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Local topological markers have proven to be a valuable tool for investigating systems with topologically
nontrivial bands. Due to their local nature, such markers can treat translationally invariant systems and spatially
inhomogeneous systems on an equal footing. Among the most prevalent of these is the so-called Chern marker,
which is available for systems in two spatial dimensions. In this paper we describe how to generalize this
marker to 1D and 3D systems by showing that the relevant expressions accurately describe the phenomenon
of topological pumping given by the first and second Chern numbers in 1D and 3D, respectively. In addition
to providing general derivations, we verify the markers by numerically considering model Hamiltonians. These
results will open the door for future studies, including the influence of disorder on topological pumping and
topological phase transitions in odd-dimensional systems.
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I. INTRODUCTION

Due to their potential applications, as well as fundamen-
tal importance, interest in topological quantum systems has
remained high over recent years. Among the most promi-
nent and basic effects such systems can exhibit is that of
topological pumping. Topological pumping in one spatial
dimension (1D) was originally theoretically described by
Thouless, where it was shown that for gapped, adiabatically
varied, noninteracting Fermionic systems, charge is pumped
by integer amounts over each time period [1]. Furthermore,
this integer value of charge is given by the first Chern number
of the time-dependent system. Effects directly related to such
topological pumping have been realized experimentally in
photonic systems [2–4], cold atomic gas systems [5–8], as
well as magnetomechanical metamaterials and elastic lattice
systems [9,10]. The development of the modern theory of po-
larization provided an alternative interpretation of this effect
as a change of the macroscopic polarization of the system
[11–15].

In 3D systems a more recently understood effect involves
the linear response of a system’s magnetization when an
external electric field is applied or, equivalently, the linear
response of the polarization when an external electric field is
applied. Such a response is described by the magnetoelectric
polarizability. It was shown that the isotropic contribution to
this polarizability is a purely geometric quantity which has
coupling strength given by [16–18]

αCS = e2

h

θCS

2π
. (1)

Above θCS is defined in terms of the following integral over
the Brillouin zone:

θCS = − 1

4π

∫
BZ

dk εi jl Tr

(
Ãi∂ jÃl − 2i

3
ÃiÃ jÃl

)
, (2)

and is often referred to as the Chern-Simons axion coupling,
where εi jl is the Levi-Civita symbol and Ãi is the Berry
connection.

For time-periodic systems in three spatial dimensions, it is
known that the change of θCS over a full period is related to the
second Chern number of the system. As such, an analogous
3D topological pump would be characterized by the second
Chern number. However, unlike the 1D pump where actual
charge is pumped, it is less clear in general what physical
quantity is pumped for the time-dependent 3D case in the
absence of external magnetic and electric fields when θCS

changes by an integer value over a pumping cycle. In [19], it
was shown for a particular model that it is the Berry curvature
itself that is pumped.

In parallel efforts, there has been considerable progress
in theoretically understanding phenomena in 4D topological
quantum systems such as the quantum Hall effect [20–22].
The current experimental realization of 4D topological sys-
tems (with two of the dimensions being “synthetic”) has
been achieved in both photonic and cold atomic gas sys-
tems [23,24]. Such 4D topological systems can be related to
time-dependent 3D systems by the process of dimensional
reduction [16].

In a separate but related direction, another advance in the
field of topological physics is that of local topological mark-
ers. Generally speaking, such markers reduce to the system’s
topological number when there is translational invariance but
do not rely on translational invariance for their evaluation.
Among the most prevalent of these topological markers is
the so-called Chern marker [25]. Since the Chern marker
does not require translational invariance, it has been used to
probe topological phases and topological phase transitions of
inhomogeneous systems [26–34]. Recent work analyzed the
nonequilibrium dynamics of the Chern marker for a system
undergoing a quantum quench and found that topological cur-
rents arise within the system [35]. It was also shown that the
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Chern marker can be used to investigate topological aspects
of non-Hermitian systems [36]. However, the current form
of the Chern marker is restricted to systems in two spatial
dimensions.

In this paper we will develop local topological markers for
both 1D and 3D time-dependant systems. These markers are
related to the system’s dipole moment in 1D and the projected
fully antisymmetric moment in 3D, namely, εi jl P̂x̂iP̂x̂ j P̂x̂l P̂,
where P̂ projects into occupied single-particle states. We show
both analytically and numerically that the change in the 1D
and 3D markers over a full time period are quantized to
integer values given by the first and second Chern numbers
of the time-dependent system, respectively. The topological
pumping of such systems is therefore directly reflected by the
local markers and, moreover, the 3D marker can be related
to the previously discussed axion coupling. We also provide
a generalization of the Chern marker to 4D time-independent
systems.

The paper is organized as follows. In Sec. II the notation
is set, and basic quantities are introduced for later use. In this
section we also provide some background on the well-studied
2D Chern marker and show how to generalize it to the 4D
case. Section III focuses on developing the 1D marker. Analyt-
ical derivations are supplemented by comparison to numerical
calculations for a particular time-dependent Hamiltonian. In
Sec. IV we then move on to develop a topological marker suit-
able for three spatial dimensions. After considering previous
relevant work, we provide a constructive derivation of the 3D
marker using insights gained from the 1D case. This marker
is also verified by numerically investigating a particular 3D
model. Lastly, in Sec. V we discuss possible future avenues
of investigation for the odd-dimensional topological markers
and conclude.

II. BACKGROUND, NOTATION, AND MARKERS
IN EVEN DIMENSIONS

In this section we introduce the notation that will be used
throughout the paper. We also introduce the effective time-
evolution operator and the operator Berry connection, which
are crucial in developing the topological markers for 1D and
3D systems. After reviewing the 2D Chern marker, we de-
velop a generalized Chern marker for the 4D case and show
that it reduces to the second Chern number for translationally
invariant systems.

A. Notation and band structure convention

In what follows we will set the notation used in the re-
mainder of the paper. In most of this work, we will consider
systems with open boundary conditions that are translation-
ally invariant in the bulk. We will utilize the concept of
“nearsightedness” such that deep in the bulk, the density ma-
trix can be approximated by the density matrix of an infinite
translationally invariant system [37,38]. For the purpose of
this paper the terms “translationally invariant” and “deep in
the bulk” most often can be used interchangeably.

We take the Hilbert space of the system to be spanned
by the states |x〉 ⊗ |α〉, where |x〉 denotes a state in a unit
cell with lattice vector x, and the states |α〉 represent degrees

of freedom within the unit cell. These states are normalized
as 〈x|x′〉 = δx,x′ and 〈α|α′〉 = δα,α′ . Such notation is particu-
larly amenable to tight-binding models [39]. Eigenstates of a
Hamiltonian with discrete translational invariance, or Bloch
states, can then be written as

|ψkn〉 = |k〉 ⊗ |ukn〉, where

{〈k|k′〉 = δ(k − k′)

〈ukn|ukn′ 〉 = δn,n′ .
(3)

Here, |ukn〉 is the cell-periodic portion of the Bloch state,
where n denotes the band, k is the wave vector, and |k〉 =

1√
VBZ

∑
x eix·k|x〉. VBZ is the volume of the Brillouin zone,

which is related to the unit-cell volume by Vc = (2π )d/VBZ,
where d is the spatial dimension of the system.

