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Quantized bulk conductivity as a local Chern marker
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A central property of Chern insulators is the robustness of the topological phase and edge states to impurities
in the system. Despite this, the Chern number cannot be straightforwardly calculated in the presence of disorder.
Recently, work has been done to propose several local analogs of the Chern number, called local markers, that can
be used to characterize disordered systems. However, it was unclear whether the proposed markers represented a
physically measurable property of the system. Here we propose a local marker starting from a physical argument,
as a local cross conductivity measured in the bulk of the system. We find the explicit form of the marker for a
noninteracting system of electrons on the lattice and show that it corresponds to existing expressions for the
Chern number. Examples are calculated for a variety of disordered and amorphous systems, showing that it is
precisely quantized to the Chern number and robust against disorder.
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I. INTRODUCTION

Since the initial discovery of quantized Hall conductance
[1–3] and throughout the subsequent decades spent exploring
novel topological phases of matter [4,5], the Chern number
has been one of the central tools for understanding condensed
matter systems outside of the Landau symmetry-breaking
framework [6]. In the study of noninteracting Chern insu-
lators, different Hamiltonians can be classified according to
the Chern number of their bands. Two Hamiltonians with
differing Chern numbers cannot be smoothly deformed into
one another without crossing a point where the system be-
comes conductive, and systems with nonzero Chern numbers
will always have conducting edge modes at their boundaries
[7]. The Chern number has also been extensively used out-
side of topological insulators, an example being the Kitaev
spin-liquid model where it indicates whether the system has
Abelian or non-Abelian anyons [8].

A defining characteristic of quantum Hall physics is the ro-
bustness of the edge states and Hall conductance to impurities
in the sample. Despite this, the Chern number—the central
quantity in the TKNN invariant determining the Hall conduc-
tance [3]—cannot be calculated in a disordered material. The
Chern number is calculated for a single band, and depends
on the structure of the Brillouin zone. If a material lacks
translational symmetry, it is not possible to apply Bloch’s the-
orem, crystal momentum is not a good quantum number, and
we have no concept of momentum space. Disorder-resistant
methods exist [9,10], however they compute a global Chern
number, and cannot capture the local properties of materials
with compound structure. This tension that our tools for de-
scribing disorder-resistant physics are themselves undermined
by disorder, suggests that our mathematical framework is in-
complete.

One possible solution to this problem is the development
of local Chern markers. These attempt to translate the Chern
number into a mathematical language that is resolved in real
space, ensuring it is well defined when the system has no
translational symmetry. Several candidates for local markers
exist, such as the Chern marker [11], the Bott index [12], and
the Chern number defined by Kitaev in Appendix C of [8].
Each of these markers has been derived by finding ways of re-
expressing the Chern number in terms of quantities that can be
evaluated in real space. This ensures that in an ideal uniform
material with no boundaries—where the Chern number can
be calculated directly—the marker should exactly equal the
Chern number. Despite satisfying this requirement, existing
markers suffer from two main drawbacks. First, they display
unexplained behavior when taken out of the context where the
Chern number is already well defined. The Chern marker and
Bott index have sharp drops around the boundary of any topo-
logical region [13], and Kitaev’s local Chern number vanishes
in noninfinite systems. Second, all markers were developed
from a mathematical restatement of the Chern number, and
the resulting expression does not obviously correspond to any
physical quantity. Thus, it is not clear at all how one might
attempt to measure it in a real system, or even if there is a
way to connect them to an observable at all—although some
attempts have been made [14–16].

We present a derivation for a local marker that starts from
physical grounds, defined as a localized version of the Hall
conductivity [17]. Local current is measured around the po-
sition R of a crosshair placed in the bulk of the material,
motivating the name “crosshair marker.” The derived quantity
is close to the local Chern marker defined by Kitaev [8],
given by

C(R) = 4π ImTrBulk
(
PϑRx PϑRy P

)
, (1.1)
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where P is a projector onto the occupied band and ϑ is a step
function at R in the x or y directions. The trace is over a region
around R in the bulk. Since the marker has a straightforward
interpretation, its behavior around edges of the system can be
understood intuitively in terms of current induced in the mate-
rial. Furthermore, when evaluated in a disordered system, the
crosshair marker is almost exactly quantized provided that it
is measured sufficiently far from any edge modes. In contrast,
the Bott index and Chern marker are not strictly quantized
in the presence of disorder. We also find a connection between
the crosshair marker and the Chern marker. Summing over all
possible positions of the crosshair itself, we exactly recover
the Chern marker, allowing for the physical interpretation of
the crosshair marker to be extended to the Chern marker.

The paper is structured as follows: In Sec. II we derive the
necessary prerequisites to understand the marker. These are
threefold, in Sec. II A we describe the formalism for modeling
the effect of electric fields on our system, in Sec. II B we
define a set of current operators on a lattice, and in Sec. II C
we describe Kato’s formalism for adiabatic quantum evo-
lution based on [18]. In Sec. III we use these concepts to
derive the crosshair marker and discuss its connection to the
Chern marker. Finally, in Sec. IV we give examples of the
crosshair marker in the Qi-Wu-Zhang (QWZ) model with
spatially varying parameters, as well as an extension of the
QWZ Hamiltonian to amorphous lattices. These serve as a
testing ground for extending the Chern number to systems
that are inaccessible to the conventional momentum space
calculations.

