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Electron-phonon interaction in ultrasmall-radius carbon nanotubes
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We perform analysis of the band structure, phonon dispersion, and electron-phonon interactions in three
types of small-radius carbon nanotubes. We find that(f® nanotube can be described well by the zone-
folding method and the electron-phonon interaction is too small to support either a charge-density wave or
superconductivity at realistic temperatures. For ultrasrt@®l) and (6,0) nanotubes we find that the large
curvature makes these tubes metallic with a large density of states at the Fermi energy and leads to unusual
electron-phonon interactions, with the dominant coupling coming from the out-of-plane phonon modes. By
combining the frozen-phonon approximation with the random phase approximation analysis of the giant Kohn
anomaly in one dimension we find parameters of the effective Fréhlich Hamiltonian for the conduction
electrons. Neglecting Coulomb interactions, we find that(8)8) carbon nanotubéCNT) remains stable to
instabilities of the Fermi surface down to very low temperatures while fo(&t® and(6,0) CNTs a charge
density wave instability will occur. When we include a realistic model of Coulomb interaction we find that the
charge-density wave remains dominant in t8®) CNT with Tepy arourd 5 K while the charge-density wave
instability is suppressed to very low temperatures in(§18) CNT, making superconductivity dominant with
transition temperature around 1 K.
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It has been over a decade since the discovery of carbon
nanotubegCNT9?! and the interest in these systems contin-
ues to be high. The majority of theoretical work on CNTsWith
focuses on understanding the effects of the electron-electron
interactions using the celebrated Luttinger-liquid thedEx- aVv
perimental observation of superconductivity in ropes of M0 = NCi) 2 —=— - gD ). ©)
) . . . T IRy
nanotube$ and small-radius nanotubes in a zeolite métrix i oo
has also motivated theoretical studies of the electron-phonon
interactions(EPI9, including the analysis of charge density Here|z/;k7>=clr|0> is a quasistationary electron state in band
wave (CDW)>-8 and superconductingSC)®? instabilities.  with quasimomentunk, &,(i) is the phonon polarization
In this work we study the electron-phonon interactions invector on atoni in the unit cell,N, is the number of atoms
CNTs and discuss possible instabilities to the CDW and S@er unit cell,M is the mass of a single C atom,is the total
orders. Our approach provides reliable parameters for thaumber of unit cells in the system, am¥/JRy is the de-
effective Hamiltonians we use in contrast to the Luttinger-rivative of the crystal potential with respect to the ion posi-
liquid treatments where obtaining such accurate quantities ion Ry;.
quite difficult. A common approach to obtaining parameters of the
A conventional starting point for discussing the electron-Hamiltonian (1) for the CNTs is the zone-folding method
phonon interaction in solids is the Frohlich Hamiltorian ~ (ZFM).1® The essence of this method is to take the electron
band structure and the phonon dispersion for graphene and
guantize momenta in the direction of the wrapping. The main

H=S erc o +3 0 ( + N _) results of such a proc_edure may pe sum.marized as follows.

= kT kro kT ™ ae| Aaufau 2 The only bands crossing the Fermi level in graphene are the
bonding and the antibonding combinations of the atopjic

+ > ngk'T',LClka'T'a(aqw‘aiq,)- (1)  orbitals. Hence, the zone-folding method predicts that these

ki 7' o are the only bands which may cross the Fermi level in carbon

nanotubes. The condition for the quantized momenta to cross
the Dirac points of the graphene gives the condition for the
Herec/  creates an electron with quasimomentkiin band ~ (N,M) CNT to be metallic:N-M should be divisible by 3.
T with spino, agﬂ creates a phonon with lattice momentam The ZFM also predicts that the electron-phonon coupling in
and polarizatioru, andgq=k—-k’ modulo a reciprocal lattice the CNTs should be dominated by the in-plane optical
vector. The energies of electron quasiparticles and phononaodes. This follows from the fact that the latter have the
(in the absence of EPGre given byg,, and qu, respec- largest effect on the overlaps between fheorbitals of the

tively. The EPC vertex is given by neighboring carbon atoms.
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While the ZFM was shown to provide a quantitatively tions at the RPA levél can lead to a stronger suppression of
accurate description of the larger radius nanotubes, it is exhe CDW transition temperaturékpy, than the supercon-
pected to fail as the radius of the nanotubes is decreased addcting T For instance, we find by using the model Cou-
the curvature of the C-C bonds becomes important. Deteftomb interaction of Ref. 28 that for th@&,0) CNT, the CDW
mining the band structure, the phonon dispersion, and thgansition is suppressed to very low temperatures while su-

electron-phonon coupling of the small radius CNTs requiregerconductivity becomes the dominant phase with transition
detailed microscopic calculations. In this paper we use th?emperature ofsc~1 K.

empirical tight-binding modéf to provide such an analysis — Tp;g paper is organized as follows. In Sec. Il we discuss
for three types of small-radius nanotub€s;0) with the di- o, method for extracting parameters for the one-
ameter 3.9 A(6,0) with the diameter 4.7 A, an(b,5 with dimensional Frohlich Hamiltonian. We then apply this

the diameter 6.8 A. We find that the large curvature of themethod to the5,0), (6,0), and(5,5 CNTs in Sec. IIl. In Sec

C-C bonds leads to qualitative changes in the band structur& we use the constructed Hamiltonian for these CNTs to

of the (5,0) and (6,0) nanotubes. Previous work on the band tudv their instabilities t d ductivit dch
structure of small-radius carbon nanotubes can be found ifj.tdY (NeIr INStabilities toward superconductivity and charge-

Refs. 17-24. For example, tf{6,0) CNT becomes metallic ensity wave stqtes. The effect of intrqducing thg residual
from strong hybridization between the and 7 bands(see C_oulomb interacting between e_Iectrons is covered in Sec. V.
Fig. 4). Frequencies of the phonon modes in small radiudinally all of the results are discussed and summarized in
CNTs are also strongly renormalized from their values inS€c: VI.
graphene. Not only does the out-of-plane acoustic mode be-
come a finite frequency breathing mof¥eyut even the op-
tical modes change their energy appreciatsdge, e.g., Fig.
7). Finally, the electron-phonon coupling changes qualita-
tively in the small-radius CNTSs. It is no longer dominated by
the in-plane optical modes but by the out-of-plane optical Now we discuss our methods for calculating input param-
modes which oscillate between thp, bonding of graphene eters to the Fréhlich Hamiltoniafl) for the representative
and thesp; bonding of diamondsee discussion in Sec. I nanotubes. Our analysis relies on the the empirical tight-
We find that the strong effects of the CNT curvature decreasbinding modet® but it is easily amenable to any density-
rapidly with increasing the tube radius. Already for #8¢5)  functional theory®° treatment of the system.
nanotubes the ZFM gives a fairly accurate description of the
band structure as well as the electron-phonon interactions.
Determining parameters of the Frohlich Hamiltonian for a
one-dimensional system is not as straightfoward as for two To compute the electronic structure of the CNTs we study,
and three-dimensional metals. Traditional methods for anawe use the NRL tight-binding meth&twhich has been
lyzing EPI from first-principles calculations are meanfield tested and provided accurate results on a variety of materials.
and, therefore, suffer from instabilities intrinsic to one- In this method, the Slater-Koster tight-binding matrix ele-
dimensional systems. In particular, the frozen-phonon apments are parametrized and are fit to reproduce the first-
proximation, which is commonly used to determine the pho-rinciples density-functional band structures and total ener-
non frequencie@gﬂ in Eq. (1) gives imaginary frequencies gies, with around 70 adjustable parameters per element.
close to the nesting wave vectge 2ke. This is the result of We study the(5,0), (6,0, and (5,5 CNTs which are
the giant Kohn anomak?, which corresponds to the Peierls shown in Figs. 4, 8, and 10. The smallest possible unit cells
instability of the one-dimensional electron-phonon systém. for these CNTs contain 20, 24, and 20 atoms, respectively.
An important result of our paper is that we developed a for-These CNTs are relaxed by minimizing their total energy per
malism which combines the frozen-phonon approximatiorunit cell with respect to the atomic coordinates using 35
with the random-phase approximati@RPA) analysis of the points in the first Brillouin zone. Matrix elements between
EPI. This allows us to extract effective nonsingular param-neighboring atoms of up to 5.5 A were used, which is used
eters of the Fréhlich Hamiltonian from first-principles calcu- for the parametrization of carbon in the NRL tight-binding
lations or from the empirical tight-binding model. This tech- method. The calculations were performed on an orthorhom-
nique should be applicable to many systems other thabic lattice with spacing between parallel CNTs of 16 A, a
carbon nanotubes. distance sufficiently large to ensure negligible dispersion
After determining parameters of the Frohlich Hamiltonianfrom intertube hopping. Once the CNTSs are relaxed, the band
(1) for the (5,0, (6,0, and (5,5 CNTs we discuss possible structure is calculated.
superconducting and charge-density wave instabilities in
these systems. We find that neglecting the residual Coulomb
interaction leads to much stronger CDW instabilities in all
three case@in such analysis Coulomb interaction is included To calculate the electron-phonon coupling vertices and the
only at the mean-field level via the energy of the single-phonon frequencies which will be discussed in the subse-
particle quasi-stationary stateg,). In the mean-field ap- quent sections, one needs to have the ionic displacements
proximation we find the onset of the Peierls instability atcorresponding to the normal vibrational modes of the CNT.
temperatures 160, 5, and 16K for (5,0, (6,0, and(5,5  As pointed out previousif3! we find that it is typically
CNTs respectively. However, including the Coulomb interac-sufficient to use the zone-folded modes of a graphene sheet,

Il. EXTRACTING PARAMETERS OF THE EFFECTIVE
FROHLICH HAMILTONIAN FROM THE FIRST
PRINCIPLE CALCULATIONS

A. Band structure

B. The phonon modes
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even for the small-radius CNTs we study as will be discusse@lectron-phonon couplings come from any of the few
below. graphene modes for which the zone-folding method breaks
Following the method used in the book of Saébal,’>  down.
we have computed the 6060 dynamical matrix of &5,0
CNT and in Fig. 1 we compare the resulting phonon disper-
sions with the zone-folding results. The ionic displacement
modes obtained by the two different methods are very simi- The electron-phonon couplinEPQ matrix in Eg. (3)
lar except for a few special cases. For instance, the zon&an be evaluated by using the finite difference formula
folding results give three acoustic modes which correspond 1
to translating the graphene sheet in different directions. Upon M = — (e (Vg = VO [t 1), (4)
rolling the graphene sheet, these modes get mapped to two u

acoustic modes corresponding to rotation about the CNT axignere Vg, and V, are the perturbed and the unperturbed
and translation along the CNT axis and the _optical b.reathingpa»[tiCe poltLentiaIs, respectively, ands the magnitude of the
mode. Conversely, diagonalizing the dynamical matrix of thedisplacement. A method for calculating the expressidn
CNT gives four acoustic modes corresponding to translationgiin a plane-wave basis set was previously develdBéd.

in three directions and the rotating moGetually using the  thjs paper we extend this procedure to tight-binding models.

method of Ref. 15, one obtains a small spurious frequencyye introduce the standard tight-binding notation
for the rotating mode as pointed in this referenddpon

unrolling the CNT to the graphene sheet, the rotating mode [y = > Aillxiin) (5)
and the mode corresponding to translation along the CNT il

axis will become acoustic modes of the graphene sheet.