We use the following convention for the position operator:

x̂ =
∑

x

x|x〉〈x| ⊗ 1, (4)

where the identity operator above acts on degrees of free-
dom within a unit cell. Note that with this convention, x̂ is
insensitive to degrees of freedom within a unit cell. The com-
ponents of x̂ will be denoted by x̂i for i = 1, . . . , d . With this,
x̂|x〉 = x|x〉. The local unit-cell trace over internal degrees of
freedom in unit cell at x can be evaluated as

trx(Ô) =
∑

α

(〈x| ⊗ 〈α|)Ô(|x〉 ⊗ |α〉) (5)

for a general operator Ô. The full trace of operator Ô can
then be evaluated as Tr(Ô) = ∑

x trx(Ô). Note that for a finite
Hilbert space, the full trace will satisfy the cyclic property
Tr(Ô1Ô2) = Tr(Ô2Ô1) but the local trace generally will not.

Throughout this article we use Tr to denote a full trace
over all the degrees of freedom of the operator (or matrix)
it acts on, while trx denotes a unit-cell trace. As such, for the
case when an operator Ô can be written in the translation-
ally invariant form Ô = ∫

BZ dk|k〉〈k| ⊗ Ôk we have trx(Ô) =
1

VBZ

∫
BZ dk Tr (Ôk ).

The operator projecting into the occupied states, for a trans-
lationally invariant system, is given by

P̂ =
occ∑
n

∫
BZ

dk|ψkn〉〈ψkn| =
∫

BZ
dk|k〉〈k| ⊗ P̂k, (6)

where n runs over the occupied bands and P̂k is given by

P̂k =
occ∑
n

|ukn〉〈ukn|. (7)

The wave-vector integrals like the above are to be taken over
the Brillouin zone. We will generally denote k-dependent
operators with scripted letters as was done here and sometimes
drop the subscript k for brevity. Note that for a system without
translational invariance, P̂ (the projector into occupied states)
can be constructed in a similar way, but P̂k cannot. Finally,
we denote the compliment of P̂ as Q̂ = 1 − P̂, which projects
into the unoccupied states of the system.

B. Adiabatic evolution

Throughout this paper we restrict our focus to quantum
dynamics confined to the adiabatic regime. Furthermore, we
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will only consider the case of time dependence that is periodic
(with time period T ). To ensure adiabatic evolution, we take
the dynamics of the system to be governed by an effective
time-evolution operator described in this section, which as-
sures that if the system starts in the (instantaneous) ground
state it will remain in the ground state. Choosing such an ef-
fective evolution operator is a matter of practical convenience;
the main results of the paper will continue to hold for the true
evolution, provided one is in the adiabatic regime.

The effective adiabatic Hamiltonian is given by [40–42]

ĥ = i[ ˙̂P, P̂], (8)

where ˙̂P = d
dt P̂. Recall that P̂ projects into a set of instanta-

neous eigenstates of the original “parent” Hamiltonian. From
this, one can construct the adiabatic evolution operator by
solving the time-evolution equation i d

dt Û = ĥÛ with Û (t =
0) = 1. A straightforward calculation shows that this evolu-
tion operator produces the correct adiabatic evolution of the
projection operators: P̂(t ) = Û ˆ̄PÛ †, Q̂(t ) = Û ˆ̄QÛ † where the
operators with overhead bars are to be evaluated at t = 0.
Furthermore, this adiabatic evolution can be seen to retain
the correct Berry phase information of the original time-
dependent Hamiltonian. A crucial advantage of this procedure
is that adiabatic evolution is automatically ensured, no matter
how fast P̂ changes with respect to time.

All of the previous results of this section hold in general.
On the other hand, for a translationally invariant system, one
can simplify further to

ĥ =
∫

BZ
dk|k〉〈k| ⊗ ĥk, (9)

where the effective Bloch Hamiltonian is ĥk = i[ ˙̂Pk, P̂k]. The
time-evolution operator can similarly be written as

Û =
∫

BZ
dk|k〉〈k| ⊗ Ûk. (10)

In this work, we will restrict to time dependence that does not
break discrete translational invariance in the bulk. Therefore,
the time dependence of Û (for instance) will be given by that
of Ûk.

An explicit expression for the evolution operator is given
by

Ûk(t ) =
∑

n

|ukn(t )〉〈ukn(0)|, (11)

where the cell-periodic states |ukn〉 can be used to construct
the relevant projection operators as P̂k = ∑occ

n |ukn〉〈ukn|
and Q̂k = ∑unocc

n |ukn〉〈ukn|. There is a slight subtlety with
Eq. (11): the gauge of the cell-periodic states appearing in it
are fixed. In fact, these states do not in general correspond
to eigenstates of the Hamiltonian of the original system. A
discussion of these technicalities is given in Appendix A.

C. Berry connection and curvature operators

We now use the time-evolution operator established above
to define the operator Berry connection and highlight how this
form is related to the conventional Berry connection. In what
immediately follows, we consider a translationally invariant

system. We define the operator Berry connection as

Âi =
∫

BZ
dk|k〉〈k| ⊗ Âi with Âi = i ˆ̄PÛ†∂iÛ ˆ̄P, (12)

where, as before, overhead bars indicate evaluation at t = 0
and ∂i = ∂

∂ki
. This expression has similarities with the con-

nection used in Ref. [43]. From the name of Âi there is the
insinuation that it is related to the conventional Berry con-
nection matrix Ãi, which has elements (Ãi )nm = i〈ukn|∂iukm〉,
where n and m label occupied bands. Indeed, by inserting
Uk = ∑

m |ukm(t )〉〈ukm(0)| into Eq. (12), a direct calculation
shows that

Âi =
occ∑
nm

|ukn(0)〉〈ukm(0)|(Ãi(t ) − Ãi(0)
)

nm
. (13)

As such, we see that Âi gives the change of the Berry connec-
tion over time.

As shown in the following section, see Eq. (30), an expres-
sion for the operator Berry connection operator that does not
rely on translational invariance is

Âi = Û †P̂x̂iP̂Û − ˆ̄Px̂i
ˆ̄P. (14)

This expression reduces to Eq. (12) when translational invari-
ance is present and will be used extensively when we construct
the topological marker for the 3D case.

The concomitant Berry curvature operator is defined as

F̂i j = −i[X̂i, X̂ j], (15)

where for convenience we have defined the projected position
operators as

X̂i = P̂x̂iP̂. (16)

For a translationally invariant system, using manipulations
identical to those appearing later in Sec. II D, the Berry curva-
ture operator can be written as

F̂i j =
∫

BZ
dk |k〉〈k| ⊗ F̂i j, (17)

where F̂i j = iP̂[∂iP̂, ∂ jP̂]P̂ . A direct calculation
shows that this is related to the conventional Berry
curvature F̃i j = ∂iÃ j − ∂ jÃi − i[Ãi, Ã j] as F̂i j =∑occ

nm |ukn(t )〉〈ukm(t )|(F̃i j )nm.
Finally, as shown in Appendix C, an elegant connection

exists between the quantities described in this and the previous
section:

Û†F̂i jÛ = ˆ̄P
(
∂iÂ j − ∂ jÂi − i[Âi, Â j]

) ˆ̄P + ˆ̄Fi j . (18)

D. Chern marker in even dimensions

We are now in a position to discuss the Chern marker in
even dimensions. In particular, we will provide some back-
ground on (and a short derivation of) the Chern marker in
2D [25,42]. We also provide a generalized Chern marker for
the 4D case, which reduces to the second Chern number for a
translationally invariant system.