II. PRELIMINARIES

We work with a general noninteracting Hamiltonian on a
two-dimensional tight-binding lattice. The system consists of
set of N sites, with positions ri arranged on either a regular or
amorphous lattice. Each site has an internal degree of freedom
hosting η states. The Hamiltonian can be written in the form

H =
∑
i, j

|ri〉 〈r j | ⊗ Hi, j, (2.1)

where Hi, j = H†
j,i acts on the internal degrees of freedom.

Here we will only work with systems in open boundary con-
ditions.

A. Electric fields

In Sec. III we examine the current generated by step-
function electric potentials. Thus, here we precisely define the
form of the electric field and potential, and study how they are
represented on the lattice.

We wish to model the effect of raising the potential of
one half of the system with respect to the other, resulting
in an electric field across the boundary separating the two
regions. Without loss of generality, let us consider raising
the potential of the region below a dividing line at position
y = Ry with respect to the region above the line. In the con-
tinuum, this corresponds to an electric potential of the form
V (r) = −V0θ (y − Ry), where θ is a Heaviside step function.
The electric field acts over the line at y = Ry, as shown in

FIG. 1. (a) The electric potential used to generate our electric
field. (b) The electric field, with only the nonzero y component is
shown.

Fig. 1,

E(r) = V0δ(y − Ry)ey, (2.2)

where ey is a unit vector in the y direction. We transform to a
gauge with zero scalar potential, representing the electric field
with a magnetic vector potential,

A(r, t ) = −V0tδ(y − Ry)ey. (2.3)

Making the assumption that V0 is small, we shall use Peierls
substitution to describe the effect of a slowly varying magnetic
vector potential on our lattice system [19]. The transla-
tion operators are modified by a Peierls phase |r j〉 〈ri| →
|r j〉 〈ri| eiα(ri,r j ), given by

α(ri, r j ) =
∫ ri

r j

A(r) · dr. (2.4)

Note that we work in natural units, setting the electronic
charge q = h̄ = 1. Given the form of the magnetic vector
potential, we can see that translation operators only pick up a
phase if they cross the line y = Ry. This is illustrated in Fig. 2.
The Peierls phase can be expressed as

α(ri, r j ) = A(t )[θ (yi − Ry) − θ (y j − Ry)], (2.5)

with A(t ) = V0t . Thus, the Hamiltonian is modified according
to

H (A) = eiA(t )ϑRy He−iA(t )ϑRy , (2.6)

where we have defined the projector onto the half-space above
y = Ry as

ϑRy =
∑

i

θ (yi − Ry) |ri〉 〈ri| . (2.7)
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Ry

FIG. 2. A section of amorphous lattice is shown. All hopping
terms in the Hamiltonian that cross the line y = Ry acquire a phase
given by Eq. (2.5), these are depicted in red. Unaffected hopping
terms are shown in black. Note that the phase is ill defined when a
site ri lies on the line.

In the limit of small A, this can be expanded to first order,

H (A) = H − iA(t )[H, ϑRy ]. (2.8)

As we shall see in the next section, the change in the Hamilto-
nian is expressed in terms of a current operator for flow across
the line y = Ry.

Note that for a static A(t ) in open boundaries, the A depen-
dence can be completely removed by a gauge transformation,
so there will be no physical effect on our system. This is
reflected by the fact that E depends on ∂t A, so static A cor-
responds to zero electric field.

B. Current operators

We construct an operator representing the flow of particles
across a line bisecting the system. Again, without loss of gen-
erality, we will look at the flow of particles in the x direction,
across the vertical boundary at x = Rx. The number operator
for particles to the right of this line is given by ϑRx , defined
analogously to Eq. (2.7). The time evolution for the number
of particles in this region is ∂t 〈ϑRx 〉 = i〈[H, ϑRx ]〉. Thus, we
can identify the operator representing flow of particles across
the boundary as

JRx = i[H, ϑRx ]. (2.9)

This allows us to reexpress Eq. (2.8) in the familiar form
H (A) = H − AJRy , where A is defined in Eq. (2.5).

The operator JRx evaluates the overall flow across the whole
system, however, in the following discussion we wish to sep-
arate the bulk and edge contributions. Thus, let us decompose
this operator into a sum of terms local to some point at r,
according to

JRx (r) = 1
2 (δrJRx + JRx δr ), (2.10)

with δr = |r〉 〈r|. The two terms evaluate the contributions to
JRx from hopping into site r, and from hopping out of site
r, respectively. The factor of 1/2 is included to ensure that∑

r JRx (r) = JRx , since every pair of sites is counted twice.
This decomposition is not unique—there are many ways one
could express JRx as a sum over local terms. However, the
final result will be insensitive to a particular method since we
shall sum over all the bulk contributions, which will be well
separated from edge contributions.

C. Kato dynamics

We will work in the adiabatic limit, with a Hamilto-
nian that changes over a long timescale T , where the local
density of states in the bulk has an energy gap 	. We de-
fine the projector onto the occupied states at t = 0 as P0 =∑

occ |ψi(0)〉 〈ψi(0)|, where |ψi(0)〉 is an eigenstate of H at
t = 0. In general, time evolution will result in a final state
P(t ) that is related to the initial state by the Schrödinger
equation. However. if the evolution is sufficiently slow (for
T � 	−1), we expect that P0 will adiabatically evolve to the
instantaneous projector PI (t ) = ∑

band |ψi(t )〉 〈ψi(t )|, where
|ψi(t )〉 are eigenstates of H at time t [20]. To ensure that our
time evolution is exactly adiabatic, we use a formalism based
on that introduced in [18], although a modern description can
be found in [20–22]. We sketch out the basics here. However,
for a detailed discussion, see Appendix A.