However, the two CNT translational modes which are per- 1 .

pendicular to the CNT axis will get mapped to ionic dis- |in|>:Tﬁz & Rl i) (6)
placements which are not eigenmodes of the graphene sheet Vi n

which are mixtures of in-plane and out-of-plane oscillations.Here|¢,;) are the electron states for isolated carbon atams,
In addition, using the dynamical matrix of the CNT, we find runs over unit cellsj runs over basis vectors in the unit cell,
that there is mixing between the breathing and stretchingind| runs over orbital type. We fintfor details, see Appen-
modes aroun&=0.3. In this vicinity, there is level repulsion dix A)

from the lifting of the degeneracy of these modes. Away .

;rggz):gllzdp.)omt, the modes are, to a good approximation, Mka'T'M:‘E A O = E) [, YA s (7)

In our analysis of the electron-phonon coupling we use
the displacements obtained from the zone-folding method td his expression can be computed by evaluating the tight-
simplify the calculations, as well as to give a clear concepbinding Hamiltonian and overlap matrices for the distorted
tual picture. We then check that none of the importantattice, evaluating the coefficients; and Ay, of the wave

C. The electron-phonon coupling vertices

ili '’
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+ WNQM D,.(0,ivm) = Do, (ah,i vm)[1 +11,(0,i ) D (A iv) 1. (9)

Here v,,=27mT are the bosonic Matsubara frequencies and

FIG. 2. The phonon propagator evaluated within the RPA. 20)

o) =, - 0 7
functions for the undistorted lattice, and performing the m aw
above sum. is the noninteracting phonon Green'’s function. The phonon

In all the calculations presented in this paper we used theelf-energy evaluated in the RPA is given by
ZFM to find phonon eigenvectors in the nanotubes starting ) ) .
from the phonon eigenvectors in graphéd@he latter have  11.(@hivm) = 2T [Gprprqrul*Gor(P + 0i0mn) Gor(p,iwy),
been obtained using thexé6 dynamical matrix of graphene ner
given in Ref. 33. We emphasize that we use the ZFM only to (11)
find the phonon eigenvectors in S“.“a” hanotubes, but not th\(/avhere noninteracting electronic Green’s functions are given
phonon frequencies. The frequencies are affected strongly bg

AN - !
the CNT curvature, and should be computed directly. This is )r/Gt%T(p%l(:rrgi_rgliwnM 8{”) b arndfc: g gﬁ?izi)-rs?r;mﬁgemer
discussed in detail in Secs. 11 D and Il are the fermionic Matsubara ireq : g oy

we obtain for Eq(11)

(10

D. Phonon frequencies I1,(q,ivy) = 2> |9l X001 V), (12

A standard method of calculating the bare phonon fre- e
quencies?®  in Eq. (1) is the frozen-phonon approximation Where the bare susceptibility is given by

(FPA).2* In this approach f(ey) — F(Ensar)
i, =S 1Epr) ~ WEprgr)
Xo(Givg) = 2 - - (13)
1 p Pmt &pr~ Epigr
Qg = u\e’_M NCV'AEcos(Q) + ABsin(@), (®) with _f(spT)=(1+eﬁspr)‘1 being the Fermi-Dirac distribution
function.
whereu is the amplitude of the displacement an&{q) _ The poles of the phonon Green's functiéh,, [we put

andAE,, () are the energy differences per unit cell between| Ym— Qqu in D,(d.ivy)], which give the dressed phonon
the distorted and equilibrium lattice structures where the disfreauencies, will satisfy the equation
tortion corresponds to the real and imaginary part$Rf; 2 (0024900
=uddfng, (i), respectively. When we apply this procedure to (Qqulrea= ()" + 20q,11(0.0q,). 14
one-dimensional CNTs, we find thAE ,{(q) +AEg(q) be- Due to the I'arge energy difference bejtweep electrons and
comes negative around certain wave vectses, e.g., Fig. Phonons, it is typically a good approximation to d@f,
7). A closer inspection shows that such anomalous softening~ 0 in I1,(d,€)q,). This approximation results in an expres-
always corresponds to one of th&-2wave vectors of the Sion that can be derived by doing stationary second-order
electron bands indicating the presence of the giant Kohierturbation theory to obtain the change in energy due to the
anomaly. presence of the phonon. That is, settifg,,—0 in
It is important to realize that the divergence @f,, ob-  11(d,{q,) corresponds to the frozen-phonon approximation
tained in the FPA does not imply the divergenc in 2 _ 0 2 0
the Frohlich Hamiltonian(1). The frequenciesl,, z?g“cah (Qgurpa= (g,)" + 20q,11,(0,0). (15
culatedafter the electron-phonon interaction in Ed) have  We can typically approximate well the quasiparticle energy
been included, which gives anomalous softeninglk@gtd@ie by a plane-wave state with given effective mass Then, by
to the well-known Peierls instability of electron-phonon sys-incorporating the FPA, at zero temperature the integral in Eq.
tems in one dimensiofilD). In two- and three-dimensional (13) can be done which will enable us to obtain
systems renormalization of the phonon frequency by elec-
trons in the conduction band is typically negligible. So, one 2 _(00 )2 2
can use phonon energies obtained in the FPA as a direct input(Qq“)FPA (0g,)°+ ET IMated TMNKg, | 2ke,+q
into the Frohlich Hamiltonian. By contrast, nesting of the (16)
one-dimensional Fermi surfaces, leads to dramatic renormal-
ization of the phonon dispersion by electrons in the conducThis expression explicitly shows the logarithmic divergences
tion band. in the phonon dispersion at the nesting wave vectors of the
To extract the bare phonon frequen@,g# from the nu- Fermi surface. This is the famous Peierls instability to a
merically computedl,,,, we point out a connection between CDW state. Our procedure for determining the elusive un-
the FPA and the RPA for the Frohlich Hamiltonian. For neg-dressed frequencies is then as follows. We kg obtained
ligible interband couplingthis condition is satisfied for all from the FPA and fit them with the expressi¢b6) using
modes showing the giant Kohn anomaly, which we discuss irﬂgﬂ as an adjustable parameter. The coefficients of the log
this paper Dyson’s equation for the phonon propagatordivergences at the nesting wave vectors of the Fermi surface
D(q,ivy), as shown in Fig. 2 is given by are fixed by the effective masseé andkg,. (known from the

2ma n‘ 2k,:T—q’ -
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FIG. 3. The first Brillouin zonda), electronic band structur), and phonon dispersioft) of graphene.

band structure and the computed EPC matrix elementsis thought to be a likely candidate structure for these
MZka. In all cases we found excellent agreement of theexperimentg!

calculated FPA frequencies with E(L6) in the vicinity of We first compute the band structure of this tube by using
the singular points, which provides a good self-consistencyhe zone-folding methotk To do this, we use the band struc-
check for our analysis. ture of graphene, which is shown in Fig. 3, computed by

using the NRL tight binding method. Shown in this figure are
four valence bands and four conduction bands, coming from
[ll. RESULTS FOR REPRESENTATIVE NANOTUBES the threesp, and onep, bonding and antibonding states,
respectively. There is a degeneracy betweenpthleondin
A- (5,0) nanotube andpantibo?]/ding states at tﬁe Ferm)i/ energy a%hmint ir?
The zig-zag(5,00 CNT has a diameter of around 3.9 A the first Brillouin zone which accounts for the semimetallic
making it close to the theoretical limit. Nanotubes of this behavior of graphene. The zone-folding band structure of the
size have been experimentally realized through growth in th€5,0) CNT is shown in the right of Fig. 4. Since 5/3 is not an
channels of a zeolite ho&fThrough the Raman measurementinteger, zone folding predicts this CNT to be semiconduct-
of the frequency of the radial breathing mode, ¢6®) CNT  ing.
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FIG. 4. The band structure of t1{8,0) CNT obtained through zone-foldir@) and calculated directlgh) with the atomic structuréc).

