we must find a temperature such that
the SC transition temperature determined from the Eliash-
berg equations is the same as the temperature used for the
input dressed phonon frequencies. This can be done by itera-
tion. Furthermore, this method allows us to tell which will be
the dominant phase at low temperature of our system. If we
find a self-consistent solution of the Eliashberg equations and
TSC.TCDW, then superconductivity will be the dominant
correlation. Otherwise, the system will prefer the CDW state.

Finally, we will write down an expression which approxi-
mately solves the Eliashberg equations, originally developed
by McMillan

TSC=
kVl
1.20

expF−
1.04s1 + lSCd

lSC− mSC
* s1 + 0.62lSCdG , sB11d

wherelSC;ls0d. From the above analysis, we see that to be
self-consistent, one should use the dressed frequencies to
evaluatelSC.

APPENDIX C: INCORPORATING qÉ0 SCATTERING
FROM ACOUSTIC PHONONS IN THE ELIASHBERG

EQUATIONS

In this appendix, we discuss in detail the role of acoustic
phonons for small-radius nanotubes. Earlier theoretical

BARNETT, DEMLER, AND KAXIRAS PHYSICAL REVIEW B 71, 035429s2005d

035429-18



analysis of the electron-phonon interactions in 1D systems
suggested that acoustic phonons can play a dominant role in
stabilizing the superconducting state.62,63We will show, how-
ever, that since the dominant coupling comes from optical
modes, that this effect is not important for the CNTs we
study.

We now consider explicitly the contributions toq<0
scattering processes coupled to acoustic phonon modes
which are not accounted for in the approximations leading to
Eq. sB6d. For the electron-phonon coupling to acoustic
modes, we take

ugqmu2 =
guqu/L

1 + sq/q0d2 , sC1d

whereq0 is a cutoff of orderkF andL is the system length.
We also takeVqm=cuqu and «k=vFsuku−kFd. Inserting these
quantities into Eq.sB1d, settingZ=1 for simplicity, we ob-
tain for the off-diagonal element

Dn
sq<0d =

1

b
o
n8

1

2p
E dq

Dn8

vn8
2 + svFqd2

3
guqu

1 + sq/q0d2

2cuqu
svn − vn8d

2 + scuqud2 sC2d

This integral can be evaluated to give

Dn
sq<0d =

g

vFb
o
n8

Dn8

uvn8uc + uvn − vn8uvF

3
q0

uvn − vn8u/c + q0

q0

uvn − vn8u/vF + q0
. sC3d

One then sees that scattering fromq<0 acoustic phonons
gives an approximate contribution tolSC swhen n=n8d of
lSC

sq<0d=g / spvFcd.
Now we consider theq<2kF scattering process from the

same acoustic phonon. For this process we obtain

Dn
sq<2kFd <

1

b
o
n8

ugq=2kF,mu2Ds2kF,n − n8d

3
L

2p
E dq

Dn8

vn8
2 + svFqd2

. sC4d

This integral can be evaluated to give

Dn
sq<2kFd =

4gckF
2

bvF
o
n8

1

svn − vn8d
2 + sc2kFd2

1

uvn8u
. sC5d

One then finds that this gives a contribution oflSC
sq<2kFd

=g / spvFcd to lSC which is exactly the same as theq<0
scattering contribution. Thus one sees thatq<0 scattering
from acoustic phonons can be very important in one-
dimensional electron-phonon systems. From such a process
the so-called Wentzel-Bardeen instability42–44 can occur
which has recently been studied in the context of CNTs.63

We also note that a similar analysis can be carried out for the

optical phonons, and it is found that theq<0 processes are
much smaller than theq<2kF process.

With the above method, we now see how to include the
contribution fromq<0 scattering intolSC. To do this, we
simply double the contributions tolSC from 2kF processes
which couple to acoustic phonons to include theq<0 con-
tribution. In practice, we find that using this procedure actu-
ally changeslSC by only a small amount. For instance, for
the s5,0d CNT, lSC only increases by less than 1%. This is
because the dominant contributions tolSC are from coupling
to the optical modes as discussed in Sec. III.