Rather than using H to generate time evolution, we define
an adiabatic Hamiltonian K which satisfies the instantaneous
Von Neumann equation

∂t PI (t ) = −i[K, PI ], (2.11)

where the change in PI follows the instantaneous eigenstates
of H . Using the identity PṖP = 0 (where dot denotes a time
derivative), we can verify that the equation is satisfied by K of
the form

K (t ) = i[ṖI , PI ]. (2.12)

The full time evolution of the projector follows the instan-
taneous eigenstates in the limit of large T � 	. Thus, in the
following discussion, where we are working in the adiabatic
regime, we may use Eq. (2.11) to describe the change in P,
and drop the subscript on PI , since all our time evolution is
adiabatic. Having defined the adiabatic Hamiltonian, let us
examine the exact form of K for our applied electric field, as
well as deriving an adiabatic equivalent of the current operator
in Eq. (2.10).

1. Adiabatic EM fields

The time dependence of our Hamiltonian is given by
Eq. (2.6). We work in open boundaries, so the operator eiA(t )ϑRy

behaves as a straightforward unitary rotation on the eigen-
states. Note that in periodic boundaries, this operator would
enforce twisted boundary conditions, shifting both the eigen-
states and eigenenergies of H . Thus, the time dependence of
the projector is

P(t ) = eiA(t )ϑRy P0e−iA(t )ϑRy , (2.13)

and the time derivative is Ṗ = iȦ[ϑRy , P]. This can be inserted
into definition (2.12) to arrive at the form of the adiabatic
Hamiltonian

K = Ȧ(PϑRy Q + QϑRy P), (2.14)

where Q = 1 − P is the complement of the projector.

2. Adiabatic current

The adiabatic current operator is derived following an
analogous argument to that in Sec. II B. We find the change
in particle number for the region x > Rx, given by ϑRx .
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In this case, however, we use the adiabatic Von Neumann
equation (2.11) to express the expectation value ∂t 〈ϑRx 〉 =
i〈[K, ϑRx ]〉. Thus, we can identify an adiabatic current
operator

JA
Rx

= i[K, ϑRx ]. (2.15)

As before, we can localize this operator to extract only the
current hopping to and from a position r according to

JA
Rx

(r) = 1
2

{
δr, JA

Rx

}
. (2.16)

In Appendix B we discuss carefully how the nonadiabatic
expression for current relates to the adiabatic form as we
approach the adiabatic limit.

III. MARKER DERIVATION

Before we give the formal derivation, let us describe the
physical intuition behind our topological marker, which can
be understood as a localized version of the Hall conductivity.
The standard Hall conductivity is measured by applying a
uniform electric field to a two-dimensional (2D) material and
measuring the current induced perpendicular to the field. This
current is quantized and corresponds to the Chern number of
the Hamiltonian [2]. A disadvantage of this calculation is that
it is necessarily global, with the electric field uniform over the
system and the current measured across the whole sample. In a
material with disorder or compound structure, the calculation
gives no spatially resolved information about its topological
properties.

Our objective is to find an analogous quantity that can be
spatially resolved, giving information about which parts of a
complex material are responsible for topological behavior. It
is not obvious how one should localize the Hall conductivity:
Neither the electric field, nor the current operator, can be
easily localized to a point. Maxwell’s laws prohibit one from
creating an electric field at a single point only. Equally, on the
lattice, it is difficult to write down a consistent expression for
current at a point.

Despite that fact that neither electric field nor current can
individually be made local to a point, it is possible to localize
the overall Hall conductance. This is because both field and
current can be localized to a line. By partitioning the system,
and raising the electric potential of one part, we induce an
electric field acting across the dividing line. Similarly, given a
partition, by measuring the transfer of electrons from one part
to the other, we are able to determine the current across the
dividing line.

The route to a local Hall current is to partition the system
along two perpendicular dividing lines, as shown in Fig. 3.
An electric field is induced between the top and bottom parts
of the system by uniformly raising the voltage of the lower
part. This will induce a vertical current acting across the
dividing line. When the material has nonzero Chern num-
ber, a Hall current will also be induced from left to right.
If the system is insulating (i.e., gapped) we expect that all
current should be localized to the region around the horizon-
tal line. Measurement of the current is then taken over the
vertical line, catching only induced current in the horizontal
direction—effectively only the Hall current. We expect all
nonzero contributions to come from the region around the

JRx

E

Rx

Ry

FIG. 3. A schematic for local Hall measurement. The bottom half
of the system has its potential raised with respect to the top half,
generating an electric field acting over the horizontal line. Current
is measured between the left and right halves, across the vertical
line. The flow of charge is represented in blue, showing the curved
path due to the presence of a magnetic field. The red shading shows
the region around the crosshair where a nonzero contribution to the
marker is measured.

point where the lines cross—motivating the name crosshair
marker.

As we shall see in the following examples, this argu-
ment fails when the system becomes conducting and the gap
closes. In a conducting system, current is no longer locally
constrained—an electron can easily tunnel across the entire
system. Thus we expect that the marker will be nonzero even
very far from the crosshair. Consequently, as well as the
central peak, we expect to see an additional term wherever
conducting edge states are present, at any distance from the
crosshair.