We will make regular use of the following identity which is
derived in Appendix B and holds for translationally invariant
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systems:

P̂x̂iQ̂ =
∫

BZ
dk|k〉〈k| ⊗ (−i)P̂k∂iP̂k. (19)

The utility of this expression (valid for arbitrary dimensions)
is quickly appreciated as it provides a direct verification (and
derivation) of the Chern marker as we demonstrate in the
following. The Chern marker for a 2D system is defined in
terms of the unit-cell trace as [25]

M2(x) = −2π i

Vc
trx([P̂x̂P̂, P̂ŷP̂])

= −4π

Vc
Im trx(P̂x̂Q̂ŷP̂). (20)

Now taking the system to be translationally invariant and
inserting Eq. (19) and its Hermitian conjugate for the expres-
sions P̂x̂Q̂ and Q̂ŷP̂ into the second line of Eq. (20), one
immediately finds that the Chern marker reduces to the first
Chern number, C1, of the system [44]:

M2(x) = i

2π

∫
BZ

dk Tr(P̂[∂kx P̂, ∂ky P̂]P̂ )

= i

2π

occ∑
n

∫
BZ

dk εi j〈∂iukn|∂ jukn〉 = C1. (21)

Although M2(x) is a real-space local quantity, it contains
information about the global system via the projectors. As
such, one can gain insight into the Chern number of the system
despite only considering a local region.

We are now in a position to generalize the Chern marker
to four dimensions. We proceed in the spirit of the previous
paragraph by writing down an expression and showing that
it reduces to the second Chern number for translationally
invariant systems. We take the four-dimensional Chern marker
to be

M4(x) = −2π2

Vc
εi jlm trx(P̂x̂iP̂x̂ j P̂x̂l P̂x̂mP̂). (22)

Next, we replace the second and fourth projection operators
in the above expression with P̂ = 1 − Q̂ and use the antisym-
metry of the Levi-Civita symbol to obtain

M4(x) = −2π2

Vc
εi jlmtrx(P̂x̂iQ̂x̂ j P̂x̂l Q̂x̂mP̂). (23)

Taking the system to be translationally invariant, the relation
Eq. (19) can then be used for the quantities P̂x̂iQ̂ and Q̂x̂iP̂.
Then carrying out the local trace, one arrives at

M4(x) = −εi jlm

8π2

∫
BZ

dkTr
(
P̂ (∂iP̂ )(∂ jP̂ )(∂l P̂ )(∂mP̂ )P̂

)
= εi jlm

32π2

∫
BZ

dk Tr(F̃i jF̃lm) = C2. (24)

The right-hand side of the above equation is the second Chern
number C2 [16,45]. The expression (22) for the 4D Chern
marker is a secondary result of the present work.

As stated earlier, the Chern marker for 2D systems has
been used to investigate a wide range of inhomogeneous
topological systems, both classical and quantum. Thus, the
formulation of the Chern marker in 4D opens the possibility

of investigating 4D inhomogeneous topological systems. The
theoretical investigation of 4D systems is complimented by
the development of experimental techniques allowing experi-
mental access to these systems via synthetic dimensions [22].

III. TOPOLOGICAL MARKER IN ONE DIMENSION

In what follows we consider pumping in time-dependent
one-dimensional systems, with the goal of developing a local
topological marker which describes this effect. Though we
motivate this marker with a concrete model, the results are
general. For the concrete model, we take the time-dependent
Aubry-André Hamiltonian which is given by [46,47]

Ĥ = −J
∑

n

(|n〉〈n + 1| + H.c.
)

− 

∑

n

cos
(
2παn − φ(t )

)|n〉〈n|, (25)

where n takes on integer values and labels the lattice sites. The
first term describes hopping between sites, while the second
term gives a time-dependent on-site energy shift. The time
dependence is incorporated through φ(t ) = 2πt/T , where T
is the period. We will set α = 1/3, which extends the unit cell
to encompass three sites, and so the resulting system has three
energy bands. The lowest band has a Chern number of 1,

C1 = i

2π

∫ T

0
dt

∫
BZ

dk [〈∂t uk|∂kuk〉 − 〈∂kuk|∂t uk〉] = 1,

(26)

where |uk〉 is the periodic part of the instantaneous Bloch
eigenstate for the lowest band. We therefore expect one unit
of charge to be pumped through a unit cell per cycle for this
band.

We now shift to considering a finite system with open
boundary conditions. We first consider eigenvalues of the
operator P̂x̂P̂, where P̂ projects into the lowest-energy “band.”
That is, it projects out 2/3 of the total single-particle states
which form the higher-energy bands for the translationally
invariant case. Figure 1 shows the position of one such eigen-
value deep within the bulk of the system as a function of
time. We refer to these eigenvalues, denoted by λ, as Wannier
centers, noting, however, that this term is often reserved for
fully translationally invariant systems and we are analyzing
a finite system that terminates. One sees that the Wannier
center increases by a lattice constant when evolved over a full
period. It is well known from the modern theory of polariza-
tion [15] that the change in the position of a Wannier center
(in units of the lattice constant) is the same as the change
of the polarization 
P1. Noting then that the change of the
polarization is given by the integrated current over a time
period, 
P1 = ∫ T

0 dtJ (t ), we see that the behavior displayed
in Fig. 1 describes the topological pump.

This might motivate one to consider the local trace of P̂x̂P̂
as a good potential candidate for the 1D topological marker.
However a short calculation shows that the local trace of this
quantity deep in the bulk is, in fact, time independent. In
particular, the calculation gives

trx(P̂x̂P̂) = trx(x̂P̂ − Q̂x̂P̂) = xNc, (27)
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FIG. 1. The position of a Wannier center λ(t ) localized deep in
the bulk as a function of time. The lattice constant, comprising three
lattice sites, is denoted by a. The parameters have been set to 
 = 2J ,
α = 1/3, and the finite system is composed of 40 unit cells.

where we have used Eq. (19), along with the iden-
tity Tr[(∂kP̂k )P̂k] = Tr[P̂k (∂kP̂k )P̂k] = 0, to get the second
equality and Nc denotes the number of particles per unit cell
(which is 1 for this system). The above equation highlights
that the local trace of the dipole moment calculates the density
of the unit cell weighted by the unit-cell position. Because
the unit-cell density is time independent, due to translational
invariance, Eq. (27) is also time independent and therefore
cannot reflect the topological pumping of the system.

With this shortcoming noted, we will now consider a slight
augmentation of the above and take

M1(x) = 1

Vc
trx( Û †P̂x̂P̂Û ) = 1

Vc
trx( ˆ̄PÛ †x̂Û ˆ̄P). (28)

It turns out that this expression has all of the desired proper-
ties, which are elaborated upon below. We therefore identify it
as the topological marker in 1D. The prefactor 1/Vc, where Vc

is the unit-cell volume (or lattice constant in 1D), is included
to make the quantity M1 dimensionless.

We will now proceed to manipulate some of the terms
appearing in Eq. (28) to bring the expression into a more rec-
ognizable form. For a translationally invariant system, using
〈k|x̂|k′〉 = i∂kδ(k − k′) and x̂ j |k〉 = −i∂ j |k〉, it follows after
an integration by parts that

Û †x̂Û = x̂ +
∫

BZ
dk|k〉〈k| ⊗ iÛ†∂kÛ . (29)

Acting with projection operators and using Eq. (12) one finds

ˆ̄PÛ †x̂Û ˆ̄P = ˆ̄Px̂ ˆ̄P +
∫

dk|k〉〈k| ⊗ Âk, (30)

where Eq. (12) has been used. This establishes a direct re-
lationship between the evolved position operator and the
operator Berry connection, similar to what appears in the
semiclassical dynamics of wave packets in lattice systems
[48]. In fact, this equation gives a way of defining the operator

FIG. 2. The change in the 1D marker M1(x) over a full time
period for the lowest band of the Aubry-Andre model with same
parameters as Fig. 1. The local trace was taken over the 20th unit
cell, x = 20, for a system size of 40 unit cells.