Figure 4b) shows the band structure of tt{,0) CNT To keep this paper concise, we cannot present all of the
calculated directly by using a unit cell of 20 atoms. One seegsoupling results for each scattering process. Instead, we
that there are significant qualitative differences between thehow the most dominant couplings. These dominant cou-
two band structures, one being that the directly computeglings were found to be from intrabandz2processes. The
band structure predicts metallic behavior. The inner bandargest couplings for thé5,00 CNT occur for phonons along
(with smaller Fermi poinké) is doubly degenerate while the theI'M line of graphene at the appropriate wave vector cor-
outer band(with larger Fermi pointk?) is nondegenerate. responding to the particulak For the inner band, the larg-
The strong curvature effects causes hybridization between est couplings, in descending order, occur for the out-of-plane
and 7 bands, pushing them through the Fermi energy andptical mode, the radial breathing mode, and the in-plane
therefore making the tube metallic. Furthermore, for(86) acoustic stretching mode. For the outeith largerkg) band,
CNT, we see that inner band is close to the Van Hove singuthe dominant couplings occur for the out-of-plane optical, an
larity at k=0, which produces a large density of states at the
Fermi energy. The calculated density of0)=0.16 states/
eV/C atom is around a factor of 5 larger than that of larger
radius metallic armchair CNTs. 8

After the band structure is calculated, we consider all pos-
sible scattering processes of electrons between Fermi points
-k2,-k2,k2, andkg due to phonons with wave vectogsthat
satisfy the momentum conservation condition. As a starting
point for the phonon spectrum, we use the dynamical matrix
of Jishiet al3® which uses a fourth nearest-neighbor model,
and we employ the zone-folding method. The reproduced
phonon dispersion of graphene is shown in Fig. 3. For a
given process, we calculate the coupling for all of the
3X N, distinct phonon modes wheM.=20 is the number of
atoms per unit cell. Shown in Fig. 5 is an example of the 0
outcome for one of these calculations. Shown is the coupling
for the outer band l@ processes vs graphene frequency. One
can immediately see that most couplings vanish which can FIG. 5. The couplingVly for the outer band i process for
be explained by symmetry of the electronic wave functionseach of the % 20=60 phonon modes, respectively, vs graphene
and the phonon modes. frequency.

10 T T T

coupling (eV/A)
®

— 00000 0O 0 00 0 e
0 500 1000 1500 2000
frequency (1/cm)
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frequencies are significantly lower than the corresponding
ones in graphene. This can be understood as follows. The

A strong curvature of the nanotube changes the C-C bonds so
that they are in an intermediate regime betweersthdond-
@ ing (found in grapheneandsp; bonding(found in diamongl

DROEO
- > ® ®
e o -— . The out-of-plane optical mode oscillates between these two
bonding configurations and is therefore significantly soft-
® ® ened. Next, we notice that there are divergenceqrcﬁké
® ® e i

andq=2k,‘§. This result is the giant Kohn anomaly.
To extract the bare phonon frequency of the Frohlich

FIG. 6. 1-6: The phonon modes at thegoint in the first Bril- ~ Hamiltonian(1) for the (5,00 CNT we follow the procedure

louin zone of graphene. 7: An in-plane optical phonon mode at theliscussed in Sec. Il D. The dressed phonon frequencies are
K point of the first Brillouin zone of graphene. The out-of-plane given by
optical mode 4 is the leading cause of the CDW instability in the

(5,0 and(6,0) CNTs. 2k2 - q 2kE-q
(QqM)ZZ(Qg’L)2+DA|n‘ 2kﬁ+q‘ *Daln 2k2+q ‘ ’
in-plane optical, the radial breathing, and in-plane stretching (17)
modes. These results are summarized in Fig. 6 and Table .
Although the magnitunde of the dominant coupling matrixwhere
element for the outer band is larger than that of the inner *
band, the inner band processes are significantly more impor- D= |M2kA|2ﬂ (18)
tant in the study of instabilities because their contribution to M ché
the total density of states at the Fermi energy is significantly. nd
larger than that of the outer band. This is due to the smal?
Fermi velocity of the inner band and its degeneracy. m’l;a
It is interesting to note that the phonons that have the Dg= |M2kE|2wMN & (19
CF

strongest coupling to electrons at the Fermi surface are out-
of-plane modes. This is different than intercalated graphengll of the quantities needed to calculate the coefficidbgs
where in-plane phonon modes are responsible foandDg have been obtained already. We assume that the bare
superconductivity® The fact that the out-of-plane modes are phonon frequencies are fit well by the for(ﬁ)gﬂ)zzao
the most important for this CNT are presumably due to the+a,q+a,q?. We then use,, a;, anda, as fitting parameters
large curvature effects. For instance, we find that the bongb fit our expression fof), to the calculated FPA frequen-
angles of the relaxeb,0) CNT structure(having values of  cies. Doing this thereby enables us to extract the important
119.4° and 111.9°are intermediate between tisg, bond  bare frequency dispersidd which is shown in Fig. 7. Ex-
angle(found in grapheneof 120° and thesp; bond angles tracting these bare frequenci®s allows us to calibrate the
(found in diamong of 109.4°. effective Frohlich Hamiltonian(1l) which will be used to
Now we calculate the CNT phonon frequencies by usingstudy instabilities of the electron-phonon system. With our
the frozen-phonon approximation with the eigenvectors fronpreviously calculated quantities, we obtdd=(219 cn?)?
graphene. The circles shown in Fig. 7 are the frequenciegndDg=(146 cnT!)2. Using these values we thereby extract
obtained for phonon modes along th&! line of graphene 0 A=433 el
for the out-of-plane optical mode which was found to be the %2

most important mode. First, we see that the calculated FPA
B. (6,0) nanotube

TABLE |. Calculated values for the dominant coupling pro-  The band structure of th@,00 CNT was considered ex-
cesses for thé5,00 CNT. The numbering scheme here correspondstensively by Blaseet al. in Ref. 17. This tube has a slightly
to that given in Fig. 6. B and % correspond to inner and outer larger diameter of 4.7 A. The zone-folding band structure of
band processes, respectively. Phonon frequencies are given ftiiis CNT is shown in the left of Fig. 8. As is typical of

graphene. metallic zig-zag tubes, there are two bands crossitkg-8tat
the Fermi energy. The band structure directly computed with
(5,0 mode wd®em) My (eV/A) 24 atoms in the unit cell is shown in the right of Fig. 8. As
24 4 853 555 discussed befor¥,these band structures differ qualitatively

which is a result of the hybridization of theg, andp, bands.

3 39 4.46 Here the inner bandwith smallerkE) is nondegenerate and

5 1588 4.24 originates from thep, bonds in graphene while the outer
2k2 4 829 8.56 band (with largerk) is degenerate and originates from the

5 1593 5.23 sp, bonds in graphene.

3 133 4.97 The coupling matrix elements for th@,0) CNT were

2 684 4.10 computed and the coupling for the most dominant modes are

shown in Fig. 6 and Table licf. also Fig. 9. The dominant

035429-7



BARNETT, DEMLER, AND KAXIRAS

1600 - @000 0 0 _
eooooooggggggggg Zzz z zz:zooooo ¢ 600
o L
1400 eoo
E 1200 | 1€
Q 19
‘:; 1000 T 1‘; 400 |
o o
c 800 | w 1€
) 000 ° )
»°° 8-
g 600 % C o 3O
— ° 0 W00 0 0g 0 b
00000 0 60 o 8 200 @.”
L a0l DE o.su”°‘°o¢° % -
0® 000 o #®
200 ¢ -;)goe:'gsog e e .
°°
0 L HI0O¢ L L 0
0 0.1 0.2 0.3 04 05 0

PHYSICAL REVIEW B 71, 035429(2005

— fit dressed
—--=-- extracted bare

FIG. 7. (a) Phonon dispersion for thg,0) CNT along thel'M line of graphene. The X’s denote values for which the frozen-phonon
approximation gave imaginary frequencies for the out-of-plane optical mode in the vicinit@.(ifoZThe mode showing the most softening

fit to the RPA expression.

inner band couplings were for intraband processes and are, in Using the same procedure as was used for(5h@& CNT
descending order, to the out-of-plane optical and an in-plan& the previous section for extracting the bare phonon fre-
optical. The dominant outer band couplings processes werguency at Rﬁ. From the previously computed values for the
found to be the out-of-plane optical mode, an in-plane opti-€lectron-phonon coupling matrix elements and the band
cal mode, the radial breathing mode, and the in-plane acoustructure, we findD,=(166 cm?)? and Dg=(107 cm?)2.
After fitting, we extract the vaIuélZszé:480 cmt,

tic stretching mode.

Energy (eV)

Energy (eV)

35

FIG. 8. The band structure of tt{6,00 CNT obtained through zone folding@) and calculated directlgh) along with the atomic structure

(©).
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FIG. 9. (a) Phonon dispersion for th@®,0)0 CNT along thel'M line of graphene(b) The mode showing the most softening fit to the RPA
expression.

C. (5,5) nanotube electrons at the Fermi surface for tt5) CNT.537 Our re-

Finally, we study the more conventional armchét5) sults confirm the study of Ref. 37. Thé&2processes couple
CNT which has a diameter of around 6.8 A. As shown in Fig.to the phonons at theK point of graphene and the
10, the zone-folding and directly computed band structurdelevant graphene mode has polarization vecteytl)
for this larger diameter tube agree quite will. Both of these=(1/v2)(i,1,0 ande,(2)=(1/v2)(1,i,0). This out-of-phase
band structures show two bands which originate fignor-  circular motion is qualitatively different from the linear os-
bitals which cross at the Fermi energy at arokwda/ . cillations thought to couple previously.

The largest couplings for the CNT were found to again be
from the intraband processes and are shown in Fig. 6 and
Table lIl. The only significant intraband coupling is for an V. INSTABILITIES OF THE ELECTRON-PHONON
in-plane mode shown denoted by 7 in Fig. 6. The wave vec- SYSTEM
tor for this mode is at th& point in the first Brillouin zone
of graphene. For the interband processes, there is coupling to i )
the the radial breathing mode, but this is significantly —1he RPA analysis presented in Sec. I D can be used to
smaller. investigate the CDWPeierlg transition temperature. This

For the(5,5 CNT, applying our method of extracting the instability corresponds t_o _softening of the_phonon _frequency
bare phonon frequencies, we obtddy=(228 cn})? (see to zero, so we can obtain it from the Condltlﬂ@g7=0 in Eq.