A. Exact derivation

We measure the local contribution to current across the line
x = Rx in the adiabatic regime. The current will be expressed
in the form of a conductivity J = σE , where σ is to be
determined. Our starting point is the expectation value of the
current operator defined in Sec. II C 2 for the case of a filled
band of states,

〈
JA

Rx
(r)

〉 = 1
2 Tr

[
P
{
δr, JA

Rx

}]
, (3.1)

where P projects onto a fully occupied band of states. By
cycling terms in the trace and using the identity 1 = P + Q,
we can split this expression into two terms:

〈
JA

Rx
(r)

〉 = Trr
(
PJA

Rx
P
)

+ 1
2 Trr

(
PJA

Rx
Q + QJA

Rx
P
)
, (3.2)

where Trr := Tr(δr · · · ) denotes a local trace over the internal
degrees of freedom at site r. We treat these two terms sepa-
rately. The first term is a local marker of the Chern number,
whereas the second term vanishes. Considering only the sec-
ond term, let us insert the exact form of JA

Rx
= −[[Ṗ, P], ϑRx ]
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and use the Jacobi identity

Trr
(
PJA

Rx
Q

) + H.c. = Trr(P[[P, ϑRx ], Ṗ]Q)

+ Trr(P[[ϑRx , Ṗ], P]Q) + H.c. (3.3)

Using the identities P[P, ϑRx ] = [P, ϑRx ]Q and PṖ = ṖQ, we
see that the first term here vanishes. We are left with the
second term which can be written as

Trr(PJRx Q) + H.c. = −Trr(P[ϑRx , Ṗ]Q) + H.c. (3.4)

Using Q = 1 − P, we may reexpress this in the form,

Trr(PJRx Q) + H.c. = −Trr(P[ϑRx , Ṗ]) + H.c. (3.5)

Now, let us insert the exact form for Ṗ for a system undergoing
adiabatic application of the step-function electric field defined
in Sec. II C 1: Ṗ = iȦ[ϑRy , P]. We get a final expression

Trr(PJRx Q) + H.c. = −iȦTrr(P[ϑRx , [ϑRy , P]]) + H.c.
(3.6)

Writing out the terms in the trace explicitly, we get

iTrr(P[ϑRx , [ϑRy , P]]) = iTrr(PϑRx ϑRy P)

− iTrr(PϑRx PϑRy )

− iTrr(ϑRx PϑRy P)

+ iTrr(PϑRx ϑRy ). (3.7)

The step functions commute with one another, and with δr.
This means that every constituent term in Eq. (3.6) is anti-
Hermitian due to the factor of i. Thus the whole expression
vanishes when the Hermitian conjugate is added,

Trr(PJRx Q) + H.c. = 0. (3.8)

Now, let us return to Eq. (3.2). We have shown that the second
term vanishes, so we are left with

〈JRx (r)〉 = Trr(PJRx P) (3.9)

= iTrr(P[K, ϑRx ]P). (3.10)

We use expression (2.14) to insert the exact form of K ,

〈JRx (r)〉 = iȦTrr(PϑRx QϑRy P) + H.c. (3.11)

Using the fact that Ȧ = −E , we see that this expectation value
has taken the form of a conductance 〈J〉 = σE . We also use
Q = 1 − P to get the conductance in the form

σ (r; R) = 2ImTrr(PϑRx PϑRy P). (3.12)

Finally we insert a factor of 2π to get the final expression
for the marker

C(r; R) = 4π ImTrr(PϑRx PϑRy P). (3.13)

This quantity is analogous to the Chern marker presented in
Appendix C of [8], although where Kitaev used a global trace,
here we have a local trace. Kitaev’s marker was shown to ex-
actly equal the Chern number in an infinite system. For finite
system size, however, his marker vanishes due to edge-state
contributions. By replacing the global trace with a local trace,
we are here able to separate the bulk contribution from the
edge contribution, allowing for the marker to be calculated in
a finite system. We can extract the quantized Chern number by

only summing over the bulk contributions—found at r close
to R—and ignoring the edge-state terms at r far from R.

We note two important caveats. First, the marker is only
strictly well defined as the sum of the bulk contributions
around R, rather than as a function of r. This is because there
is a degree of arbitrariness to how the current was made local
to a point in definition (2.10), since the purpose is to separate
the bulk and edge contributions before summing only the bulk
terms. Physically, the summed marker corresponds to the total
current measured in the bulk over the line at x = Rx.

The second caveat is that the adiabatic current defined in
Eq. (2.16) only captures the current generated by the change
in P over time. However, it is also possible for a system to
have persistent currents, i.e., flow between occupied states
that does not change the projector itself. Since this type of
circulating current cannot change the number density at any
site, it does not contribute to the net flow of electrons into
a given region. Despite this, it can still contribute terms to
the current defined in Eq. (2.10). Thus, we must also require
that the system has no persistent currents at any point in the
adiabatic time evolution. This effect is explained in detail in
Appendix B.

Finally, it is worth mentioning that the crosshair marker
can be used to calculate the Chern marker C given in [11]
according to

C(r) =
∫

d2R C(r; R), (3.14)

where the integral is over the whole system. The proof of this
is given in Appendix C.

IV. EXAMPLES

Examples are calculated for two sets of topological quan-
tum systems. The first will be the Qi-Wu-Zhang (QWZ) model
on a square lattice, the simplest example of a Chern insulator
with only nearest neighbor interactions [23,24]. The second
example will be an extension of the QWZ model to amorphous
lattices.