Berry connection in a way that does not depend on transla-
tional invariance: Â = Û †X̂Û − ˆ̄X .

Now, for x deep in the bulk and using the above relation, a
direct calculation shows that

M1(x) = Nc

Vc
x + 1

2π

∫
BZ

dk Tr(Âk )

= Nc

Vc
x + 1

2π

occ∑
n

∫
BZ

dk[Ãk (t ) − Ãk (0)]nn, (31)

where in the first equality we used Eq. (12) and in the second
equality, Eq. (13). This can alternatively be written by using a
fundamental relationship between Zak phase and polarization
[12], as M1 = Nc

Vc
x + 
P1.

We have thus shown that M1 describes the topological
pump, due to its relationship with the polarization. Due
to the local nature in real space of M1, one could use it
to investigate time-dependent 1D systems with disorder or
other spatial inhomogeneities. In hindsight, it is perhaps not
very surprising that the local trace of P̂x̂P̂ does not describe
the polarization of the system, since this quantity can be
expressed purely in terms of charge density at a particular
time (and does not involve current) and it is known that the
polarization cannot be expressed in terms of density alone.
The time evolution entering M1 gives the required history
dependence to determine the polarization. As M1(x) is a local
quantity, there is a temptation to identify it with the local
polarization P1(x). For instance, with such an identification,
and with a suitable continuum limit taken, one could ask
if the following basic relations to polarization current and
charge hold: ∂t P1(x) = J (x), ∂xP1(x) = −ρ(x). The veracity
of such an identification is worth investigation but will not be
considered further in this work.

With M1 defined we can now compute it numerically for
the Aubry-André model to verify the above considerations.
Figure 2 shows the time dependence of M1 for a finite sys-
tem with open boundary conditions with 40 unit cells. The
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FIG. 3. The change in M1(x) = 1
Vc

trx( Û †P̂x̂P̂Û ) over a full
time period for each unit cell in the system. The lowest band of the
Aubry-Andre model was populated and the parameters are the same
as in Fig. 1.

position of the unit cell for the local trace is taken deep in the
bulk of the system. Despite being a finite system, the result
quantitatively matches that of the Wannier center plotted in
Fig. 1. The result of Fig. 2 was checked to be unchanged if the
size of the total system is increased.

The agreement discussed above becomes worse when the
local trace is taken over a unit cell close to the boundary of
the system. This is because the approximation of treating the
system as translationally invariant breaks down toward the
edges. In fact, the sum over the local markers over the whole
system

∑
x M1(x) can be seen to be periodic in time and so

cannot experience a net change over a pumping cycle. This
is straightforwardly seen by using the cyclic property of the
trace,

∑
x M1(x) = 1

Vc
Tr(P̂x̂P̂), and noting that P̂ is periodic

in time. This is closely related to the fact that the sum of the
2D Chern marker over a finite system vanishes:

∑
x M2(x) =

0, which is again established by the cyclic property of the trace
[25,35].

To demonstrate these properties we plot the change in
M1(x) over a full time period across the system in Fig. 3.
From this figure it can be seen that near the edges of the
system the change in M1(x) deviates from the Chern number
of the system such that the sum of M1(x) over the system
gives zero as stated above.

Before closing this section, we will briefly discuss how
the numerical calculation of M1(x) was done. First, the time
interval [0, T ] is discretized with sufficiently small uniform
spacing 
t . For any discrete time point, P̂(t ) can be calculated
from the eigenvalues of Ĥ (t ). Using P̂ computed at t + 
t
and t − 
t , ˙̂P(t ) can be calculated using a finite difference
method. With these ingredients, ĥ can then be constructed
using Eq. (8). Starting at Û (0) = 1, the time-evolution oper-
ator at subsequent times can be computed using Û (t + 
t ) =
e−iĥ(t )
tÛ (t ), which has an error of order (
t )2 but retains
the unitary form of Û to numerical accuracy. Lastly, M1(x)
is calculated using Eq. (28). Convergence in the time spacing

t , of course, should be checked.

To summarize, in this section we have introduced the 1D
local topological marker M1(x). We have demonstrated, both
on general grounds and with a specific model, that it changes
by an integer value over a pumping cycle. This 1D marker
satisfies a sum rule similar to that of the 2D Chern marker.
Though pumping in 1D systems is now well understood, the
1D marker allows systems with spatial inhomogeneities to be
explored on an equal footing. Though some aspects in this
section are well known, we presented them as they provide
important insights for the 3D case.

IV. TOPOLOGICAL MARKER IN THREE DIMENSIONS

We now move on to consider how to generalize to the case
of three spatial dimensions. Like for the 1D case, we will con-
sider time-dependent Hamiltonians that do not break discrete
translational invariance in the bulk. We take an approach with
several parallels to the treatment in the previous section of the
1D case.

A. Extensive Chern-Simons axion coupling

In previous leading works [18,49], the following expres-
sion for the extensive Chern-Simons axion coupling was
shown to accurately reflect the topological nature of 3D band
structures:

θ0 = 4iπ2

3
εi jlTr

(
P̂x̂iP̂x̂ j P̂x̂l P̂

)
, (32)

where the above trace is over the entire system. In [49], a hy-
brid Wannier function basis was used to compute the trace in
the above expression. This basis is composed of states that are
extended in the x, y directions but localized in the z direction.
With such a basis, Eq. (32) was written in terms of the hybrid
Wannier centers. Furthermore, pumping was demonstrated for
the Wannier centers, and hence for Eq. (32), in a manner
consistent with expectations from the second Chern number
of the time-dependent system. For such a construction to
work, the direction of pumping must be identified first. Then
hybrid Wannier functions are chosen to be localized along this
direction. If the “wrong” axis is taken for the hybrid Wannier
functions, then the resulting expression for Eq. (32) would not
capture the pumping.

In a separate but related direction, the analysis of multipole
moments, which do not involve projections between posi-
tion operators, has proven very productive for analyzing the
boundary of bulk insulators [50,51]. The connection between
the octupole moment and Eq. (32) is one worth exploring but
will not be pursued in the present work.

One would naively expect that a 3D local topological
marker would have similarities to Eq. (32). In the following,
we will demonstrate that a local expression following most di-
rectly from Eq. (32) is unsuitable for our purposes. Replacing
the full trace in Eq. (32) with a unit-cell trace, one obtains

θ (x) = 4iπ2

3
εi jl trx

(
P̂x̂iP̂x̂ j P̂x̂l P̂

)
. (33)
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Now we restrict our analysis to positions x deep within the
bulk. Working on a factor inside the trace, we have

εi jl P̂x̂ j P̂x̂l P̂ = −1

2
εi jl

∫
BZ

dk|k〉〈k| ⊗ P̂[∂ jP̂, ∂l P̂]P̂, (34)

where Eq. (19) from Sec. II D has been used. Next, using P̂ =
1 − Q̂ for the first projector appearing in Eq. (33), the local
trace can be carried out. One then finds

θ (x) = − iVc

12π
εi jl xi

∫
BZ

dk Tr(P̂[∂ jP̂, ∂l P̂]P̂ ). (35)

This expression for θ (x) depends on the Chern numbers of the
various 2D planes of the system and the position of the unit
cell over which the local trace is taken. This expression is in
fact independent of time, which can be seen as follows. Taking
the time derivative, we have

dθ (x)

dt
= − iVc

6π
εi jl xi

∫
BZ

dk ∂ jTr(P̂[∂t P̂, ∂l P̂]P̂ ) = 0, (36)

where we note that the quantity to the right of ∂ j is a periodic
function of k and the cyclic property of the trace has been
used. Similar reasoning was used to show that Chern num-
bers are unaffected by a quantum quench [52]. In contrast to
M1(x) considered in Sec. III, θ (x) is time independent and so
cannot describe pumping. In fact, the above is very reminis-
cent of the fact that in 1D, trx(P̂x̂P̂) is time independent, see
Eq. (27).