Fig. 11). Note that for this system, only bands are relevant (14) whereQ,=2kz. is one of the nesting wave vectors of the
at the Fermi surface. We extraﬁtg_ &=1469 cml Fermi surface. The electron polarlzatloln evaluated at tem-
It is worth pointing out that the_rzthas been some controPSrAUTET IS gVen by xo(2ke, ©=0,1)=5v-(0)In(T/dee..),

P 9 where v (0)=2m_/Lkg is the contribution to the total den-

versy about the relevant phonon mode which couples thtgity of states from band. We introduce the CDW coupling

TABLE 1. Calculated values for the dominant coupling pro- constant

A. Charge-density wave order

cesses for th€6,0) CNT. The numbering scheme here corresponds \g |2v (0)
to that given in Fig. 9. I?é and EKE correspond to inner and outer COWor = =l T (20)
band processes, respectively. Phonon frequencies are given for e Q% ’
graphene. s
where 7 specifies which of the & nesting wave vectors we
(6,0 mode wgrapftcm—l) My (eV/A) are considering ang. labels the phonon mode. Note, that
distinguishing between various phonon modes is important,
2k 4 857 7.27 since it tells us about the nature of the distortion of atoms
5 1585 6.80 below the Peierls transitiof.e., the in the plane vs out of the
2kB 4 847 6.84 plane. One finds for the CDW transition temperature
2 1::1 271 ; Teow,m = 4o, eow, (21)
2 493 231 Corrections to this equation due to an additional band with

different Fermi wave vectdre.g., the term with the logarith-
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FIG. 10. The band structure of tli&,5 CNT obtained through zone folding and calculated directly are shown in the upper right and left.
Bottom: the structure of thé,5 CNT.

mic divergence at i in Eq. (17)] is small and will be ne-

glected. Degenerate banfe.g., theA band for the(5,0) An-n")= (0) ) Sexr )| G ol
CNT], are accounted for by an additional factor of 2 in the kak' ' 10
density of states is Eq20). In Table IV we summarize our XD, (k-k,n-n’), (24)

results for the CDW instability for the CNTs studied.
where v,(0) is the density of states per spin at the Fermi
energy. When analyzing superconductivity in two- and three-
To analyze the superconducting instability of the CNTSgimensjonal systems using the Eliashberg equations it is suf-
we use the Migdal-Eliashberg theory. The isotropic Eliash+icient to take the bare phonon propagatbrgk—k’ ,n—n’)
berg equations for the one-dimensional case, neglecting thg Eq. (24). This is justified since in the absence of Fermi
Coulomb interaction, can be written &see Appendix B for gy face nesting there is typically little difference between the
details bare and dressed phonon frequencies and propagators. In
— _ one-dimensional systems, however, there is a strong
=L+ A=)y, 22 temperature-dependent renormalization of the phonon spec-
trum which needs to be taken into account. The simplest way
to do so is to use the FPA form of the phonon propagaee

B. Superconductivity

n'

ZA, = nE An-n)f A, (23) Eqs. (9-(15)]
where f,= , Sp=sgr2n+1), A=¢,/Z,, and the FPA 20q,
frequency-dependent coupling constaf) is given by DL Aquivm) = (ivy)?- (Qq )2 (29
L

TABLE llI. Calculated values for the dominant coupling pro- fare ) is the dressed phonon frequency in the FPA given
qu
cesses for thé€5,5 CNT. The numbering scheme here correspondsn Eq. (15). Taking a soft dressed phonon propagator imme-
to that given in Fig. 6. Phonon frequencies are given for graphened|ately leads to the enhancement of the electron pairing via
the increase ol (n). Enhancement of superconductivity by

grap —1
) mode wg *Plem™) Muc (eV/A) the giant Kohn anomaly in one-dimensional systems has
7 1479 11.60 been discussed previously by Heeger in Ref. 38. The main
3 542 4.64 subtlety of the Eliashberg equations in this case is that the

phonon frequency(),, now has temperature dependence

035429-10



ELECTRON-PHOTON INTERACTION IN ULTRASMALL-.. PHYSICAL REVIEW B 71, 035429(2005

' j ' ' 1600 T T T T
1600 E
1400® o 0800 oo wmo o®°® © ®
®
— 0 o es o ©
£ 1200 | 88 88@@820 _€14oo .
k3] S o 16 — fit dressed
-— -~ ---- extracted bare
T 1000 f 6 ® O 0og, 1=
(o]

& o° ® 5 1200 | 1
C 800 e 12
@ (7]
3
O 600¢ % 0000 o 1
o °®o ggee % o
T 400 & Qoo 000 0 oo ®° JTW 4000 | 1

200 | E

0 L L L L 800 ! \ L L
0 0.1 0.2 03 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
q q

(a) (b)

FIG. 11. (a) Phonon dispersion for th®,5 CNT along theMK line of graphene(b) The mode showing the most softening fit to the RPA
expression.

which needs to be found using the finite temperature form of 1 5 )
the polarization operatdi(q,0) in Eq. (15). Nsc=- mz 8ei) Ae)|Gue["Do(k—k',0).  (27)

When we analyze thé,0) nanotube following this strat- L
egy, we find, however, that the CDW instability always ap-|n accordance with Ref. 9, we tak&)=1400 K. The super-

pears before the superconducting one. This is in agreemegbngucting coupling constants and transition temperatures
with the general argument proposed in Ref. 39 that in strictly,5iculated in this manner are summarized in Table V. We
one-dimensional electron-phonon systems Peierls instabilitgmphasize, however, that these numbers should be taken
alway dominates, since it involves all electrons in the bandyith some scepticism, since within the same approximation
compared to the superconducting instability, which involvese cpw instability is usually the dominant one and appears
only electrons in the vicinity of the Fermi surface. at much higher temperaturésompare to Table 1y/

To introduc_;e a qqantitative measure of the strength of Finally, it is known thatq=~0 scattering processes due to
superconducting pairing we use thare phonon propagator acoustic phonons can be important in one-dimensional

in Eq. (2_4). This approximatior) Wi_II be more carefully con- electron-phonon systerfi&:#4 However, in the approxima-
sidered in Sec. VD, along with inclusion of the Coulomb (ions |eading to Eq(27) these contributions were neglected.
|nterapt|on. A usefgl apprommate soluqon of the EI|ashberg|n Appendix C we show that while these processes can be
equationg22)~(24) is given by the MCM"{""” formuldagain  important for some systems, their inclusion leads to only a
in the absence of Coulomb interactjtr' small correction tovg for the CNTs we study. This is due to
the fact that the dominant contributions to the superconduct-
ing coupling constant are from optical phonons.

TSC = ex

Q) p{_ 1.041 +>\SC)} 28

Asc V. ROLE OF THE COULOMB INTERACTION

In the discussion above we concentrated on the electron-
phonon interaction with electron-electron Coulomb interac-
tion included only at the mean-field level via the band struc-
ture. It is useful to consider how the residual Coulomb

Here\gcis the zero frequency component of E84) where,
again, the bare phonon frequencies are used

TABLE IV. The dominant mode for the CDW instability, the
extracted bare phonon frequency, the CDW coupling parameter, and TABLE V. The SC coupling parameter, and the SC transition

the CDW transition temperature for the various CNTs studied. o perature for the various CNTs studied. The CDW instability and
the residual Coulomb interaction between electrons are neglected in

(5.0 (6,0 (5.9 the calculation of these quantities.
mode 4 4 7
ngF(cm-l) 433 480 1469 5.0 ©0 &5
Neow 0.26 0.12 0.024 \sc 0.57 0.12 0.031
Teow (K) 160 5 7><1014 TsdK) 64 0.071 1.1K 10712
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interaction can modify the analysis of the Peierls and super- _ + %
conducting instabilities discussed above. We take @) -
H= Heph + Heev
(b) = + ---
_1 t T
Hee=73 , E/ /VqTT'CkathTCk/—qr’a'Ck’T’U’CthT' (28) FIG. 12. Dyson's equation for the phonon propag#&prwhere
kk'qrr’ oo the Coulomb interactions are taken into acount within the RPA

where Hepp is still given by Eq.(1) and we will always

assumek andk’ around the Fermi surface. Note that we haveis due to the fact that wave functions at the Fermi points
neglected interband scattering which is typically small due tchave different symmetries for th6,00 CNT and(6,0) CNTSs.

the orthogonality of the wave functions from different bands.More specifically, it can be found that-py is very small for

In the following, we will consider how introducing this Cou- the (6,0) CNT due to the fact that for metallic zig-zag nano-

lomb interaction modifies the results. tubes, the wave functions atk-and k close to the Fermi
energy are nearly orthogonal within the unit cell of the CNT
A. Coulomb interaction potential since they correspond to symmetric and antisymmetric com-

For the Coulomb interaction between conduction elec-bm"’lt'onS of atomic orbitals in the graphene sheet.

trons, we take the form used by Eggsral. in Ref. 28

il ~T . The simplest approximatiofbeyond mean fieldwhich
\/(X_X/)ZJ, {ZR sin(y_y )J +al includes the Coulomb repulsion is the RPA shown in Fig. 12
R (see, e.g., Refs. 14 and)2'Equation(14) now becomes for
(29) a one-band system

B. Modification of CDW instability due to Coulomb interaction

V(r-r")=

Here, they direction is chosen to be along the perimeter of 2 /0 \2 0 I1,(9,Q4,)

the CNT andx measures the distance along the CNT axis. A (Qq)* = (Qg,)" + ZQqul ~ V(@) x0(0 Q)
measure of the spatial extent of thgelectrons perpendicu- oA
lar to the CNT is given bya,~1.6 A andR is the CNT where H,u(qaQqM):|gq,u|2X0(quq,u)- We immediately see
radius. We note that the spatial extent of these electrons withat including the Coulomb interaction can suppress the
differ inside and outside of the CNT, but the error from this cDw instability. The second term in E€32) no longer di-
approximation does not affect the magnitudes of the Couyerges whem=2k- and the softening of thek2 phonons
lomb matrix elementgwhich we evaluate belowsignifi-  occurs only forucpw< Ncow,., Where

cantly. Note that this interaction potential is periodic in the '