A. Qi-Wu-Zhang model

We work on a square lattice of size (Lx, Ly), where site
positions are given by ri = (nx, ny) ∈ Z2. Each site has two
internal degrees of freedom. The Hamiltonian is

H =
∑

r

|r + 1x〉 〈r| ⊗ σz + iσx

2
+ H.c.

+
∑

r

|r + 1y〉 〈r| ⊗ σz + iσy

2
+ H.c.

+
∑

r

|r〉 〈r| ⊗ u σz, (4.1)

where σi are the Pauli matrices. The parameter u determines
the topological properties of the Hamiltonian. In a uniform
system, the Chern number is −1 for −2 < u < 0, +1 for
0 < u < 2, and zero otherwise. In the following examples
we break translational symmetry by allowing u to vary on a
per-site basis u → ur.
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FIG. 4. Crosshair marker C(r; R), plotted as a function of r for three example systems on 40 × 40 lattices. Position of the crosshairs
(determined by R) is indicated with dashed lines, where R indicates the point where the lines meet. (a) A uniform QWZ system with u = 1.6.
(b) A compound system with u = 1.6 inside the central region and u = 2.6 outside. The boundary of the region follows the blue ring, which
indicates the presence of conducting edge states. (c) A compound system, as in (b), however u has an added per-site Gaussian noise term with
standard deviation σ = 0.5.

We calculate the crosshair marker for three example sys-
tems, shown in Fig. 4. The first system is a uniform lattice with
open boundaries. In the second we show a compound system
with open boundaries and a central region that we expect to
have Chern number +1, surrounded by a region with Chern
number 0. In all cases, the crosshair is placed in the bulk
of the topological region and the expected Chern number is
+1. Close to the crosshairs, there is a positive contribution
from the local conductance as derived in Sec. III. Around
the boundary of the topological region there is a negative
contribution due to the presence of edge states. The overall
trace of the marker vanishes, so this negative contribution
sums to the same magnitude as the central peak.

To demonstrate the quantization of the marker, we sum the
value enclosed within a radius around the central peak. When
the radius is sufficiently large that it captures the whole peak
the sum equals to the Chern number. If the radius includes
contributions from the conducting edge states, the value will
be reduced. This is demonstrated in Fig. 5, where we have
plotted the sum against the radius of the region being summed

FIG. 5. Plots of the sum of the crosshair marker in r for a circle
of a given radius around the crosshair position p. Plots are shown for
the three examples in Fig. 4. The maximum values reached in each
case are 0.99997, 0.9981, and 0.9989, respectively.

over. To estimate the quantized sum of the marker, we take
the maximum value in this range, and see that this estimate is
quantized to around one part in 103.

B. Amorphous Qi-Wu-Zhang model

We now look at extending the QWZ model beyond a grid
to arbitrary amorphous lattices, providing an example of a
system that is completely inaccessible to traditional methods
for calculating the Chern number. We prepare a set of arbitrary
lattices using a Voronoi construction, identical to the con-
struction of a Wigner-Seitz cell [25,26]. Starting with a set of
random points, we may generate a cell for each point contain-
ing the region of space closer to that point than any other. A
lattice is created by taking the barrier between Voronoi cells as
the edges, and the vertices as the points where three adjacent
Voronoi cells meet. This generates a lattice where every point
is trivalent. An example lattice is shown in Fig. 6.

Once a lattice has been chosen, the Hamiltonian is con-
structed using a smooth continuation of the QWZ model to

FIG. 6. An example section of amorphous lattice. Shown in blue
are a set of points that have been randomly generated. In black we
see the resulting Voronoi lattice, where each cell encloses the region
of space that is closer to a given blue point than any other. Our sites
(shown in black) are placed at the corners where three cells meet and
connected with an edge along the boundary between two cells.
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FIG. 7. Crosshair marker C(r; R), plotted as a function of r for two example amorphous systems. As in Fig. 4, the position of the crosshairs
(determined by R) is indicated with dashed lines. Both cases are for the same lattice with 3200 sites, decorated with a different Hamiltonian.
(a) The crosshair marker for the system with uniform u = −1. (b) Crosshair marker for a compound amorphous system with u = −1 inside
the central region and u = −2 outside. (c) Plots of the sum of the crosshair markers for the two given systems. Maximum values reached in
are 1.0007 and 1.00002, respectively.

account for edges that can point in an arbitrary direction. The
Hamiltonian is given by

H =
∑
i, j

|ri〉 〈r j | ⊗ hθi, j + H.c.

+
∑

i

|ri〉 〈ri| ⊗ u σz. (4.2)

Here, rather than the standard x- and y-hopping matrices from
Eq. (4.1), we use a matrix hθ that depends on the angle θ that
the edge r j → ri makes with the x axis. This is defined as

hθ = 1

2

(
1 ie−iθ

ieiθ −1

)
. (4.3)

Inserting into this expression θ = 0 or θ = π
2 , we recover the

standard QWZ hopping matrices. Also note that hθ+π = h∗
θ .

As before, the parameter u determines whether the system
is in a topological or trivial state, although the phase does not
have the same dependence on u as before. By considering the
band structure as a function of u, we determine numerically
that the system is gapped and topological for −3 < u < −1.
A justification for this is presented in Appendix D.