Furthermore, it can be shown that θ0 will identically vanish
for some finite systems exhibiting topological pumping. We
consider a Hamiltonian which decouples in the following way:

Ĥ = Ĥ1 ⊗ 1 + 1 ⊗ Ĥ2. (37)

Hamiltonians that can be written in this way have been re-
cently considered in the context of the 4D quantum Hall
effect [20,21]. The operators x̂, ŷ act on the Hilbert space of
Ĥ1, and the operator ẑ acts on the Hilbert space of Ĥ2. The
eigenfunctions of Ĥ all have the separable form |φl〉 ⊗ |χm〉,
where |φl〉 and |χm〉 individually are eigenstates of Ĥ1 and Ĥ2,
respectively. Using this, one can define the projector P̂ as

P̂ =
∑
l,m

alm|φl〉〈φl | ⊗ |χm〉〈χm|, (38)

where alm is either one or zero for occupied and unoccupied
states, respectively, and the summation is over all values of l
and m. Next, we use the cyclic property of the trace to obtain

εi jl Tr(P̂x̂iP̂x̂ j P̂x̂l ) = 3[Tr(P̂x̂P̂ŷP̂ẑ) − Tr(P̂ŷP̂x̂P̂ẑ)]. (39)

Using Eq. (38), one can show that Tr(P̂x̂P̂ŷP̂ẑ) takes the form

Tr(P̂x̂P̂ŷP̂ẑ) =
∑
l,l ′,m

almal ′m〈φl |x̂|φl ′ 〉〈φl ′ |ŷ|φl〉〈χm|ẑ|χm〉,
(40)

where (alm)2 = alm has been used. Now one can observe that
the left-hand side of the above equation is unaffected if x̂ and
ŷ are interchanged. This means that the two terms in Eq. (39)
cancel one another and so the axion coupling vanishes identi-
cally, θ0 = 0, for this case of a decoupled Hamiltonian.

It is interesting to contrast this observation with the closest
analog of θ0 for the 1D case, namely, the system’s dipole

moment: p(t ) = Tr(P̂(t )x̂). Although p(t ) is necessarily pe-
riodic in time for the finite system [since P̂(t ) is], pumping
behavior can be deduced from it. That is, for large but finite
systems, the time dependence of the dipole moment will be
directly proportional to the position of a Wannier center deep
in the bulk, see Fig. 1, apart from abrupt jumps corresponding
Wannier centers exiting one side of the system and appearing
on the other. Such jumps are very analogous to the 2π phase
ambiguity of the Zak phase, and serve to enforce the period-
icity of p(t ). One might naively expect similar behavior to
be encapsulated in θ0. However, for the case of a decoupled
Hamiltonian as describe above, it is not.

B. Derivation of the 3D marker

With the motivation outlined in the previous section and
with the shortcomings of a local version of θ0 highlighted,
we now deduce a suitable expression for the 3D topological
marker, M3. Noting how time dependence was incorporated
in the 1D case, e.g., Eq. (28), and the axion coupling con-
sidered in the previous section, we consider the following
operator as a potentially fruitful starting point:

R̂ = εi jlÛ
†X̂iX̂ j X̂lÛ , (41)

where we recall that X̂i = P̂x̂iP̂. We will proceed by differ-
entiating this quantity with respect to time and identifying
which terms of

∫ T
0 dt trx(dR̂/dt ) are proportional to the sec-

ond Chern number.
To facilitate this we first introduce a small amount of addi-

tional notation. The projected velocity operator is

v̂i = −iP̂[x̂i, ĥ]P̂, (42)

where ĥ is the Hamiltonian governing the dynamics. For
the effective adiabatic Hamiltonian, ĥ = i[ ˙̂P, P̂], this becomes
v̂i = P̂ ˙̂XiP̂. For the case where translational invariance is
present, the projected velocity operator can be written as

v̂i =
∫

BZ
dk|k〉〈k| ⊗ v̂i, (43)

where v̂i = F̂t i = iP̂[∂t P̂, ∂iP̂]P̂ . A short calculation shows
that the operator Berry connection Â j = Û †X̂ jÛ − ˆ̄Xj (over-
head bars continue to denote evaluation at t = 0) is related to
the projected velocity operator as

d

dt
Âi = Û †v̂iÛ . (44)

Now, returning to the operator R̂, by using the relations
from the previous paragraph, its time derivative can be seen to
be

dR̂

dt
= εi jlÛ

†
(
v̂iX̂ j X̂l + X̂iv̂ j X̂l + X̂iX̂ j v̂l

)
Û

= L̂1 + L̂2 + L̂3, (45)

where the operators L̂i are defined by the three terms in the
preceding expression, respectively. When taking a local trace
of this expression deep within the bulk, the first and last
terms can be seen to give equal contributions. As well as
this, when integrated over time, both terms give a contribu-
tion proportional to the second Chern number. For instance,
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for the translationally invariant case, the first term can be
written as

L̂1 = εi jlÛ
†v̂iX̂ j X̂lÛ = i

2
εi jlÛ

†v̂iF̂jlÛ

= i

2
εi jl

∫
BZ

dk |k〉〈k| ⊗ Û†F̂t iF̂ jl Û . (46)

The local trace evaluated deep in the bulk is then readily
evaluated to be

trx(L̂1) = i

2VBZ
εi jl

∫
BZ

dk Tr(F̂t iF̂ jl )

= i

8VBZ
εμνσρ

∫
BZ

dk Tr(F̂μνF̂σρ ), (47)

where the Greek indices are summed over both space and time
components. In arriving at the last equality, the cyclic property
of the trace, as well as the antisymmetry of F̂i j , was used. We
are using a convention such that εtkxkykz = −εkxkykzt = 1. Then,
integrating over a time period, we have∫ T

0
dt trx(L̂1) = 4iπ2

VBZ
C2, (48)

where C2 is the second Chern number. A very similar calcu-
lation gives the same result for L̂3. Note that trx(L̂1) = trx(L̂3)
deep in the bulk.

We now are left to deal with the middle term in Eq. (45),
L̂2, which does not have such a simple relation to the second
Chern number. With a straightforward but tedious manipula-
tion, this contribution can be rewritten as

L̂2 = εi jl

[
1

2
ˆ̄Xi + 1

3
Âi, Û †v̂ jÛ Âl

]
− H.c.

+ εi jl
d

dt

(
1

6
ÂiÂ j Âl + i

4
ˆ̄XiÛ

†F̂jlÛ − i

4
Âi

ˆ̄Fjl

)
− H.c.,

(49)

where extensive use of the antisymmetry of εi jl has been
used. When taking the local trace deep in the bulk, the term
involving the commutator will vanish. Evaluating the local
trace of the first contribution involving ˆ̄Xi leads to a Brillouin
zone integral of the derivative of a periodic quantity. See
Appendix B for more details. The local trace from the second
contribution involving Âi can be seen to vanish by noting that
each factor involved is translationally invariant in the bulk,
and using the cyclic property of the trace.