(32

direction. For the dielectric constant due to the bound elec- 1
trons, we will take the valug= 2 predicted by the model of Mcow = EV(O)V =2k (33
Ref. 45.
~ We can now use Eq29) to obtain the Coulomb interac- From Eq.(32) we also find how the Coulomb interaction
tion entering Eq(28) modifies the Peierls transition temperature
— 22! ! 1
Ve = f dordar'V(r -r’) Teow,, = 4er exp(— —) (34
. [Acow,. ~ tcowl
X iceqr(D e V) g (F ) e (7). (30) We will now estimate the magnitude @iy from this

residual Coulomb interaction for th,0) which was seen
above to be the most unstable toward the formation of a
CDW from distortion of the out-of-plane optical mode
shown in Fig. 6. Carrying through the straightforward gen-
eralization of the RPA analysis for the multiple-band system,
and carrying out the integrals in E¢B1) for the Coulomb
backward scattering interaction, we obtainpy=0.24. Note

The region of integration above is over areas of lenigth
along thex direction wherel is the length of the system and
of width 277R along they direction. For backward scattering
processes$q=~ 2kg) between the inner bands of tk&0) and
(6,0 CNTs we find thaw/,, is independent of and7’, and
(see Appendix E for derivatign

1 o that this is quite close tacpw=0.26 for this particular in-
Vg = YFf dxdx e stability. This indicates that it is possible that the Coulomb
interaction can significantly suppress the CDW transition
2R dy (2™ dy’ , temperature or even remove the CDW instability altogether.
xf ﬁf ﬁV(r -, (3D Indeed, taking these values we find tiag,y is suppressed
0 0 to less than 108 K.
where y=0.59 and 0.0016 for thé,0) and (6,00 CNTSs, re- For the (6,00 CNT, we calculate the smaller valye-py

spectively. This is significantly reduced from the value of=0.0019. This will not change the value B¢py=5.0 K that
vy=1 that one obtains for larger radius CNTs Ref. 28 whichwe calculated previously for th@,0 CNT.
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C. Phonon vertex renormalization through screening ( 1 ) 1
au =

N
[1 _VqXO(Q)]Z + 2|gq,u|2 Xo(Q) e
00, 1-Voxola)

It can be seen that the Coulomb interaction further can
screen the electron-phonon vertex. By including screening
through the RPA, we find that the screened vertex is given

1

by (37)
where)? is the unrenormalized contribution. All such con-
tributions must be summed over to determine the thtgal

— Yqu ! i
Yau=7 ~Vgxo(@) (39 The first and second factors tend to decrease and increase the

electron-phonon coupling, respectively. Physically, the first
factor is due the screening of the electron-ion interaction due
fo conduction electrons. The second factor is due to the soft-
]ening of particular modes due to the Kohn Anomaly which

the CDW instability it would be inappropriate to use the \év.'” in tt#rn enhance 'T_het_overfalltelecgon-pr&onont couplmtg.
screened vertices since this would lead to double counting. Ince theése renormalization factors depend on temperature

Full charge self-consistent calculations will determine thelhrough the susceptibilityo, Tsc must be determined self-

dressed electron-phonon vertésee Appendixes A and)D ~ consistently.

This is desirable in 3D, where the renormalization is presum- n "’.‘dd't'on to th_e renormalization of Fhe Coulomb vertex,
there is also the direct Coulomb repulsion between electrons

ably small. However in 1D, one would calculate greatly sup- : .
pressed values for the couplings, dominated by the screenifgat 'S taken into account through the Coulomb pseudopoten-

due to the logarithmic divergence of the susceptibility lgt. 2 tal usc which is included in McMillan's expressidh™

Because of the subtle interplay between these divergences, it (Q) 1.041 +\gQ

is desirable to calculate the bare vertex and then manually Tsc= Bex - Dhec— *c(l +0.6250]

put in the Coulomb interaction as we do. ' sc™ s TS
Since with the method we use, the charge distribution isvhere

not calculated self-consistently, we calculate the bare

for a one-band system whexg(q) = xo(d,{2q,=0). Thus we
see that the inclusion of screening reduces the electro
phonon vertex. We note that in the treatment in Sec. VB o

) . (39

electron-phonon vertexy,,. We point out, however, that M*SC:L (39)
there is an approximation here. The true bare electron- 1+ inl =
phonon vertex should be calculated in the absence of the Hsc wp

conduction electron entirely which is separately accounted ) . .
for in the residual Coulomb term. In our method, however,2"d #sc is the screened Coulomb interaction averaged over

the conduction electron is taken to adiabatically follow thetn® Fermi surface. . o _
ion through the distortion. Because of this, we expect our W& Will now estimateus. Taking into account screening

results to slightly underestimate the bare electron-phonotyithin the RPA one finds

coupling vertices. V.
Va =—4d (40)
1- VqXO(q)

D. Modification of superconducting instability due

10 Coulomb interactions for the screened Coulomb interaction. In 1D for= 2k,

ng 0. This is due to the divergence gf(q) atq=2kg. Also,

To include the Coulomb interaction in the Eliashbergone finds that forq=0, V(q)=1/v(0). Using this RPA
equations, it is necessary to dress both electron-phonon vesereened Coulomb interaction we find for our three band
tices shown in Fig. 14 according to Sec. V C as well as thesystem of thg5,0) CNT
phonon propagator according to Sec. V B. This leads to the

modified phonon-mediated interaction between electrons of = 1 S Se) dlew )V (K- K') = 0.25.
v6(0), "
5 12 _ |gq,u|2 (41)
R N e |
~ Then, using Eq(39), we obtainugc=0.19 for the Coulomb
X 298# pseudopotential with the calculated values of the Fermi en-
Xo@ ergy and Debye frequency.

0%-(Qg,)* - 298M|ng|2T() We now see how taking into account the Coulomb inter-
Xold action in this manner modifies the superconducting transition
(36)  temperature for thé¢5,0)0 CNT. The most significant renor-
malization of the total superconductiig given by Eq.(37)
Using this leads to a modified result for the superconductingvill be for the Zg process that couples to the out-of-plane
coupling constanksc. For a specific process of wave vector optical mode which was previously seen to have the overall
g, coupling points on the Fermi surface, we find that thestrongest coupling. That is, at temperatures where the renor-
renormalized contribution to the superconducting couplingmalized\ g will start to differ from the bare\go all of the

constant is given by renormalization will come from this mode. Using E@7)
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TABLE VI. Density of states at the Fermi energy, the superconducting coupling strength, and the attrac-
tive potential strength for various carbon materials. Superscéffitsand ¢ denote Refs. 46, 47, and 9,

respectively.
KCg K3Ceo (5,0 CNT (6,0 CNT (5,5 CNT
»(0) (eV) 0.24 0.29 0.16 0.068 0.034
\sc 0.21 0.7 0.57 0.12 0.031
V(eV) 0.875 24 3.6 1.8 0.92

and (38), we find that a self-consistent solution for the su-established results for other carbon based solids, namely, the
perconducting transition temperature occursTgt~=1.1 K intercalated graphene KkGnd the carbon fullerene Jq.
which is larger than the previously calculated CDW transi-Calculations of the density of states at the Fermi energy yield
tion temperature. This therefore shows that the Coulomb in#(0)=0.24 (Ref. 46 and 0.29(Ref. 47 states/ eV / C atom
teractions can favor superconductivity over the CDW instafor KCg and KsCg, respectively. Estimates ofsc for these
bility. are 0.21(Ref. 49 and 0.7(Ref. 9. In the BCS theory)gcis

For the (6,00 CNT, we see that the value ke without  expressed in terms of the product of the electronic density of
the inclusion Coulomb interaction is smaller thdizgpy  states at the Fermi level and the attractive pairing potential
=5 K that we computed in the previous section with thestrength\s-=1(0)V.1* Now that we have the magnitude
inclusion of the Coulomb interaction. We therefore concludeand »(0), we can extract the magnitude of the pairing poten-
that the CDW will be dominant for thé5,0) CNT. tial for the intercalated graphene, the fullerene, and the CNTs
we study. The results are summarized in Table VI.

The following analysis will be very similar to that of
Benedictet al. in Ref. 9 The central idea in their analysis is

In the above, we have shown that the introduction of thegs follows. Since curvature increases the amount of hybrid-
residual Coulomb interaction will lower both the SC and ization betweery and 7+ states at the Fermi energy, the strict
CDW transition temperatures. We also illustrated the pOSSise|ection rules for phonon Scattering between pﬂmtes in
bility that the CDW instability can be suppressed so much byyraphene will be lifted. The amount of 7 hybridization has
Coulomb interactions that SC will be dominant at low tem- rough|y alR dependence on the radius of curvature, so the

peratures. However, we stress the difficulty of obtaining suchnatrix elements and therefore the attractive potential due to
quantitative results. In principle, to obtain an accurate Cougyrvature will go as 1R2°

lomb interaction in our basis of Bloch states, one needs to Neg|ecting presence of pentagons in fu”ereneS, we write

E. Summary of Coulomb effects

use the interaction the attractive potential for the fullerend,,, as the sum of
1 2 contributions from that of the graphene sh&gt, and that
Vi = — f drd " g(r) g (r ’)m¢k,,(r ") (1) from curvature effect¥ ;e
P _
(42) Vball = Vﬂat + chrve- (43)

where theyy's are Bloch state wave functions of the CNT Ih|s relation enables us to obtain the vaIue. M‘E.“”’e
A . . . =1.5 eV. Now we can write the expected attractive interac-
which is difficult to obtain. The Coulomb interaction, we .
tion for the CNT

used is only a rough approximation to this more realistic

interaction. On the other hand, the SC and CDW transition Ry/2\?

temperatures have exponential dependence on the Coulomb ViundR) :Vflat+vcurve<?> , (44)
interaction parameters. One also has to be very careful not to

double count the electron-electron interaction terms takemhereR,~5 A is the radius of a fullerene and the factor of
into account in the single-particle energigsthrough the 2 comes in because there is twice as muefr hybridization
Hartree term. As shown in Appendix D, using a method inin a fullerene as there is in a CNT of radiRg.° In Fig. 13,
which the charge density is calculated self-consistently willwe show that Eq(44), which was calibrated by using only
give more accurate values for the phonon frequencies calcuytuantities from intercalated graphene and fullerenes, is con-
lated through the FPA. However, there are serious difficultiesistent with the attractive potentials we obtain for t6¢0),
with calculating the bare electron-phonon vertex with such d6,0), and (5,5 CNTSs.

method as discussed in Sec. V C.