In Fig. 7 we show crosshair markers for two example
systems, as well as a plot of sums of the markers against the
radius of the region summed over. As before, the bulk sum is
quantized to around one part in 103.

V. CONCLUSION AND OUTLOOK

We have developed a physically motivated local marker
for the Chern number of a two-dimensional quantum sys-
tem. The marker was derived as a local Hall conductivity
for current around a crosshair in the bulk. We present a
rigorous expression for this conductance for noninteracting
electrons on the lattice, and show that it is equivalent to
the real-space Chern number presented in [8], although we
make a slight modification to ensure it is nonzero for finite-
size systems. Mathematically, the marker plays a similar role
to existing methods such as Chern marker [11] and Bott

index [12]—locally indicating the topological phase of the
system—however, unlike these markers, the crosshair marker
is precisely quantized in the bulk.

The arguments used to derive the crosshair marker are
essentially a prescription for measuring the quantity in the
laboratory: A step-function potential is used to excite cur-
rent across the system in the vertical direction. The cross
conductance is then measured in the horizontal direction. An
obvious next step will be to look at experimentally verifying
the proposed method.

Until recently, local markers were developed in a noninter-
acting context as a property derived from the projector onto a
band of states. In interacting systems, where the ground state
does not correspond to a projector onto a set of single-particle
states, most existing markers are inapplicable, however, early
progress has been made in understanding how local topology
can be detected in interacting systems [27]. Clearly, in such a
system the mathematical formalism presented here does not
work, however, our physical argument does not depend on
the microscopic details of the system. Thus, it would be in-
teresting to reexpress the marker in a many-body framework.
Similarly, we expect that the physical definition of the marker
could provide a clue to understanding the role that local topol-
ogy has to play in systems out of equilibrium [13,28,29].
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APPENDIX A: DERIVATION OF ADIABATIC
TIME-EVOLUTION OPERATOR

In this Appendix we will justify the form of the adiabatic
Hamiltonian

K (t ) = i[∂t PI (t ), PI (t )] (A1)

155124-7



D’ORNELLAS, BARNETT, AND LEE PHYSICAL REVIEW B 106, 155124 (2022)

as the generator of the correct adiabatic time evolution for
a given initial projector P0. We introduce a parameter T
that defines the period over which the system evolves, t ∈
[0, T ]. Changing variables to s = tT −1, we arrive at the scaled
Schrödinger equation

i∂sUT (s) = T H (s)UT (s), (A2)

where we can use T to parametrize how slowly the system
changes. We will also define the scaled adiabatic Hamiltonian

K̄ (s) = i[∂sPI (s), PI (s)]. (A3)

Since ∂s = T ∂t , so this quantity is related to K by K̄ = T K .
Our aim will be to show that in the limit of

large T , the time-evolved state P(s) = UT (s)P0U
†
T (s) can

be approximated by the instantaneous projector PI (s) =∑
i∈band |ψi(s)〉 〈ψi(s)|, where |ψi(s)〉 are eigenstates of

H (s). We wish to define an adiabatic time-evolution operator
UA(s) such that

PI (s) = UA(s)P0U
†
A (s). (A4)

We propose an ansatz for UA that satisfies the following con-
ditions:

UA(0) = 1, (A5)

i∂sUA(s) = [T H (s) + K̄ (s)]UA(s). (A6)

To verify that UA produces the right dynamics, let us consider
the quantity

G(s) = UA(s)†PI (s)UA(s). (A7)

In the interest of keeping equations legible, we will drop
explicit s dependence from our operators. From hereon in it
is safe to assume that, unless stated otherwise, all operators
are being evaluated at time s. We take the s derivative of G,

∂sG = ∂s[(U
†
A PI )(PIUA)]. (A8)

Using the identity

∂s(PIUA) = ∂sPIUA − iPI [T H (s) + K̄ (s)]UA, (A9)

we can show that

∂sG = U †
A (iT [H, PI ] + {PI , ∂sPI} + i[K̄, PI ])UA. (A10)

The first term in this expression vanishes, since P and H
commute by definition. Next we can use the identities ∂sPI =
{PI , ∂sPI} and PI∂sPI PI = 0 to show that the second and third
terms, respectively, equal ∂sPI and −∂sPI , canceling out. Thus
we have shown that ∂sG = 0 for all s. Since G(0) = P0, we
see that

G(s) = P0, ∀ s, (A11)

confirming that our definition satisfies Eq. (A4).
Now all that remains is to show that, as T → ∞, the actual

dynamics UT asymptotically approach the adiabatic dynamics
described by UA. We will omit the proof of this result, which is
simply a proof of the adiabatic theorem, however, a complete
justification can be found in [20]. We quote the result, which
compares the projector generated by nonadiabatic dynamics

P(s) = UT P0U
†
T compared to that generated by the adiabatic

time evolution PI (s) = UAP0U
†
A . The result states that

|P(s) − PI (s)| = O(T −1). (A12)

Thus, we can see that in the limit of large T , UT generates the
correct time evolution.

APPENDIX B: ADIABATIC CURRENT OPERATORS

In this Appendix we will expand our justification for the
form of the adiabatic current presented in Sec. II. The ar-
gument splits into two parts. First, we introduce an operator
that describes the direct flow of particles between a pair of
individual sites ri and r j in the system fri,r j . Then we will
show how, in the adiabatic limit, the flow between a pair of
sites is determined by the adiabatic Hamiltonian K , introduced
in Sec. II C. Bulk current can always be written as the sum
over the flow between individual sites, thus all the properties
of fri,r j naturally extend to the currents defined in Sec. II B.