With the considerations from the previous paragraph, we
define the new operator

R̂′ = R̂ + iεi jl

4

(
Âi

ˆ̄Fjl − ˆ̄XiÛ
†F̂jlÛ + 2i

3
ÂiÂ j Âl + H.c.

)
.

(50)

The terms in parenthesis above follow directly from Eq. (49).
We then have that

∫ T
0 dt trx(dR̂′/dt ) is proportional to the

second Chern number for x deep in the bulk. The constant of
proportionality can be read off from Eq. (48). This then gives
our expression for the 3D marker,

M3(x)= πεi jl

2Vc
Re

[
trx

(
ÂiÛ

†F̂jlÛ +Âi
ˆ̄Fjl + 2iÂiÂ j Âl

3

)]
.

(51)

When x is deep in the bulk, we have that the change of M3

over a time cycle is the second Chern number. It is also
worth noting that none of the quantities in this expression
rely upon translational invariance for their evaluation. Equa-
tion (51) is the main result of this paper. For convenience,
we collect the relevant quantities entering Eq. (51) all to-
gether here: P̂ projects into the occupied single-particle states,
Âi = Û †P̂x̂iP̂Û − ˆ̄Px̂i

ˆ̄P, F̂i j = −i[P̂x̂iP̂, P̂x̂ j P̂], Û is the time-

evolution operator for ĥ = i[ ˙̂P, P̂], and overhead bars denote
evaluation at time t = 0.

C. Relation between the 3D marker and axion coupling

The behavior of M3 found in the previous section, namely,
that it changes by the second Chern number over a time pe-
riod, suggests it has close connection with the Chern-Simons
axion coupling parameter θCS, Eq. (2). It is interesting to
note, though, that the 3D marker follows directly from the
occupied-states projection operator. That is, all constituent
elements (e.g., Âi, F̂i j , Û , ĥ) follow from P̂ alone. As such,
M3 is manifestly gauge invariant. On the other hand, it is
well known that the axion coupling (which is the integrated
Chern-Simons three-form) Eq. (2) is only gauge invariant
modulo 2π [45].

In order to evaluate the integral in Eq. (2), one typically
needs to be able to define smooth and periodic states |ukn〉 as a
function of k across the entire Brillouin zone. That is, it is typ-
ically assumed that there is no topological obstruction which
follows if all of the first Chern numbers of the system vanish.
For a discussion of such subtleties, see [53]. Accordingly, in
this section we will assume that there are no topological ob-
structions to defining smooth and periodic Bloch states across
the Brillouin zone. Note, however, if one is working only with
the marker, such assumptions are not needed.

Deep in the bulk, the marker evaluated at time t takes the
form

M3 = εi jl

16π2

∫
BZ

dkTr

(
ÂiÛ†F̂ jl Û + Âi

ˆ̄F jl + 2i

3
ÂiÂ jÂl

)
.

(52)

To connect this to the axion coupling, we can use the re-
sults in Sec. II C to express the above in terms of Ãi and
F̃i j . For instance, in doing so one finds that the third term
in the parenthesis in Eq. (52) is replaced with 2i

3 (Ãi(t ) −
Ãi(0))(Ã j (t ) − Ã j (0))(Ãl (t ) − Ãl (0)), and Tr becomes the
usual matrix trace. Multiplying the terms out and using the
cyclic property of the trace leads to

M3 = − 1

2π

(
θCS(t ) − θCS(0)

) + εi jl

8π2

×
∫

BZ
dk∂iTr[Ã j (0)Ãl (t )], (53)

where θCS(t ) is determined by evaluating Eq. (2) at time t .
From the assumption stated earlier, the final term vanishes and
so we are left with simply

M3 = − 1

2π

(
θCS(t ) − θCS(0)

)
. (54)
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Hence the 3D marker deep in the bulk at time t corresponds
to the change over time of the integrated Chern-Simons three
form. This is similar to the fact that the 1D marker gives the
change of polarization. Note, however, that since the marker is
gauge invariant and does not rely on translational invariance,
it is perhaps the more fundamental quantity.

D. 3D model

With the 3D marker now defined, we will proceed to
verify its behavior with a specific model system. We first
construct a decoupled Hamiltonian, having the general form
of Eq. (55), by combining the Aubry-Andre model and the
Harper-Hofstadter model in a specific way [46,54]. Construc-
tions in a similar spirit have been carried out to investigate
the quantum Hall effect in 4D [20,21]. We then calculate
the 3D marker for the corresponding finite system with open
boundary conditions.

We define our 3D time-dependant decoupled Hamiltonian
in the following way:

Ĥ3D(t ) = Ĥ1 + Ĥ2(t ), (55)

where

Ĥ1 = −
∑
n,m,l

(

1e−2πα1n|n, m + 1, l〉〈n, m, l|

+ J1|n + 1, m, l〉〈n, m, l| + H.c.
)

(56)

and

Ĥ2(t ) = −
∑
n,m,l

(

2ei(2πα2l−φ(t ))|n, m, l〉〈n, m, l|

+ J2|n, m, l + 1〉〈n, m, l| + H.c.
)
. (57)

We have used n, m, l to label the lattice sites in the x, y, z
directions, respectively, and the time dependence entering
the above is φ(t ) = 2π

T t . It can be shown that Ĥ1 is related
to the Harper-Hofstadter model via Ĥ1 = ĤHH ⊗ 1̂z, where
ĤHH represents the 2D Harper-Hofstadter Hamiltonian, and
the identity matrix has dimension equal to the number of
lattice sites along the z direction. Similarly, Ĥ2 is related to
the 1D time-dependant Aubry-Andre Hamiltonian via Ĥ2 =
1̂xy ⊗ ĤAA, where ĤAA is the Aubry-Andre Hamiltonian and
the identity matrix has a dimension equal to the number of
lattice sites in the xy plane. We thus have

Ĥ3D = ĤHH ⊗ 1̂z + 1̂xy ⊗ ĤAA, (58)

with

ĤHH = −
∑
n,m

(

1e−i2πα1n|n, m + 1〉〈n, m|

+ J1|n + 1, m〉〈n, m| + H.c.
)

(59)

and

ĤAA = −
∑

l

(
2
2cos(2πα2l − φ(t ))|l〉〈l|

+ J2|l + 1〉〈l| + J2|l〉〈l + 1|). (60)

For our analysis we will be setting α1 = α2 = 1/3. This
extends the unit cell by three sites in both the x direction and
the z direction. The energy spectrum for Ĥ3D with periodic
boundary conditions can be seen in Fig. 4, which shows that

FIG. 4. Energy spectrum of Ĥ3D with kzaz = π/3 and φ(t ) =
π/2, where ax, ay, az are the lattice constants of the system. The
parameters of Ĥ3D were set as follows: J1 = J2 = 
1 = 
2 and
α1 = α2 = 1/3.

the lowest-energy band is separated by an energy gap from the
others. This band remains gapped (for the chosen parameters
of the model) for all values of kz and for all values of time
t . We therefore will calculate the 3D marker for this band.
For the system with open boundary conditions, we take P̂ that
projects into the single-particle states having lowest energy
that make up 1/9 of the overall spectrum.