B. Beyond mean field theory

VI. DISCUSSION One-dimensional electron-phonon systems have several
competing instabilities and the true ground state may be
found only by analyzing their interpldy:** Hence, one may

As a consistency check, we now compare our results fobe concerned that we use a mean-field approach to analyze a
the attractive potential due to electron-phonon coupling talD CNT. We point out that when we calculate the supercon-

A. Comparison to other carbon based materials
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(although none of the fields have a long-range ordép-
pearance of such amplitudes should lead to a pseudogap state
of the system belovlcpw.>® The dominant contribution to
electrical conductivity in a clean system would then come
from the Goldstone mode of the phase of #s, i.e., sliding

of CDWs (Frohlich mode. Any kind of disorder(e.g., impu-
rities or crystal defecishowever, gives strong pinning of the
CDW phase and suppresses collective mode contributions to
transport. Therefore, we expect insulating behavior of the
low temperature resistivity in most experimentally relevant
circumstances if CDW is the dominant low-temperature
phase.

(5.5)

0 , , s , , s C. Experimental implications

3 4 5 6 7
R (Angstroms) Proximity induced**>as well as intrinsi¢* superconduc-
tivity has been experimentally observed in carbon nanotubes.
FIG. 13. VypdR) from Eq. (44) calibrated with parameters from  On the other hand, the CDW state, despite being endemic to
intercalated graphene and fuIIerer(Iid Iine) Compared to the quasi-]_D Systems has never been reported for carbon nano-
attractive potentials calculated for the representative C(filled tubes. As we discuss above, one needs to have very small
circles). carbon nanotubes to have electron-phonon interaction strong
enough to make either the CDW or the SC instabilities ap-
ducting Tsc we include the interplay of the CDW and SC pear at experimentally relevant temperatures. In this work we
orders. That is, the effective superconducting couphrg  address quantitatively both of these instabilities. Our main
that we obtain in Eq(37) includes softening of thek pho-  conclusion is that when we include Coulomb interaction be-
non mode. Such an approach is equivalent to the two parantween electrons, the CDW instability does no appear even for
eter RG analysis used in Ref. 50. The mean-field transitiothe ultrasmall nanotubes, whereas the supercondudigg
temperature obtained by our method is equivalent to the counay be in the few Kelvin range.
pling constants becoming of the order of unity in the RG In the work by Kociaket al.in Ref. 3, electronic transport
analysis. AtTgc electrons start to pair, but the system hasthrough ropes of single-walled CNTs suspended between
strong fluctuations in the phase of the SC order parametenormal metal contacts was measured. The ropes are com-
The most important kind of fluctuations are thermally acti-posed of several hundred CNTs in parallel with diameters of
vated phase slips, discussed originally for superconductinthe order 1.4 nm. It was found that below 0.5 K, the resis-
wires in Refs. 51 and 52. Phase slips lead to only a graduahnce abruptly drops, an effect which is destroyed by the
decrease of resistivity with temperatures beldy. application of an external magnetic field of order 1 T. The
For an incommensurate CDW, long-range order may notargest radius CNT we study is tH&,5 CNT, which was
appear at finite temperature either. To understand the physseen to be in the regime where zone folding is applicable.
cal meaning of the mean-field transition, we can introduce d@or this CNT, we calculatelsc=0.031, a value far too small
Landau-Ginzburg formalis®® Here we concentrate on to support superconductivity at this temperature even without
the (5,00 and (6,00 CNTs which have three partially filled the inclusion of the Coulomb interaction. This small value of
bands with Fermi pointk? andkZ, where the exact relation \gcis consistent with the experimental measurements of the
2ké=kE is satisfied. We introduce a complex order parameteelectron-phonon coupling in CNTs of similar diameter by
¥,(x) related to the amplitude of the lattice distortion Hertel et al. in Ref. 56. It is possible that the interactions
as q(X)=ezikéx\l,l(x)+e—2ikéx\1,’i(x)_ At low temperature the between _CN'_I'S in the rope play a tantamount role for super-
free energy is given byF [V, ]=/dx@W¥,2+bW,[* conductm?y in the experiment of_R_gf. _3 as suggested by
+¢|d¥,/dx?). Below the mean-field transition temperature S0NZaléz in Ref. 12. Another possibility is that a small num-
Tepw We havea<0 and the system develops an amplitudeber of ngnotub_es in the r?&pe haye a small dlameFer. qu nano-
for the order paramete¥;. The phase of¥;, however, is tbes with a d|am§aterfm we find sqperconductmgscln .
still fluctuating, leading to short range correlations for thethe 1 K range which would be consistent with these experi-

CDW order (W,(x)W(0)) 64D, Even atT=0 we can ments. A small number of superconducting nanotubes could
! ! ' provide a short circuiting in transport measurements or even

have at best a quasi-long-range order oy due to the in- induce superconductivity in other CNTs via the proximity

commensurate value ok?2. Lattice distortions at & can be effect
included by introducing another complex fiel,(x) that In the experimental work of Tanet al. in Ref. 4, electri-

contributese? P W () +e2kPp(x) to the distortion ampli- ¢l transport was measured through a zeolite matrix contain-
tude. The relation 2=kg implies that the free energy allows ing single-walled CNTs. In the zeolite matrix, the CNTs are
coupling between¥; and W, of the form F_[¥,,¥,]  well separated from each other creating an idealized one-
=y [dx(¥TW,+ W ?¥,), so when the amplitude oF, is es-  dimensional system. The diameters of the CNTs were deter-
tablished, it will immediately induce the amplitude fd#, mined to be approximatgl4 A by measuring the radial
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breathing phonon mode frequency by Raman spectroscopgonventional larger-radiug,5 CNT was seen to be stable
The superconducting transition temperature for this systeragainst the CDW and SC transitions down to very low tem-
was found to be 15 K from transport measurements. In adperatureg <1 K) if we only include electron-phonon inter-
dition, the Meissner effect was observed through the temactions. For the ultrasmall radi¢s,0) and(6,0) CNTs, how-
perature dependence of the magnetic susceptibility suggestver, the CDW was found to be the dominant phase, with
ing that the large currents observed in transportransition temperatures of 160 and 6 K, respectively. For
measurements are not from the sliding charge-density wavieoth of these CNTs, K is incommensurate with the under-
collective mode, but are indeed from superconducting correlying lattice. Furthermore, in contrast to larger radius CNTs
lations. which have dominant electron-phonon coupling to the in-
The ultrasmal(5,0) CNT we study is the likely candidate plane phonon modes, the ultrasmésl,0) and (6,00 CNTs
structure for the CNTs confined in the zeolite matrix in thesewere found to have dominant coupling to the out-of-plane
experiments. We find for this system that the electronphonon modegsee Fig. 6, as seen from the direct compu-
phonon coupling is very strong. We find in the mean-fieldtation of the electron-phonon matrix elemeMg,: . This
theory, neglecting Coulomb interactions, tHaipy=160 K is further supported by the frozen-phonon computation of
and Tgc=64 K, indicating that the charge-density wave in- frequencies which show the most robust Kohn anomalies for
stability is stronger in this approximation. However, putting these modessee Fig. 6.
in the Coulomb interaction as in E28), the charge-density When we include the Coulomb interaction, for tt&g0)
wave transition was suppressed to very low temperaturefoNT we find that the CDW order is suppressed much more
making super-conductivity dominant witlisc=1 K. Dis-  strongly than superconductivity. More specifically, our analy-
crepancy between our calculatége and the experimentally sis presented in Sec. V shows that the CDW transition is
observed 15 K should not be a reason for concern. The sypushed down to unobservably low temperatures, whereas the
perconducting transition temperature in E8@) is exponen-  superconductind’sc is reduced to 1 K. Hence our calcula-
tially sensitive to the strength of the Coulomb interaction,tion supports the possibility of observing superconductivity
and our estimates of the latter are not very accurate. in ultrasmall CNTSs. It is quite foreseeable that a more de-
tailed model for the Coulomb interaction could raikg- to
the value seen experimentally, especially considering the ex-
ponential dependence of the superconducting transition tem-
In this work, we have used the Fréhlich Hamiltonian writ- perature on the Coulomb interaction strength. For (66)
ten in Eq.(1) to study three types of small-radius CNTs. For CNT, we found that the CDW remains dominant when the
this Hamiltonian, the band structure energies were computegoulomb interactions are included due to the weak Coulomb
by using an empirical tight-binding methtfdto first relax  interaction between electrons at the Fermi points, and occurs
the structure, and then to compute the eigenvalues of that aroundTcpy=5 K.
secular tight-binding equation. The electron-phonon interac-

VIl. SUMMARY AND CONCLUSIONS

tion gy, is evaluated for scattering between all Fermi ACKNOWLEDGMENTS
points. The dressed phonon frequendigg, are computed _ _ .
by using the frozen-phonon approximation given in ER). We thank S. Kivelson, I. Mazin, M. Mehl, M. Tinkham,
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extracted by using the previously computed quantities of thé&’HY-0117795 and by the NSF.

band structure and the electron-phonon coupling, and the

RPA analysis of the Peierls instability. This method is elabo- APPENDIX A: THE ELECTRON-PHONON COUPLING

rated in Sec. Il D. After the calculation of these quantities, VERTICES

the effective Frohlich Hamiltonian has been fully con-

structed. The remarkable agreement of the coefficients of the The electron-phonon coupling matrix is given by
logarithmic divergences computed by using quantities from oV
the band structure and the el_ectron-ph_onon coupling with the My 77 = N<l//k7|2 — . %q#(i)\l//kw')- (A1)
frozen-phonon frequencies is a consistency check for this i IRy

method.