1. Two-point flow operator

The flow between individual sites can be extracted from the
continuity equation for electron density. We start by looking at
the change in occupation number at a single site δr = |r〉 〈r|,
for a projector onto a set of occupied states P,

∂t 〈δr〉 = Tr(∂t Pδr ). (B1)

We use the Von Neumann equation to express ∂t P in terms of
the Hamiltonian, cycling the terms in the trace to arrive at

∂t 〈δr〉 = Tr(Pi[H, δr]). (B2)

Inserting a complete set of position eigenstates 1 = ∑
j δr j ,

we may reexpress this in the form of a continuity equation,

∂t 〈δr〉 =
∑

j

Tr[P(iδr j Hδr − iδrHδr j )]. (B3)

This describes the change of number density at site r as a sum
of the flow from every other site r j in the system. Thus we can
interpret the operator

fri,r j = i(δr j Hδri − δri Hδr j ) (B4)

as quantifying the flow of electrons from the site at ri to r j .
Note that it is antisymmetric in ri ↔ r j .

In the next section we will work in the adiabatic limit, thus
let us find the current per unit of scaled time s. Using the
substitution t = sT , we define the scaled flow operator

f̄ri,r j = iT (δr j Hδri − δri Hδr j ), (B5)

which satisfies the scaled continuity equation ∂s〈δr〉 =∑
j Tr(P f̄ri,r j ).
Both current operators described in Sec. II B can be written

as a sum of individual flows. The operator in definition (2.9),
representing the total current between the two halves of the
system, is the sum of all two-point currents where ri → r j

crosses x = Rx,

JRx =
∑

xi>Rx
x j<Rx

fri,r j , (B6)
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whereas definition (2.10) may be written as the sum of all two-
point currents that cross x = Rx and either start or finish at r,

JRx (r) =
∑

xi>Rx

fr,ri , (B7)

where we have assumed that r has x < Rx.

2. Adiabatic current

Here we show that the scaled flow operator may be re-
placed with the adiabatic equivalent up to small corrections
in T −1:

f̄ri,r j = f̄ A
ri,r j

+ O

(
1

T

)
, (B8)

with f A defined according to

f̄ A
ri,r j

= iδr j K̄δri − iδri K̄δr j (B9)

and K̄ = i[∂sPI , PI ] in analogy to the definition in Sec. II C.
Note that the flow in Eq. (B4) is always valid regardless of
what state it is acted on. Since K is defined for a choice of
PI , the adiabatic flow is only correct when evaluated with an
occupied band consisting of the states in PI .

Our argument has two parts. We shall first decompose the
Hamiltonian into a term that commutes with P and a term
that does not. Only the noncommuting term contributes to
measurable change in the system. Finally, we show that this
term has a straightforward expression in the near-adiabatic
limit, and defines the adiabatic flow.

As shown in Appendix A, the time evolution of our system
is determined by the scaled Von Neumann equation,

∂sP = −iT [H, P], (B10)

where we treat T as a tunable parameter. Clearly any compo-
nent in H that commutes with P will vanish in this expression.
Thus, let us split H into a commuting and noncommuting part,

H = (PHP + QHQ) + (PHQ + QHP), (B11)

where we define Q = 1 − P as the projector onto unoccu-
pied states. We will label the two terms in brackets H‖ and
H⊥, respectively. H‖ commutes with P, vanishing in the Von
Neumann equation and thus does not effect any change in P
whatsoever. Furthermore, any Hamiltonian that differs from H
only by a term that commutes with P (e.g., H ′ = H + PMP +
QMQ for some arbitrary operator M) will still produce the
exact same dynamics for P.

Using these two components of H , we can split the flow
operator into two components according to

f̄ri,r j = (iT δr j H‖δri + H.c.)

+ (iT δr j H⊥δri + H.c.), (B12)

and label these two terms as f̄ ‖
ri,r j and f̄ ⊥

ri,r j
, respectively. Let

us examine the contribution of each term to the continuity
equation (B3),

∂s〈δr〉 =
∑

j

Tr[P( f̄ ‖
r,r j

+ f̄ ⊥
r,r j

)]. (B13)

FIG. 8. Energy of the states of an amorphous QWZ system with
800 sites on a random Voronoi lattice plotted against the internal
parameter u. (a) The system in periodic boundaries. (b) The system
in open boundaries.

Writing out the f̄ ‖ term explicitly, we see that it vanishes∑
j

Tr[P f̄ ‖
r,r j

] =
∑

j

Tr(iT Pδr j H‖δr ) + H.c.

= Tr(iT PHPδr ) + H.c.

= 0. (B14)

Thus, the only term that contributes to the continuity equa-
tion is f̄ ⊥

ri,r j
. We can interpret f̄ ‖

ri,r j as a circulating current,
representing the flow between occupied states in P. As it
vanishes in the continuity equation, it is not possible for this
term to change the number density at any site in the system.