A convenient feature of Hamiltonians of the decoupled
form Eq. (55) with a single occupied band is that the second
Chern number of the system will be the product of the first
Chern numbers of the reduced Hamiltonians [20]. This is
because for decoupled Hamiltonians the Bloch states of the
system are separable and as a result the projector is also sep-
arable. Letting P̂′ project into the lowest band of ĤHH and P̂′′
project into the lowest band of ĤAA, we have P̂ = P̂ ′ ⊗ P̂ ′′.
With this, it can be worked out that

εμνρσ F̂μνF̂ρσ = 8F̂ ′
tkz
F̂ ′′

kxky
, (61)

where F̂i j , F̂ ′
i j , and F̂ ′′

i j are constructed from P̂ , P̂ ′, and P̂ ′′,
respectively. We further note that since these projectors are
rank 1, they commute and Tr(F̂ ′

kxky
F̂ ′′

kzt
) = Tr(F̂ ′

kxky
)Tr(F̂ ′′

kzt
).

It is then easy to see that the second Chern number is given
by the product of the first Chern numbers of the reduced
Hamiltonians. With this in mind, we deduce that the second
Chern number of the system under consideration is 1 due to
the first Chern number of the bottom band of ĤAA and ĤHH

both being 1. Thus, we expect that the 3D marker will change
by 1 over a full time period.

Figure 5 shows the numerical computation of the time
dependence of M3(x) for a finite system with open boundary
conditions with x deep inside of the bulk. The curve was found
to be unaffected when a slightly smaller system was taken.
This indeed shows a change of 1 over the full time period,
confirming our expectations. It might also be noted that the
curve in Fig. 5 shows at least qualitative similarities with the
curve in Fig. 2. This is not coincidental but instead is due to
the fact that we are working with a decoupled model. Indeed,
using the decoupled nature of the model and taking the fully
translationally invariant system, one can show that the 3D
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FIG. 5. The 3D marker M3(x, t ) as a function of time for x deep
in the bulk. The parameters chosen are the same as those from the
previous figure. The local trace was taken over the central unit cell of
a system containing 103 total unit cells. Each cell contains nine sites,
and the finite system extends by ten unit cells in each direction.

marker is C1
P1(t ), where C1 is the first Chern number of
the bottom band of ĤHH and 
P1(t ) is the polarization change
of ĤAA(t ).

As for the 1D marker, the agreement between the 3D
marker and the second Chern number deteriorates when the
local trace is taken over a unit cell close to the boundary of
the system. This is due to the fact that for a unit cell near
the boundary of the system, the assumption of translational
invariance breaks down. The sum of the 3D marker over the
full system in fact will be periodic in time. It can be worked
out that∑

x

M3(x) = −2iπ

3Vc
εi jl Tr(X̂iX̂ j X̂l − ˆ̄Xi

ˆ̄Xj
ˆ̄Xl ). (62)

Since the projection operators are periodic in time, this full
expression will also be periodic in time. Also note the direct
relation between the above and the extensive axion coupling,
θ0, discussed earlier in this section.

Before concluding this section, we will say a few words
about how the numerical calculations were carried out. Due to
the fact that Ĥ3D(t ) is a decoupled Hamiltonian its eigenvec-
tors are separable. As such, to find the eigenvectors of Ĥ3D(t ),
we found the eigenvectors of ĤAA and ĤHH and took the tensor
product between them. We then constructed ˆ̄P and P̂ and used
the same steps outlined for M1(x) to calculate Û . With these
we then calculated M3(x) using Eq. (51) and the subsequent
definitions of Âi, F̂i j , and ˆ̄Fi j in terms of P̂ and Û .

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have introduced local topological mark-
ers in one and three dimensions and showed how they can
describe topological pumping reflected by the first and sec-
ond Chern numbers of the system, respectively. We have
motivated and verified the markers, both with general ana-
lytical arguments and concrete models. Connections between

the odd-dimensional markers and Chern-Simons forms were
explained. As a secondary result, we have generalized the
conventional Chern marker to 4D systems.

Though our expressions are general and can be applied to
systems with multiply occupied bands, the examples we have
focused on involved a single occupied band. For the 1D case,
the extension to multiply occupied bands will be trivial due
to band additivity conditions (e.g. the first Chern number for
two bands, which are separable throughout the BZ, is the sum
of the first Chern numbers of the bands treated separately).
The 3D case is considerably richer as there is not such a
simple rule for combining second Chern numbers. As such, a
natural future direction would be to investigate multiple-band
systems with M3(x) and use its desirable properties (i.e.,
its gauge invariance, locality, and the fact that topological
obstructions do not impede its evaluation) to elucidate the
interplay between bands.

A key feature of local topological markers is the fact
that they do not rely on translational invariance. As such,
and as alluded to at times in this paper, there will be
multiple interesting systems to consider that possess dis-
order, both in 1D and 3D. The topological marker can
be used to understand how this disorder affects topo-
logical pumping or, more generally, topological phase
transitions.

Throughout this paper we have focused on systems with
periodic time dependence and have used an effective adiabatic
Hamiltonian Eq. (8) to incorporate dynamics. Our expres-
sions for the markers can still be evaluated, however, for
arbitrary time dependence, with Û determined directly from
the original microscopic Hamiltonian. Investigation of mark-
ers modified in such a way is worthwhile. In [35] it was
shown that following a quench, the 2D Chern marker under-
goes dynamics resulting in a topological marker current that
follows nontrivial scaling behavior. It will be interesting to
investigate similar topological dynamics following a quench
in 1D and 3D systems using the markers from this paper and
perhaps establish a relation to the 2D case via dimensional
reduction.

Another avenue of investigation would be to analyze the
eigenfunctions of the 3D projected antisymmetric moment
εi jl X̂iX̂ j X̂l . This is motivated by the following. In 1D, the
eigenfunctions of P̂x̂P̂ are Wannier states. Wannier states
have provided a very natural way of understanding a num-
ber of phenomena in solid-state physics [55]. However, their
extension from 1D to 2D and 3D can encounter insurmount-
able difficulties, namely, exponentially localized Wannier
states cannot be constructed when topological obstructions are
present. The relation between the possibility of constructing
exponentially localized Wannier states and band topology is
fundamental and of continued interest [56–58].

On the other hand, one might argue that a possibly natural
generalization of P̂x̂P̂ to 3D is the projected antisymmetric
moment. This is motivated in part by it forming a key in-
gredient of M3 as well as previous studies where the full
trace of this operator was shown to reveal important infor-
mation [18,49]. Restricting to the case of a single band, we
seek to find a linear combination of Bloch states |W〉 =∫

BZ dk αk |ψk〉 that are eigenstates of −iεi jl X̂iX̂ j X̂l . Using
Eq. (B5) and considering the translationally invariant case,
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this eigenvalue equation can be written as a first-order dif-
ferential equation in the following way:

εi jl (∂iÃ j ) (i∂l + Ãl ) αk = λ αk, (63)

where λ is the eigenvalue. For the particular model we con-
sidered in Sec. IV D, due to the fact that it is decoupled,
the eigenstates are readily found and turn out to be hybrid
Wannier functions: |W(kx, ky)〉 = ∫

dkze−ikz |ψk〉, where the
phases of the Bloch states are fixed by Eq. (63). As indicated
earlier, the positions of the hybrid Wannier centers will reflect
the pumping in the model considered in this paper as well as
other models [49,59]. In general, however, the Berry curvature
vector � where �i = εi jl∂ jÃl will not be unidirectional. For
such cases, Eq. (63) is richer and its solutions will involve in-
tegrating along closed streamlines of � in the Brillouin zone.
It is very interesting to consider what topological information
is contained in Wannier functions that are generalized in this
way.