With the Frohlich Hamiltonian, we then used the RPA
analysis of the Peierls instabilityn Sec. IV A) and the Mc-
Millan equation(in Sec. IV B and Appendix Bto obtain the 1
charge-density wave and superconducting transition tem- Mkfk'm:G<l//kr|(Vq"—Vo)|¢k'Tf>- (A2)
peratures, the result with the higher transition temperature
being the dominant phase at low temperatures. For instancé, method for calculating this expression with a plane-wave
when the CDW is dominant, the Fermi surface will be de-basis set was previously develop&dThis section will be
stroyed aroundTcpyy eliminating super-conductivity alto- devoted to describing how to calcula¥ ., with a tight-
gether. By this method, we provided an exhaustive analysibinding method. We introduce the standard tight-binding no-
of three types of CNTs(5,0), (6,0, and (5,5. The more tation

One can see that the above expression can be evaluated by
using the finite difference formula
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ey = D Al X (A3) this method becomes exact. When we apply this mgthod, we
i checked for convergence of the coupling as a function of the
unit cell size.
1 :
i) = —= 2 € Rl oy (Ad)
VN n APPENDIX B: ISOTROPIC ELIASHBERG EQUATIONS

Heren runs over unit cells and runs over basis vectors in IN 1D

the unit cell and over orbital type. Because the kinetic en-  Optaining quantitative parameters of superconductors de-
ergy operator will be the same in the perturbed and unperscribed by the BCS theory such as the transition temperature

turbed Hamiltonians, we can write and the wave-vector-dependent superconducting gap from
1 microscopic models has developed into a powerful tool for
Mk,k,m:a(z//kf|(qu‘—sF)|¢pk,T,>. (A5) understanding experimentally realized systems as well as

even predicting new superconductéf§.hough excellent re-

The reason why we keep thg term which clearly is zero view articles exist!->8we will establish the key results of the
through orthogonality will become clear below. Expandingtheory below in attempt to be as self-contained as possible.
the wave functions in the tight-binding basis set, we obtainWe will also show how to incorporate the electron-phonon
1 coupling into the phonon parameters which become impor-

p == e O [(HO% = R tant in 1d due to the CDW instability.

Mick7 El A Xl (R = 2 icin A i In the following, to simplify notation, we will consider a
single band system only. The central ingredient which, in
(AB) principle, allows one to calculate the superconducting transi-

Now, we write |x%)=|x.)+|ox) where the orbitals of tior_l temperature to high accuracy is Migdal's theo?%m
|2y are centered on the perturbed lattice. Inserting this intavhich allows one to evaluate the electron self-energy with

the above equation, we obtain small error as
1 . . 1 L
Mka’T’”: G 2 Akﬁ|[<XEi’f|(Hq”_8F)|Xﬂﬁr|r>] S(kiwp) =-— 2 3G (K 1|wn’)73|gkk’;4|2
il K
— [(OxXRIT(H¥ = &p) | Xirin) + H.CIA minys - XDgu(k=K',n=n"). (B1)

(A7) This expression for the self-energy is shown in Fig. 14. In
this equation is inverse temperature; are Pauli matrices
(i=0 gives the identity matrix whilé=1, 2, 3 give thex, v,
SZtPauIi matrices, respectivelyD, is the noninteracting pho-
non Green’s function, and,=m(2n+1)/ B are the fermionic
Matsubara frequencies. The electronic Nambu-Green func-

In the second term we can do the substitutidft — H, be-
cause the effect of doing this will be second ordeuiand
we are interested in an expression that is accurate to fir
order. Then, this term will be

> A*kﬁ|(<5inl|(H_SF)|Xk’i’I’>+H-C-)Ak’r’i’l’ tion, la 2X 2 matrix, is given byG(k,iw,) =(iw, 79— &3

ili’n -3

. Now, we can expan& in terms of Pauli matrices
=2 Ai(Oxial(H = ep)|ho +Hc.=0.  (A8) _
il 3=(1-2)iw,mp+ ¢1y. (B2)
So we finally have the expression We did not include ther; term because this just shifts the
1 X quasiparticle energies and similarly we neglectedsthierm
Micric 7= — > A X (H™ = e0) Xt YA iy which can be eliminated by a proper choice of phaseg¢for

li "1/
(A9)

This expression can be computed by evaluating the tight-

binding Hamiltonian and overlap matrices for the distorted

lattice, evaluating the coefficientd,; and Ay i» of the

wave functions for the undistorted lattice, and performing the

above sum. There is a slight technical problem with the

above method becaugeandk’ are not the same in the tight-

binding matrix. However, it can be shown that the correct

result will be obtained by using(x|{H%|x.,) and

(e xils, ) for the tight-binding and overlap matricésr the

similar expression wittkk— k') in the limit of a large super- FIG. 14. Migdal's expression for the electronic self-energy. The
cell. That is, when the distance over which neighboring atthick line denotes the dressed electronic Green’s function and the
oms interact is small compared to the length of a unit cellwavy line denotes the phonon Green’s functions.
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Written in terms of these parameters, the Green’s functiorsolutions for the gapA, begin to appear. Equations
becomes (B7)~(B9) are known as the isotropic Eliashberg equati¥hs.

Input parameters have been calculated and the Eliashberg
> ) (B3)  equations have been solved to calculage for a variety of
(Zww)* + &g+ ¢° superconductors described by the BCS theory. We also note
that a generalization to the case where the Fermi surface is
anisotropic is straightforwartk

Zioyg+ g 13+ d1y

G=-

Inserting this into Eq(B1) we obtain

1 Z'iog gt eprms—d'n Now, for typical three-dimensional solids the phonon fre-
3= E > (Z' )2+ 2+ e quencies are affected very little by the electron-phonon cou-
k'n’p n’ K’ pling. Therefore, the above formalism where we have used

X |k u?Don(k= K ,n=n"). (B4)  the non-interacting phonon Green’s functibg, works re-
' e _ markably well in 3D. This is not the case, however, in 1D,
Now, we insert the identity'dsd(e —¢y) into the above ex- where one is encountered with the CDW instability. A more

pression to obtain accurate phonon Green-s function is given by
1 Z,iwan0+8T3_¢,’Tl ZQO
2:—Jd32 de-e—= - D,(kn) = —5—%E—, (B10)
18 K'n' (Z wn’)z + 82 + (b 2 (I Vn)z - (Qq#)z
X |G u|?Do(k—k',n—n'). (B5)  where 00 is the undressed frequendwithout electron-

phonon couplingand (), is the dressed frequenéwhich,
The Lorentzian term in the integrand peaks very strongly ahs seen above can have strong temperature dependéate
g=ep=0 with width on the order of temperature. Assuming culating the dressed phonon Green’s function can be chal-
that the rest of the integrand doesn’t vary as rapidly aboufenging because one needs b6k and . However, we
£=0, we can replacé(s—g,/) with &(e,s) and perform the:  notice that when we substitute E@10) into Eq. (B9) we
integral to obtain have the fortuitous cancellation 61°, in the numerator of
7 D,(k,n) with that in the denominator ofy > Thus one
|(,Unr’7'0 ¢ 1 ~ M .
E Sew) emkk, |2D0ﬂ(k— k'.,n-n’). sees that knowledge of the undressed frequerfaibich are
Bk/n/ V(Z w)? + significantly more difficult to obtainwill not be necessary to
(B6) construct the Eliashberg equations. By doing the substitution
Qg—@qﬂ in Egs. (B7)—(B9), one can thereby construct the
This approximation can be seen to break down for smalldressed” Eliashberg equations which takes into account the
momentum (forward) scattering due to acoustic phonons. influence of the electron-phonon coupling on the phonon fre-
This case will be discussed in Appendix C. When close toquencies which is important in 1D.
Tso ¢’ will be small and can be neglected in the denomina- Note also that since some modes will have temperature
tor of Eq. (B6). dependence, the Eliashberg equations must be solved self-
Now we perform the so-called isotropic approximation. consistently. That is, we must find a temperature such that
Multiply both sides of Eq(B6) by &(gy)/v,(0), wherev,(0) the SC transition temperature determined from the Eliash-
is the density of states at the Fermi level per spin and surherg equations is the same as the temperature used for the
over k. In the right-hand side of E¢B6) we then replace input dressed phonon frequencies. This can be done by itera-
Z(k’,n") and ¢(k’,n’) with their Fermi-surface averagés; tion. Furthermore, this method allows us to tell which will be
and ¢,,. This approximation is valid when the Fermi surface the dominant phase at low temperature of our system. If we
is fairly isotropic. Now by equating the coefficients of the find a self-consistent solution of the Eliashberg equations and

matricest, and r; we finally arrive at the equations Tsc>Tepws then superconductivity will be the dominant
correlation. Otherwise, the system will prefer the CDW state.
Z,=1+f,5,2 An-n')s,, (B7) Finally, we will write down an expression which approxi-
n’ mately solves the Eliashberg equations, originally developed
by McMillan
ZnAn % [)\(n n ) :Uvsc]fn'An'a (88) T < > 4:_ 1041 +)\SC) (Bll)
56712007 " Nae- usd1+0.6250

wheref,=1/|2n+1], s,=sgn(2n+1), A,=¢,/Z,, and
wherehsc=\(0). From the above analysis, we see that to be

AMn-n')=- 1 )| G u?Do, (k=K' ,n=n’). self-consistent, one should use the dressed frequencies to
vo(0) o, evaluategc.
(B9) APPENDIX C: INCORPORATING =0 SCATTERING
FROM ACOUSTIC PHONONS IN THE ELIASHBERG