We also point out that the presence of the Wentzel-
Bardeen singularity would significantly renormalize the
acoustic phonon mode frequencies of the CNTs. The fact that
the calculated phonon frequencies using the frozen-phonon
approximation for the CNTs are quantitatively similar to the
analogous modes of graphene as shown in Figs. 7, 9, and 11
further supports the the notion that the Wentzel-Bardeen in-
stability is unimportant in these systems.

APPENDIX D: LIMITATIONS OF NON-SELF-CONSISTENT
METHOD

In this appendix, we will discuss the limitations of using a
method in which the charge density is not evaluated self-
consistently. For simplicity, we will neglect the contribution
from the exchange-correlation energyEXC in the Kohn Sham
energy functional.

First we will consider the case of the equilibrium lattice
structure. For this, the self-consistent total energy is given by

ESC
eq = o

i

kciuS p2

2m
+ Vion

eq sr d +
1

2

3E d3r8
nsr 8d

ur − r 8u
Ducil + Eion-ion

eq , sD1d

where the charge-density is given bynsr d=oiucisr du2, Vion
eq is

the ionic potential, andEion−ion
eq is the ion-ion interaction. In

the above and in what follows, thei summation is carried out
only over occupied electronic states. Applying the variational
principle to Eq.sD1d gives the equation for the wave func-
tions ucil and therefore the charge-densitynsr d

Heqfngucil = «iucil, sD2d

where

Heqfng =
p2

2m
+ Vionsr d +E d3r8

nsr 8d
ur − r 8u

. sD3d

In solving this equation, the charge densitynsr d entering
Heqfng must be determined self-consistently to agree with
the eigenfunctionsci. Using this, the self-consistent total en-
ergy for the equilibrium lattice is determined to be

ESC
eq = o

i

kciuHeqfngucil + Feqfng, sD4d

where
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Feqfng = −
1

2
E d3rd3r8

nsr dnsr 8d
ur − r 8u

+ Eion-ion
eq sD5d

to be essentially the same as for noninteracting atoms. In the
tight-binding limit we expect the equilibrium electron den-
sity to be essentially the same as for noninteracting atoms. If
we denote the latter asn0sr d, we can replacensr d by n0sr d in
ESC

eq and expect the resulting non-self-consistent total energy
ENSC

eq to be quite close to the self-consistent total energy for
the equilibrium lattice structure

ENSC
eq < ESC

eq . sD6d

This approach is the basis for using an effective tight-binding
model to calculate band structures.

Such a method, however, breaks down when we consider
a lattice perturbed by a phonon. In the presence of a lattice
distortion, the ionic potential changes toVion

dist=Vion
eq +dVion

which, in turn, makes the charge-density nonuniformn=n0
+dn. The energy of the distorted structure is then

ESC
dist = o

i

kciuS p2

2m
+ Vion

distsr d +
1

2
E d3r8

nsr 8d
ur − r 8u

Ducil

+ Eion−ion
dist . sD7d

Now replacingn with n0+dn, this can be written as

ESC
dist = o

i

kciuHdistfn0gucil + Fdistfn0g

+
1

2
E d3rd3r8S 1

ur − r 8u
Ddnsr ddnsr 8d, sD8d

whereHdist andFdist are given byHeq andFeq defined above
with Vion

eq andEion−ion
eq replaced byVion

dist andEion−ion
dist . The first

two terms on the right of Eq.sD8d can be seen to be the total
energy of the distorted structure computed with the non-self-
consistent method. We therefore obtain

ESC
dist = ENSC

dist +
1

2
E d3rd3r8S 1

ur − r 8u
Ddnsr ddnsr 8d. sD9d

Subtracting Eq.sD6d from this then gives

DESC= DENSC+
1

2
E d3rd3r8S 1

ur − r 8u
Ddnsr ddnsr 8d,

sD10d

where DESC,NSC=ESC,NSC
dist −ESC,NSC

eq . Rewriting the second
term in momentum space gives

DESC= DENSC+
1

2
E d3q

s2pd3Vsqdudnqu2 sD11d

which then makes it clear thatDESC.DENSC. So we see that
using the a non-self-consistent method to calculate phonon
frequencies by the frozen-phonon approximation will under-
estimate the phonon frequencies. More specifically, in a non-
self-consistent method, the Hartree term displayed in Eq.
sD11d is not accounted for. This should be particularly im-
portant in the vicinity of a CDW instability, where there will

be a larger response of the charge distribution to a lattice
distortion.