Now, let us examine f̄ ⊥
ri,r j

in the near-adiabatic limit. As
we have seen in Appendix A, the projector is equal to the
instantaneous projector PI up to order T −1. Thus, treating T
as a tunable parameter, let us expand the dynamics around the
limit T → ∞,

P = PI + 1

T
δP + O

(
1

T 2

)
, (B15)

where δP is the first-order perturbation away from the exact
adiabatic result. Inserting this into Eq. (B10), we get

∂sPI + 1

T
∂sδP = −iT [H, PI ] − i[H, δP] + · · · . (B16)

The terms omitted are at least of order T −1. The first term
on the right vanishes, since PI and H commute by definition.
Thus, collecting the next lowest order in T , we get

∂sPI = −i[H, δP]. (B17)

Time evolution of PI is determined by K̄ , thus we arrive at the
identity

[H, δP] = [K̄, PI ]. (B18)

Let us consider H⊥ in this limit. It is straightforward to
show that

H⊥ = PHQ + QHP

= [[H, P], P]. (B19)

H commutes with PI , so we can set

[H, P] =
[

H,
1

T
δP

]
+ O

(
1

T 2

)
, (B20)
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FIG. 9. (a) Density of states for a 40 × 40 amorphous QWZ system in open boundaries with u = −1. The two vertical dashed lines indicate
the energy of the states shown in (b) and (c). (b) Heat map of the probability amplitude |ψ (r)| for an edge state with energy −0.006. (c) Heat
map of the probability amplitude for a bulk state with energy 0.5. In (b) and (c) we have superimposed the lattice structure in black.

and use identity (B18) to get this in the form

H⊥ = 1

T
[[K̄, PI ], PI ] + O

(
1

T 2

)
, (B21)

where we have also expanded the second P according to
Eq. (B15). Finally, we use the identities ∂sPI = −i[K̄, PI ] and
K̄ = i[∂sPI , PI ] to show that

H⊥ = 1

T
K̄ + O

(
1

T 2

)
. (B22)

Thus, in the near-adiabatic regime, we have shown that the
flow operator separates into two terms:

f̄ri,r j = f̄ ‖
ri,r j

+ f̄ ⊥
ri,r j

. (B23)

The first represents a circulating current that does not effect a
change in P whatsoever. In any sum of current into or out of a
region, we expect any f ‖ terms to vanish, since the total flow
from this term into any individual site vanishes according to
Eq. (B14). Additionally, it is worth noting that the term

f̄ ‖
ri,r j

= iT δr j H‖δri + H.c. (B24)

is linearly dependent on T , since H‖ has nonzero components
of order T 0. Thus it diverges as T → ∞. Any constant current
scaled over an infinitely large time period will diverge. In what
follows, we shall omit these terms, meaning that our current
operator will not account for persistent or frozen in current in
the bulk at any point in the adiabatic evolution.

The second term, given by

f̄ ⊥
ri,r j

= iδr j K̄δri − iδri K̄δr j , (B25)

represents the current generated over the course of the adia-
batic evolution by the change in the electronic arrangements
of states in the band P. Thus, we see that in the adiabatic limit,
in the absence of persistent current, the flow in the system can
be approximated by the adiabatic flow operator

f̄ri,r j = iδr j K̄δri − iδri K̄δr j + O

(
1

T

)
. (B26)

Finally, we may rescale from s back to t , making the substitu-
tions f̄ = f T and K̄ = KT to arrive at

fri,r j = iδr j Kδri − iδri Kδr j + O

(
1

T 2

)
. (B27)

Since the current operators used in Secs. II and III can be ex-
pressed as a sum over individual flows, this property naturally
extends to the current, and we see that

JRx → JA
Rx

+ O

(
1

T 2

)
, (B28)

JRx (r) → JA
Rx

(r) + O

(
1

T 2

)
, (B29)

where, in each case, the adiabatic version is found by substi-
tuting H → K in the definition.

APPENDIX C: CONNECTION TO CHERN MARKER

The crosshair marker can be seen as an extension of the
Chern marker derived in [11]. To show this let us look at what
happens when we integrate a step function over an interval
[0, L]:

∫ Lx

0
θ (x − Rx )dRx = x for 0 < x < Lx. (C1)

Note that this is an integral even in a lattice system, since the
parameter Rx, which sets the position of the step function,
is always continuous. Thus, let us assume that our quantum
system is on a rectangular region of size Lx, Ly. We wish to
integrate the crosshair marker in p over this region, essentially
summing the marker evaluated about every point,∫

L
σ (r, R)d2R = 2ImTrr

∫
d2RPθRx PθRy P (C2)

= 2ImTrr(PXPY P). (C3)

Thus, we arrive at the standard form of the Chern marker. The
crosshair marker can be understood as a deconstruction of the
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Chern marker that allows us to extract a quantized result for
the Chern number of a nonuniform system.

APPENDIX D: EDGE STATES IN
AMORPHOUS HAMILTONIANS

The topological phase diagram of the amorphous QWZ
model is verified by looking at the band structure in periodic
and open boundary conditions as a function of the parameter
u. If the system is a topologically trivial insulator, we expect
that it should be gapped for periodic boundary conditions

and that the gap should remain open when we move to open
boundaries. On the other hand, if the system is a topological
insulator, then the gap will be closed in open boundaries by
the presence of edge modes. Furthermore, we should always
expect the gap to close whenever u crosses between a topo-
logical and trivial phase. The energies as a function of u are
shown in Fig. 8. As can be seen, a topological gap is open
for −1.5 < u < 0 at zero Fermi level. In Fig. 9 we show
the density of states for a system with u = −1 alongside the
probability amplitudes |ψ (r)| for two example states, one
edge state and one bulk state.
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