The Coulomb pseudopotenti,'ed;C was inserted to account

for the bare electron-electron interaction that is not included
in our original Hamiltonian1). The superconducting transi- In this appendix, we discuss in detail the role of acoustic
tion temperaturélsc is the temperature at which nontrivial phonons for small-radius nanotubes. Earlier theoretical

EQUATIONS
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analysis of the electron-phonon interactions in 1D systemsptical phonons, and it is found that tlye= 0 processes are
suggested that acoustic phonons can play a dominant role much smaller than thg= 2kg process.
stabilizing the superconducting st&tf>wWe will show, how- With the above method, we now see how to include the
ever, that since the dominant coupling comes from opticatontribution fromg=0 scattering intogc. To do this, we
modes, that this effect is not important for the CNTs wesimply double the contributions thgc: from 2k processes
study. which couple to acoustic phonons to include tire O con-
We now consider explicitly the contributions =0  tribution. In practice, we find that using this procedure actu-
scattering processes coupled to acoustic phonon modedly changes\sc by only a small amount. For instance, for
which are not accounted for in the approximations leading tahe (5,00 CNT, Agc only increases by less than 1%. This is
Eq. (B6). For the electron-phonon coupling to acoustic because the dominant contributions\ig- are from coupling

modes, we take to the optical modes as discussed in Sec. lll.
We also point out that the presence of the Wentzel-
Igq,J2 = Yldl/L (C1) Bardeen singularity would significantly renormalize the
W1+ (g/ge)?’ acoustic phonon mode frequencies of the CNTs. The fact that

, , the calculated phonon frequencies using the frozen-phonon
whereqq is a cutoff of orderks andL is the system length. 5,5 oximation for the CNTs are quantitatively similar to the
We also tf?keﬂquzc|q| and ?szF(|k|_kF); Inserting these  5na10gous modes of graphene as shown in Figs. 7, 9, and 11
quantities into Eq(B1), settingZ=1 for simplicity, we ob-  fyrther supports the the notion that the Wentzel-Bardeen in-

tain for the off-diagonal element stability is unimportant in these systems.
q ~0 = 2 f 2 ., 2 APPENDIX D: LIMITATIONS OF NON-SELF-CONSISTENT
“’ ad qu) METHOD
dl 2clq| (C2 In this appendix, we will discuss the limitations of using a
1 +(a/0p)* (@, = wy)? + (c|q))? method in which the charge density is not evaluated self-

consistently. For simplicity, we will neglect the contribution

This integral can be evaluated to give from the exchange-correlation enery. in the Kohn Sham

A energy functional.
quzo): S n First we will consider the case of the equilibrium lattice
VEB |wn|C+ |wn = @ |ve structure. For this, the self-consistent total energy is given by
Yo Yo
X . (C3 -
|w, = wpr|lc+ dg |w, = o |lve + do €3 Est 2<¢| ( +Vign(r) +
One then sees that scattering fraye=0 acoustic phonons
g|ves an approximate contribution tosc (When n=n’) of fdg '| | |44) + Eighions (D1)
Ag q =0 = v/ (7vEC).
Now we can|der the =~ 2ke _scattering process .from the where the charge-density is given br) == |wi(r)?, Ved is
same acoustic phonon. For this process we obtain the ionic potential, andES9, . is the ion-ion interaction. In
1 the above and in what follows, thesummation is carried out
AG=2E) < =N g o [?D(2ke,n—n") only over occupied electronic states. Applying the variational
n 0=2Ke, 1 s LT . .
o principle to Eq.(D1) gives the equation for the wave func-
A tions|¢;) and therefore the charge-densitfr )
n/
— — . C4
27) Y97+ (or? (4 HET ) = o), (D2)
This integral can be evaluated to give where
2 n(r’
quxzkp):“?’dé i . 1 . (C5) He‘[n]:;;+vion(r)+J d®r ’| ( ),| (D3)
Bor ' (0= 0)? + (c2Ke)? |y | m T
~2ke) In solving this equation, the charge densityr) entering

One then finds that this gives a contribution )og
=yl (mvgC) to Agc Which is exactly the same as thp=0
scattering contribution. Thus one sees that0 scattering
from acoustic phonons can be very important in one-
dimensional electron-phonon systems. From such a process eq _ e e

the so-called Wentzgl-Bardee)rlw instabfity** can occpur ESE= 2 (wiH*Inllys) + Fen], ©4
which has recently been studied in the context of CRTs.

We also note that a similar analysis can be carried out for thevhere

Hn] must be determined self-consistently to agree with
the eigenfunctiong;. Using this, the self-consistent total en-
ergy for the equilibrium lattice is determined to be
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1 n(on(r’) be a larger response of the charge distribution to a lattice
Fe{n]=- Ef d*rd°r Tr-r] +Eghion (D5 distortion.

to be gss_entia_lly_the same as for noni_n_teracting atoms. In the APPENDIX E: DERIVATION OF EQ. (31)
tight-binding limit we expect the equilibrium electron den-
sity to be essentially the same as for noninteracting atoms. If In this appendix, we will derive Eq31) by evaluating the
we denote the latter ag(r), we can replacea(r) by ng(r) in integral appearing in Eq30). To estimate this Coulomb in-
ESE and expect the resulting non-self-consistent total energeraction integral, we will take the tight-binding wave func-
Ensc to be quite close to the self-consistent total energy foition of graphene
the equilibrium lattice structure HK)
NSC E (D6) wky(r) —% gk Rn ( |f(k |d’n1(r) ¢n2(r))

This approach is the basis for using an effective tight-binding (E1)
model to calculate band structures.

Such a method, however, breaks down when we considd¥ow k is a two-dimensional vector in reciprocal space of the
a lattice perturbed by a phonon. In the presence of a latticgraphene lattice ang=+1 corresponds to the conduction

distortion, the ionic potential changes S'=Ve4+4V,,,  and valence bands. Orbitals centered on the first and second
which, in turn, makes the charge-density nonunifaren,  carbon atoms, respectively, in tineh unit cell are given by
+6n. The energy of the distorted structure is then ¢m(r) and ¢n(r), respectively, and(k) is given by f(k)
L ) =1+evat+eka wherea, anda, are the lattice vectors of
d|st + VISt + _f r’ nir ) graphene. For metallic large radius CNTs, the Fermi points
wa'( on(") Ir=r’| ) correspond toK =3(b;-b,) and K’=3(b,—b,), where b;

andb, are the reciprocal lattice vectors correspondingyto

dist
+ Elonion- (D7) anda,. For these points, we hav¢K)=f(K’)=0. However,
Now replacingn with ny+dn, this can be written as for the smaller radius CNTs we study, as indicated by the
failure of the zone-folding method, the Fermi points are
d'St— E <w,|Hd'St[no]|w,> + F9T g shifted away fronK andK’. We denote the Fermi points of

the inner band, of the (5,0) CNT by k. =K +k&X-k,y and
1 1 kT_—K —-k&-k,y and for the other inner band, by k
+ Ef d3rd3r’( - r,|)bh(r)éh(r’), (D8) =K’ +k X+ky andk _=K’-kXx+k,y where thex dlrectlon
is still along the CNT axis and the direction is along the
whereH%StandFYstare given byH®d andF®d defined above perimeter.
with V&4 andESY, . replaced byvaSt and ESSt.  The first For backward scattering, we takg~2kg, k~-kg, K’
two terms on the right of ED8) can be seen to be the total =kg. Keeping only products of carbon orbitals centered on
energy of the distorted structure computed with the non-selfthe same atom, we obtain
consistent method. We therefore obtain

. 1 k. )f(k, )
1 Vioar (D (1) = X &R (—
Eds'= Efsc+ f d3rd3r’(|r - r,|>6h(r)c5h(r’). (D9) el NG (SS]
Subtracting Eq(D6) from this then gives X [ (r))? + |¢n2(r)|2>. (E2)
AEsc=AEysct J d’rd’r’ (|r iy ) on(r)en(r’), Now we make use of the slow variation &% compared to
the localized orbitals to write
(D10
where AEgc nsEoe s ES sc Rewriting the second Vv thelr)
term in momentum space gives _ —|qx_2 f (kT Dk, ) ()2
1( o , IRETIG
AEgc=AEnsct Ef WV(Q)WH (D11) B
. . + &P pra(r)|? ], (E3)
which then makes it clear thatEg-> AEysc. SO we see that

using the a non-self-consistent method to calculate phonon

frequencies by the frozen-phonon approximation will under-wheret=(1/y3)a% is the basis vector for the second carbon
estimate the phonon frequencies. More specifically, in a nonatom in the primitive unit cell. Finally, in evaluating the in-
self-consistent method, the Hartree term displayed in Eqtegral in Eq.(30) it is sufficient to replace the functions
(D11) is not accounted for. This should be particularly im- (1/N)= |1 o(r)[> which vary more rapidly thanV/(r) by
portant in the vicinity of a CDW instability, where there will their average values. That is, we substitute
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* 1
l/jk+q7(r ) lﬂkf(r ) - 20

f(kf(k )
Fik ol

-igx 1

RL® 2 e

(E4)
Using the same approximations for the factor
o —o(r") e (r"), we obtain for the Coulomb interaction
_1 ki) | l® g
R RIS
1 i !
x—f dxdx g4
L2
27R 27R ’
dy dy
X — —V(r-r'). (E6
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We will now evaluate the prefactor in this equation for the
inner band of th€5,0) and(6,0) CNTs. Using the calculated
Fermi points_along with the zone-folding method, we obtain
ke=%(0.11/3)(27/a) andk,=1:(2m/a) for the (5,00 CNT.
From this we obtain

Pk, )f(k,,)
(k) f(k, )
For the (6,0 CNT the Fermi points arek,=+(0.076/
V3)(2m/a) andk,=0. This gives

(k. Df(k, )

- a a +
Pk f(k,, )
which is smaller due to the different symmetry of the wave

functions at the Fermi points. These are the values of the
prefactory appearing in Eq(31).

2
=0.59.

1

- igx-t
4

(E7)

2

1
=0.0016

2 gt (E8)
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