APPENDIX E: DERIVATION OF EQ. (31)

In this appendix, we will derive Eq.s31d by evaluating the
integral appearing in Eq.s30d. To estimate this Coulomb in-
teraction integral, we will take the tight-binding wave func-
tion of graphene

ckgsr d =
1

ÎN
o
n

eik·Rn
1
Î2

Sg
fskd

ufskdu
fn1sr d + fn2sr dD .

sE1d

Now k is a two-dimensional vector in reciprocal space of the
graphene lattice andg= ±1 corresponds to the conduction
and valence bands. Orbitals centered on the first and second
carbon atoms, respectively, in thenth unit cell are given by
fn1sr d and fn2sr d, respectively, andfskd is given by fskd
=1+e−ik·a1+e−ik·a2, wherea1 anda2 are the lattice vectors of
graphene. For metallic large radius CNTs, the Fermi points
correspond toK = 1

3sb1−b2d and K 8= 2
3sb1−b2d, where b1

andb2 are the reciprocal lattice vectors corresponding toa1
anda2. For these points, we havefsK d= fsK 8d=0. However,
for the smaller radius CNTs we study, as indicated by the
failure of the zone-folding method, the Fermi points are
shifted away fromK andK 8. We denote the Fermi points of
the inner bandta of the s5,0d CNT by kta+=K +kxx̂−kyŷ and
kta−=K −kxx̂−kyŷ and for the other inner bandtb by ktb+

=K 8+kxx̂+kyŷ andktb−=K 8−kxx̂+kyŷ where thex direction
is still along the CNT axis and they direction is along the
perimeter.

For backward scattering, we takeq<2kF, k<−kF, k8
<kF. Keeping only products of carbon orbitals centered on
the same atom, we obtain

ck+qta

* sr dckta
sr d <

1

N
o
n

e−iqx̂·Rn
1

2S f*skta+dfskta−d

uf*skta+dfskta−du

3 ufn1sr du2 + ufn2sr du2D . sE2d

Now we make use of the slow variation ofe−iqx compared to
the localized orbitals to write

ck+qt
* sr dcktsr d

< e−iqx 1

No
n

1

2S f*skta+dfskta−d

uf*skta+dfskta−du
ufn1sr du2

+ eiqx̂·tufn2sr du2D , sE3d

wheret =s1/Î3dax̂ is the basis vector for the second carbon
atom in the primitive unit cell. Finally, in evaluating the in-
tegral in Eq. s30d it is sufficient to replace the functions
s1/Ndonufn1,2sr du2 which vary more rapidly thanVsr d by
their average values. That is, we substitute
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ck+qt
* sr dcktsr d → 1

2pRL
e−iqx1

2S f*skta+dfskta−d

uf*skta+dfskta−du
+ eiqx̂·tD .

sE4d

Using the same approximations for the factor
ck8−qsr 8dck8sr 8d, we obtain for the Coulomb interaction

Vqtata
<

1

4
U f*skta+dfskta−d

uf*skta+dfskta−du
+ eiqx̂·tU2

sE5d

3
1

L2E dxdx8e−iqsx−x8d

3 E
0

2pR dy

2pR
E

0

2pR dy8

2pR
Vsr − r8d. sE6d

We will now evaluate the prefactor in this equation for the
inner band of thes5,0d ands6,0d CNTs. Using the calculated
Fermi points along with the zone-folding method, we obtain
kx= ± s0.11/Î3ds2p /ad andky= 1

15s2p /ad for the s5,0d CNT.
From this we obtain

1

4
U f*skta+dfskta−d

uf*skta+dfskta−du
+ eiqx̂·tU2

= 0.59. sE7d

For the s6,0d CNT the Fermi points arekx= ± s0.076/
Î3ds2p /ad andky=0. This gives

1

4
U f*skta+dfskta−d

uf*skta+dfskta−du
+ eiqx̂·tU2

= 0.0016 sE8d

which is smaller due to the different symmetry of the wave
functions at the Fermi points. These are the values of the
prefactorg appearing in Eq.s31d.
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