Lastly, it is worth highlighting that promising progress is
currently being made in developing a local topological marker
for 2D interacting topological systems [60]. The techniques
presented in this paper could potentially be applied to this
2D marker to develop a 1D local topological marker that
could investigate 1D fractional charge pumping systems. We
hope that the directions specified above will promote further
investigation and application of local topological markers.

Note added. We recently became aware of Ref. [33], where
a 1D topological marker is derived and used to investigate
disordered pumping. The marker used there is similar to the
time integral of M1 from the present work.
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APPENDIX A: ADIABATIC EVOLUTION—ADDITIONAL
DETAILS

This Appendix is to supplement Sec. II B from the main
text. For simplicity, throughout this Appendix we will re-
strict our discussion to the translationally invariant case. Let
the Bloch states of the original Hamiltonian be given by
|ψkn〉 = |k〉 ⊗ |ũkn〉. Here, |ũkn〉 are eigenstates of the Bloch
Hamiltonian of the system. The projection operators can
be constructed as usual as P̂k = ∑occ

n |ũkn〉〈ũkn| and Q̂k =∑unocc
n |ũkn〉〈ũkn|.
Now define a collection of states within the occupied space

as |ukn〉 = ∑occ
n′ Vn′n|ũkn′ 〉, where Vn′n are elements of a unitary

matrix. It is a straightforward exercise to then verify that P̂k
is unchanged when |ũkn〉 is replaced with |ukn〉. Our goal is
to use this symmetry to bring the adiabatic evolution Hamil-
tonian to a simple form. We pick a particular V such that
〈ukn|∂t ukn′ 〉 = 0 for any n and n′ corresponding to occupied
states. Such a unitary matrix can be found from the matrix

differential equation

i∂tVnn′ = −
occ∑
n′′

Cnn′′Vn′′n, (A1)

with Vnn′ (t = 0) = δnn′ and Cnn′′ = i〈ũkn|∂t ũkn′′ 〉. In practice
this equation does not need to be solved. We only need to
know that such a unitary matrix exists.

Next we perform an identical procedure to find |ukn〉 for
unoccupied bands. A short manipulation then gives

ĥk = i[ ˙̂Pk, P̂k] = i ˙̂PkP̂k + i ˙̂QkQ̂k = i
∑

n

|∂t ukn〉〈ukn|.
(A2)

From this one finds the explicit expression for the time-
evolution operator from the main text:

Ûk(t ) =
∑

n

|ukn(t )〉〈ukn(0)|. (A3)

The above considerations are not important when working
with a system having a single occupied band. For the case
of multiple occupied bands, it is important to note that θCS

is gauge invariant modulo 2π . Thus, evaluating θCS with the
transformed states |ukn〉 will not alter its value up to integer
multiples of 2π , even though these states may not correspond
to eigenstates of the original Hamiltonian. The same conclu-
sion applies to the polarization.

APPENDIX B: DERIVATION OF SOME KEY RELATIONS

In this Appendix we will provide a derivation of Eq. (19)
from the main text. We also analyze the commutation relation
between the projected position operator, X̂i, and an arbitrary
translationally invariant operator. Making use of Eq. (6), one
finds

P̂x̂iQ̂ =
∑

n ∈ occ
m ∈ unocc

∫
BZ

dkdk′|ψkn〉〈ψkn|x̂i|ψk′m〉〈ψk′m|

=
∫

BZ
dkdk′|k〉〈k′| ⊗ P̂kQ̂k′ i∂kiδ(k − k′), (B1)

where we have used 〈k|x̂i|k′〉 = i∂kiδ(k − k′). Next, using that
P̂kQ̂k = 0, after an integration by parts one finds

P̂x̂iQ̂ = −i
∫

BZ
dk|k〉〈k| ⊗ (∂iP̂k )Q̂k, (B2)

where the delta function has been used to remove one of the
integrals. From the relation ∂iP̂ = ∂i(P̂2) one can see that
P̂∂iP̂ = ∂iP̂Q̂. Using this, one has

P̂x̂iQ̂ = −i
∫

BZ
dk|k〉〈k| ⊗ P̂k∂iP̂k, (B3)

which is the result we are seeking. Taking the adjoint of this
equation yields another useful relation,

Q̂x̂iP̂ = i
∫

BZ
dk|k〉〈k| ⊗ (∂iP̂k )P̂k. (B4)

It is worth noting that these results can be arrived at in an-
other manner by utilizing a known expression for the matrix
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element of the position operator [61,62],

〈ψkn|x̂i|ψk′m〉 = (iδnm∂i + (Ãki )nm)δ(k − k′). (B5)

One can insert this into the first line of Eq. (B1) and proceed
from there.

Next we consider the commutator of X̂i = P̂x̂iP̂ and an ar-
bitrary translationally invariant operator Ô = ∫

BZ dk |k〉〈k| ⊗
Ôk, where Ôk is Brillouin zone periodic. We further require
that this operator acts only within the projected subspace:
Ô = P̂ÔP̂. The relation x̂i|k〉 = −i∂i|k〉 can be used to find
(in the bulk)

[X̂i, Ô] = P̂

(∫
BZ

dk(−i)∂i(|k〉〈k|) ⊗ Ôk

)
P̂

= P̂

(∫
BZ

dk(|k〉〈k|) ⊗ i∂iÔk

)
P̂

=
∫

BZ
dk(|k〉〈k|) ⊗ iP̂k∂iÔkP̂k. (B6)

Taking the local trace of this expression, we have

trx([X̂i, Ô]) = i

VBZ

∫
BZ

dkTr(P̂k∂iÔkP̂k )

= i

VBZ

∫
BZ

dk ∂iTr(Ôk ) = 0, (B7)

where P̂kÔkP̂k = Ôk and the periodicity of Ôk (as a function
of k) have been used.

APPENDIX C: RELATION BETWEEN Âi AND F̂i j

It is well known that the conventional Berry curvature and
connection are related by

F̃i j = ∂iÃ j − ∂ jÃi − i[Ãi, Ã j]. (C1)

In this Appendix we will seek an analogous relation for the op-
erator versions of these quantities. Considering the definitions
of these quantities: F̂i j = −i[X̂i, X̂ j] and Âi = Û †X̂iÛ − ˆ̄Xi,
it is perhaps not so obvious that there will be an analogous
simple relationship.

Let us start with Û †F̂i jÛ . Using the defining relation for Âi,
this can be written as

Û †F̂i jÛ = −i[Âi + ˆ̄Xi, Â j + ˆ̄Xj]

= ˆ̄Fi j − i[Âi, Â j] − i[ ˆ̄Xi, Â j] + i[ ˆ̄Xj, Âi]. (C2)

Now let us restrict to the translationally invariant case. Using
methods very similar to those in the second half of Appendix
B, one finds

−i[ ˆ̄Xi, Â j] =
∫

BZ
dk|k〉〈k| ⊗ ˆ̄Pk(∂iÂ j ) ˆ̄Pk. (C3)

Next, using the translationally invariant expressions for the
other quantities in Eq. (C2), e.g., Û = ∫

BZ dk|k〉〈k| ⊗ Ûk, one
immediately finds

Û†F̂i jÛ = ˆ̄P (∂iÂ j − ∂ jÂi − i[Âi, Â j]) ˆ̄P + ˆ̄Fi j . (C4)
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